
FILE SYSTEM TO SUPPORT TIME SHARING IN A

MULTIPROG RAMMING ENVIRONMENT

by

Jerry William Johnson

S.B., University
(1968)

of Houston

SUBMITTED IN PARTIAL FULFILLEMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE*

at the

MASSAdHUSETTS INSTITUTE OF TECHNOLOGY

June, 1970

Signature of Autho_
Department of/ 14 9cal' Engieering, June 4, 1970

Certified by
Thesis Supervisor

Accepted by //
Chairman, NepartYdental Committee on Graduate Students

j_morris
Typewritten Text
Pages 85 and 125 are not in the original document.This could possibly be a pagination error by theauthor.

FILE SYSTEM TO SUPPORT TIME SHARING IN A

MULTIPROGRAMMING ENVIRONMENT

by

JERRY WILLIAM JOHNSON

Submitted to the Department of Electrical Engineering
on June 4, 1970 in partial fulfillment of the

requirements for the degree of Master of Science

ABSTRACT

This thesis presents a design for a flexible, versatile
file system to support time sharing in a multiprogramming
environment on small core computers. Howevermany of the
concepts and techniques developed in this design may be
readily adapted to take advantage of extra core storage
available on large core computers. The activities performed
by this file system are divided into a. hierarchical sequence
of logically complete functions. Each logically complete
function forms a level in the hierarchical structure of the
file system. The overall function of the file system is
the hierarchical composition of the logically complete
functions performed by each level. This re-entrant
file system provides its users with a uniform file
structure in the form of virtual memory, a set of hier-
archical structured directories, a protected environment
which permits and encourages file sharing, and the
capabilities to create, open, write, read, link, truncate,
delete, and close files with no a priori knowledge of
secondary storage devices.

Thesis Supervision: John J. Donovan
Title: Associate Professor of Electrical Engineering

-3

ACKNOWLEDGEMENTS

I express my appreciation to my thesis advisor,

Professor John J. Donovan for his active interest,

technical assistance, and encouragement; to Project Mac

for providing a stimulating environment where many

ideas contained in this thesis were developed; to

Stuart Madnick and Stephen Zilles for their assistance

and enlightening criticism; to the National Science

Foundation for financial support; to my wife, Janet,

for her patience and perservance while typing my thesis;

and also, to my wife, Janet, who has been a constant

source of encouragement and understanding through my

years of academic study.

--4-

TABLE OF CONTENTS

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

INTRODUCTION................

Goals, Accomplishments, and

Implementation Aids..................

Hierarchical Modularity of the

File System Design...................

Overview of Hierarchical Levels

in the File System........... 0.

LOGICAL FILE SYSTEM PHASE.................

Functional Description.

Directory Files........... ,..

Hierarchical File Structure

Without Links

Concept of a Link................ .

Hierarchical File Structure

with L n s-

Concept of Keys.................. .

Outline of Design of the Logical

File System Phase....................

Data Bases of LFS...................

Algorithms of the LFS...............

Protection Performed by the LFS......

BASIC FILE SYSTEM PHASE...................

9

0

11

.12

16

16

17

18

23

24

26

28

29

31

31

32

-5-

CHAPTER 4.

Functional Description...............

File Descriptor......................

Controlled Access Rights.............

Read/Write Interlocks................

Outline of Design of the Basic

File System Phase....................

Data Bases of BFS

Algorithms of BFS....................

Protection Performed by the BFS......

FILE ORGANIZATION STRATEGY MODULE..... *000

Functional Description...............

Physical Records and Volumes.........

Virtual File Memory..................

Indexed File Organization

Strategy.............................

Design of a File Organization

Strategy Module......................

Mapping Virtual File Memory into

Logical Records................... .

File Index Table....................

Active File Index Table.............

Mapping Logical Records into

Physical Records.............

Algorithms of File Organization

Strategy Module.

32

32

35

36

36

37

42

42

43

43

43

43

46

50

51

55

59

63

66

-6-

CHAPTER 5. ALLOCATION STRATEGY MODULE........

Functional Description............... 67

Design Considerations................ 67

Design of Allocation Strategy

CHAPTER 6.

Algorithms of the ASM.......

DEVICE STRATEGY MODULE...........

Design of a Device Strategy

Module...... with the

Interaction with the I/0

... 68

.. 72

.. .. *0e 0 73

74

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

Algorithms 7

FLOWCHARTS AND DATA BASES FOR THE

ALGORITHMS OF THE LOGICAL FILE

SYSTEM7

FLOWCHARTS AND DATA BASES FOR THE

ALGORITHMS OF THE BASIC FILE

SYSTEM ... 94

FLOWCHARTS AND DATA BASES FOR THE

ALGORITHMS OF THE FILE ORGANIZATION

STRATEGY MODULE............ * .. 104

FLOWCHARTS AND DATA BASES FOR THE

ALGORITHMS OF THE ALLOCATION

STRATEGY MODULE...........................123

....... * 67

...... e *... 73

-7-

APPENDIX E. FLOWCHARTS FOR THE ALGORITHMS OF THE

DEVICE STRATEGY MODULE.................... 130

REFERENCES 135

LIST OF ILLUSTRATIONS

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

4.1

Figure 4.2

Figure 4.3

Figure

Figure

Figure

Figure

Figure

Figure

4.4

4.5

4.6

4.7

4.8

5.1

Format of Entry in a Directory File.......

Typical Hierarchical File Structure.......

Hierarchical File Structure with Links....

Structure of AFD: Structure of Free List..

Format of a File Descriptor Entry in AVDF-

Format of Entry in VDF....................

Structure of Active Volume Descriptor

File (AVDF)

Subfields of ACRTS........................

Schematic of Relationship between Core

Memory, Virtual File Memory, and Physical

Scheme of Partitioning a File's Virtual

Memory into Logical Records...............

Virtual File Memory Request Mapped into

Logical Records and Parts Thereof.........

Format of Logical Record

Structure of the File Index Table.........

Structure of Active File Index Table......

Physical Record List (PRCDL)..............

Format of Buffer Control Table............

Format of Entry within Active Allocation

Bit M p

... 18

... 21

... 22

... 29

.-- 35

... 38

... 38

... 39

.. .47

... 52

...53

... 54

... 57

.. 60

.. .63

... 65

... 69

0

CHAPTER I

INTRODUCTION

Goals, Accomplishments, and Implementation Aids

The initial goal of this thesis was to design a

flexible, versatile file system to support a multi-

tasking environment on an 8K or 16K IBM 1130 computer,

lacking memory protection, a timing clock, and an interrupt-

masking facility. Another goal of this thesis was to

provide a hierarchical structured file system design which

could be easily implemented and debugged.

These goals were accomplished in the following sense.

The file system design presented will support multi-

tasking and time sharing (for 1130's with timing clocks)

environments on the IBM 1130 computer. The file system

design provides the users of the system with a flexible,

versatile file system which permits and encourages

controlled data file sharing. In a larger context,

the design approach has been sufficiently machine-

independent such that it has considerable applicability

to small computers in general. Many of the concepts and

techniques presented in this file system design may b6

readily adapted for use on large computer systems. The

file system design has been organized into a hierarchical

sequence of logically independent functions or levels,

.10-

with well defined interfaces. This internal structure

coupled with well defined interfaces provides a conducive

environment for independently implementing and debugging

each hierarchical level.

The primary contribution of this thesis is a

description of a methodology for the design of file

systems which provide a versatile set of capabilities

simultaneously for several users in a small core

environment.

During the implementation phase on the IBM 1130,

precautions must be taken to prevent common data bases

from being simultaneously modified. This can be

accomplished by utilizing a software disable, which must

be provided by the multi-tasking monitor, each time a

common data base within the file system is being

accessed. Time sharing and multi-tasking places the

constraint that the file system design must be

implemented as reentrant or pure procedures. A re-

enterable program must be divided into two logically

and physically distinct, parts-a constant part and

a variable part. The constant part is loaded into

memory once and services several tasks concurrently by

switching from one task to another task at high speed.

This is why the software disable must be used when a

particular task is accessing the data bases of the pure

procedures.

Hierarchical Modularity of the File System Desivn

The activities performed by this file system are

divided into a hierarchical sequence of logically complete

functions. Each logically complete function forms a level

in the hierarchical structure of the file system. Each

level in the structure can only communicate with one

successor ond one predecessor level. In fact, each level

in the hierarchical structure can only "call" one

predecessor level. The users of the file system interface

with the highest level on the hierarchical structure. Each

level in the file system hierarchy is more "powerful"

than its predecessor level in the sense that it may

utilize the capability of its predecessor to perform its

logical function.

The rationale for choosing this hierarchical structure

is to segregate each logically complete function of the

file system in order to make the overall file system

easier to design, implement, and verify that it performs

its intended function. After the interfaces are well

defined, the design of the overall file system reduces

to designing a set of independent levels in the

hierarchical structure. The overall function of the file

system is the hierarchical composition of the logically

complete functions performed by each level.

The modular structure incorporated into the design of

~11-

-12-

this file system is similar to the hierarchical

organization presented by S.E. Madnick in a recent M.I.T.

thesis (Madnick 69).

Experience with complex file systems has shown that

is is a very difficult and time consuming task to localize

and identify (debug) the errors in the system during the

implementation phase. A goal of this hierarchical design

is to present an internally structured file system which

provides a conducive environment for efficient "debugging."

Overview of Hierarchical Levels in the File System

The design of this file system consists of five

hierarchical levels. These five hierarchical levels are:

1. Device Strategy Module

2. Allocation Strategy Module

3. File Organization Strategy Module

4. Basic File System phase

5. Logical File System phase

The design of these hierarchical levels is presented

in "reverse" order since this is the order that they are

employed to sequentially process the user's request. The

users of the file system interface with the highest level

in the hierarchical structure which is the Logical File

-'3-

System phase. For example, a user's program may call the

Logical File System phase to READ file Square Root into

core storage from secondary storage. There may be more

than one Square Root file on secondary storage. There

may be a Square Root file in the System Library, a second

Square Root file containing a routine programmed by some

user to calculate square roots very fast but only- to slide

rule accuracy, and a third Square Root file containing a

square root routine, perhaps designed by a freshman in

Computer Science, which has not been debugged. The function

of the Logical File System phase is to transform the

symbolic name, Square Root, into a unique file number

which identifies the particular Square Root file requested

by the user. A more detailed discussion of how the

Logical File System phase performs ,its functions is given

in Chapter II. The Logical File System phase now calls

the Basic File System phase to read the file corresponding

to the unique file number into core.

The Basic File System phase converts the unique file

number into the physical description of the file to be

read. The physical description of this file provides all

the information needed by the next level of the file system

to physically locate the file on secondary storage. A more

extensive discussion of the functions performed by the

Basic File System phase is presented in Chapter III. The

-14-

Basic File System calls a File Organization Strategy

Module to read the file whose location is specified in the

physical descriptor.

The File Organization Strategy Module "knows" that

secondary storage is physically divided into distinct

records of magnetic memory and that each distinct record

has a unique physical address. The FOSM utilizes the

information contained in the physical description passed

from the Logical File System phase and its knowledge of

the organization of files on secondary storage to prepare

a list of the physical record addresses which should be

read into core. For a meticulous discussion of the FOSM

see Chapter IV. The FOSM calls a Device Strategy Module

to read this list of physical records into core.

The Device Strategy Module, using a strategy to

minimize the overall time, issues commands to the

appropriate I/O device to read the physical records

requested by the FOSM from secondary storage into core

storage. Since the file system has read the requested

Square Root file into core -storage, it returns control

to the user. The detailed discussion of the functions

performed by the DSM is presented in Chapter VI.

The Allocation Strategy Module was not discussed in

the above example since it is not involved in reading files.

When a file is initially written to secondary storage,

-1 5-

the same sequential process through the hierarchical

file structure, as presented above, occurs with the Write

command. replacing the Read- command, until theFOSM is

called. At this point, the FOSM calls the Allocation

Strategy Module to get a set of "empty" physical records

on secondary storage for this file. The ASM keeps a

"tally" of the addresses of all "empty" physical records

on secondary storage. It chooses a set bf physical records

according to some strategy, updates its "tally" to

indicate these physical records are no longer "empty" and

returns the addresses of the physical records to the FOSM.

The FOSM saves these physical record addresses for future

use, prepares a list of physical records and calls the

DSM to write the file located in core into these physical

records on secondary storage.

CHAPTER II

LOGICAL FILE SYSTEM PHASE

Functional Descriotion

A user's program references each file by a means of a

symbolic pathname. It is the function of the LFS phase to

convert the symbolic pathname into its unique file identifier.

It is the responsibility of the LFS phase to generate and

maintain a flexible, versatile, file directory organization

for the users of the system. This organization must provide

an environment in which file sharing by users may be allowed

and controlled. A user should not be allowed to reference

the files of other users without their permission.

The description of directory files and the hierarchical

file structure provided by the LFS phase will be presented

in this section. The concepts of links and keys, along

with the features they provide the user, will be discussed.

Finally, an outline of the design of the LFS phase will

be presented. The detailed logical flowcharts for the

algorithms which constitute a specific design for the

LFS phase can be found in Appendix A.

-17-

Directory Files

There are only two classes of files in the LFS phase.

The set of file directories which are maintained by the

LFS phase form one class and the set of all other files,

referred to as data files for clarity, form the other class.

The LFS associates a symbolic name with each of the files

in both classes.

A directory is a file of arbitrary length which contains

a list of entries. Functionally each entry points to

either a data file or to another directory. Specifically,

each entry contains five fields. The first field contains

the entry name which is identical to the symbolic name

of a file directory or data file. An entry name need

be unique only within the directory in which it occurs.

This condition permits several files to exist simultaneously

on secondary storage with identical symbolic names. The

second and third fields contain a symbolic volume and

index, respectively, that correspond to the unique file

identifier assigned to the symbolic name. This unique

file identifier is used in resolving the ambiguity

associated with files having common symbolic names. The

semantics associated with the symbolic volume and index

and the rationale for choosing these to represent the

unique file identifier will be deferred until the

discussion of the LFS phase is undertaken. The fourth

-18-

field contains a unique key, if the entry corresponds to

a file that is linked to another file; otherwise, this

field is empty. The concept of links will be discussed

in the following paragraphs. The fifth field contains a

set of attributes. The first attribute indicates whether

the file associated with this entry is a directory file

or data file. The second attribute stipulates whether

the file is linked or not linked. Figure 2.1 depicts the

format of an entry in a directory file.

Symbolic Name Volume Index Key Attributes

Figure 2.1--Format of Entry in a Directory File

Hierarchical File Structure Without Links

The hierarchical file structure is a set of multi-

leveled data structures maintained on secondary storage.

Level zero of the file structure contains the base

directory, often called the root directory. The unique

file identifier of the root directory is known to the

LFS. The entries of the root directory contain the unique

file identifiers for all directory files and data files

which are found at level one of the file structure. There

exists one entry in the root directory for each user that

has permission to use the computer system. Therefore, if

a particular user had more than one f-ile stored on

-19-

secondary storage, the unique file identifier corresponding

to his entry must point to his file directory located at

level one in the file structure. The rationale for having

each entry of the root directory correspond to a unique user

or class of users is tied very closely to file protection.

Since each path through the hierarchical file structure

begins in the root directory, a particular user can

access only those files in the file structure which are

located by a path emmanating from his entry in the root

directory. Thus, there is a multi-leveled data structure

associated with each user or class of users. A user is

said to own all files' in the multi-leveled data structure

associated with him.

The entries of a user's directory file at level one

in the hierarchy contain the symbolic names and unique

file.identifiers for all of his directory and data files

which are found at level two. A user can have as many

levels in the hierarchical file structure, independently

of the other users, as he desires. In general, any usert s

directory files at level "i" in -the hierarchical file

structure contain the symbolic names and unique file

identifiers for all of his directory and data files which

are found at level "i+1."

Any user's directory file or data file at lever "i"

in the hierarchical file structure must correspond to a

-20-

unique path through the first "i"l levels of the file

structure. Therefore, a user may access one of his files

at level "i"I with a qualified symbolic path name consisting

of "i-i" components. The IFS will append the identification

of the user to the front of the symbolic pathname specified

by the user to get the "i"-components necessary to access

the requested file at level "i" in the hierarchical file

structure. Hence, the LFS allows a user to access only

those files at level "i" of the hierarchical file structure

that emanate from his entry in the root directory.

Figure 2.2 illustrates a typical hierarchical file

structure consisting of three separate multi-leveled data

structures. The numbers 1, 2, 3 correspond to the system's

identification of three different users or classes of

users. The numbers 1 and 2 point to the directory files

on level 1 for user 1 and user 2, respectively.

The files 1, 2, and B, denoted by square symbols,

are directory files, and the files X, Y, and Z, denoted

in circles, are data files. The directory files and the

data files do not necessarily have unique symbolic names.

The only requirement is that all file names in each

directory be unique. There are three data files in

Figure 2.2 named "X"; this ambiguity is resolved by

the qualified pathnames "1.B.X," "2.X," and "1.B.B.X."

Similarly, the ambiguity associated with the two

-21-

Root

2.X

1.B.X

Level 0

Level 1

Level 2

Level 3

Level 4

1.B.B.X

Figure 2.2--Typical Hierarchical File Structure

I / x

LINK LINK

2.X

1.B.Y
1.Y
2.Z

Figure 2.3-.Hierarchical File Structure
with Links

1.X

_23-

directory files named "B" is resolved by the pathnames

"1.B" and "1.B.B," Note that user 3 has only one data

file on level 1 and has no directories. If user 3 had

more than one data file, then he would need a directory

at level 1 in the file sturcture.

Concept of a Link

Recall that each directory file is owned- by a

particular user or class of users, and that a user can

access only those data files which appear in his directory

files. Without links, entries in a user's directory file

point to other directory or data files that belong to

him in the next level of the file hierarchy. Primarily,

links provide a means by which a user can reference data

files that do not belong to him from any of his file

directories. Secondarily, links allow a user to reference

any of his data files from any of his directories.

The following example is given to clarify the concept

and flexibility of a link. Suppose user 1 has a data file,

"Y," which is located in his hierarchical file structure

by the symbolic pathname "1.A.B.Y." Assume user 1

has given user 2 permission to link to file "Y" to read

only. Since user 2 can link to file "Y" from any of his

file directories for-the purpose of reading, suppose he

chooses to link to file "Y" from his directory, "C," with

-24-

symbolic pathname "2.C." Suppose user 2 decides to rename

file "Y" as file "Y2." Now the link is accomplished by

making an entry "Y2" in file directory "C" such that the

unique file identifier of "Y2" is the unique file identifier

of "Y." When user 2 accesses his data file corresponding

to "2.C.Y2," the LFS phase will map this symbolic pathname

into the unique file identifier corresponding to file

"1.A.B.Y." Data file "2.C.Y2" is said to be linked to

data file "1.A.B.Y."

Hierarchical File Strucutre with Links

The hierarchical file structure-presented protects

a user's set of files since no other user with a different

system identification can access those files. If a user

is successful in masquerading as another user (convincing

the computer system that he is another user), then this

protection schema fails. This hierarchical file structure

does not allow file sharing and controlled access among

individual users and classes of users.

The flexibility and versatility of the above

hierarchical file structure can be enhanced by allowing

links to data files to be superimposed on this structure.

File sharing and controlled access among users is

permitted and supervised through the use of links. The

allowable links to a particular file are controlled by

-25-

the owner of that file. The means by which permission is

given to link to a. file is deferred until the discussion

of the BFS phase is undertaken. The extent to which

links modify the hierarchical file structure will be

discussed here.

Links modify the basic hierarchical file structure

by allowing data files to be referenced directly from

any directory in the file hierarchy. Figure 2.3 shows

a hierarchical file structure with links. User 2 has

linked to data file "Y" which belongs to user 1. This

link allows the LFS to access data file "Y" for user 2

with the qualified pathname "2.Z." Note that user 2

can access this file by simply specifying the symbolic

name "Z." This is the mechanism by which the links allow

users to share data files. The extent of sharing is

controlled by the owner of a data file since the owner

gives permission to link and gives the conditions of a

link. For example, a link might be allowed with the

condition of read only to some users aid write only to

other users. Links also help to eliminate the need for

duplicate copies of sharable files. The other link shown

in Figure 2.3 serves as a shortcut to a data file located

somewhere else in the hierarchy associated with user 1.

Thus, user 1 can reference file "Y" with either of the two

pathnames "Y" or "B.Y."

-26-

Since links are not allowed to data files that have

not been created, the links are always superimposed on

the existing hierarchical file structure. Loops can

never occur in the hierarchical file structure.

Concept of Keys

Functionally, keys are used to confirm the physical

existence of linked data files. It is necessary to confirm

the existence of linked data files because of a condition

which may occur when some data file "Y" is linked to some

data file "Z" and data file "Z" is subsequently deleted.

Since the unique file identifier that was assigned to

data file "Z" has been deleted, it may at some later

time be assigned to a new data file "X." The critical

condition occurs when the linked data file "Y" is

accessed after data file "X" has been created. The

symbolic name of data file "Y" is mapped into its unique

file identifier which now corresponds to the unique file

identifier of "X." The result may be disasterous since

data file "Y" is now actually linked to data file "X"

in lieu of data file "Z." Keys provide a means by which

the LFS and BFS phases, working in conjunction, can solve

this conflict.

Before presenting exactly how the keys permit the

above conflict to be resolved, the relevant interaction

-27-

between the LFS phase and the BFS phase is outlined.

When a file is created, a unique key is generated by

the LFS and entered into the directory entry along with

the symbolic name and unique file identifier. The BFS

phase uses the unique file identifier to access the file

descriptor associated with the created file and inserts

the key into the file descriptor. The directory entry

of a linked file is assigned the key and unique file

identifier of the data file to which it is linked.

Therefore, no new file descriptor is created for the linked

file, since file descriptors have a one-to-one correspondence

with the unique file identifiers. The essential point is

that the key associated with a file is stored in the file

directory and in the file descriptor.

The means by which keys solve the above conflict is

now presented. Since no two keys are identical, the

descriptor of data file "X" will contain a different key

from the key contained in the directory entry of data file

"Y." The BFS using the unique file identifier of file

"Y" will still access the new descriptor associated with

data file "X." However, the key from the directory entry

of file "Y" will not agree with the key in the descriptor

of file "X." Thus, the conflict is resolved since the

BFS detects that the file to which "Y" was originally

linked has been deleted.

-28-

Outline of Design of the Logical File System Phase

The Logical File System consists of a mainline module,

LFS, that calls one of a set of submodules. Each sub-

module corresponds to one of the ten user commands

processed by the Logical File System phase. The overall

tasks of the Logical File System, along with those

submodules which perform that task, are:

CREAT 1. Creates a directory file or data file

for a user in his hierarchical file

structure.

OPEN 2. Opens sa-file for accessing by trans-

ferring the directory entry of this

file from secondary storage into a

core resident table (the Active File

Directory).

CLOSE 3. Closes a file by deleting its directory

entry from the Active File Directory.

READ 4. Maps the symbolic pathname of the

referenced file into a unique file

identifier and key by use of the Active

File Directory if the command is

allowed.

WRITE 5. Same submodule as 4.

TRCAT 6. Same function as 4.

PROT 7. Same function as 4.

-29-

DELET 8.

LINK 9.

ULINK 10.

Deletes a file for a user in his

hierarchical file structure.

Creates a data-file-for- -user in his

hierarchical file structure and links

it to the specified data file if the

link is allowed.

Same as 8.

Data Bases of LFS

The Active File Directory and the Free List are the

data bases which belong to the LFS phase. The LFS also

utilizes a system wide buffer in its search through the

file directories for requested files. The structure of

the AFD and the Free List are shown in Figure 2.4.

Symbolic 7ol Index Key ACRTS
0
1
2

3 _ _ _ _ _ _ _ _ _ _ _ _

N

a. Structure of AFD;

Figure 2.4--a. Structure of AFD;

b. Structure of Free
List

b. Structure of Free List

S-m. Nme. T...

-30-

Since the size and number of file directories will

generally prohibit them from being maintained in core

storage, they are stored on secondary storage devices.

The AFD permits a set of N file directory entries to be

core resident for efficient access. Since the access

times of secondary storage devices are inherently much

slower than core storage access times, the time efficiency

of requests to the file system would be drastically reduced

if each request had associated with it a sequence of

secondary storage accesses to locate. the unique file

identifier. The LFS phase utilizes the AFD coupled with

the Free List to efficiently perform its frequent function

of mapping a symbolic pathname into a unique file

identifier (volume and index).

To make an entry into the AFD, the OPEN submodule

searches through the hierarchical file directories until

it finds the entry corresponding to the file to be opened.

This directory entry is transferred to the AFD and the

condition associated with the OPEN command is put into

the flag field of the AFD. The remaining components of

the symbolic pathname are chained together in reverse order

in the Free List. The last log2M bits of the ACRTS field

serves as an index which connects the entry of the AFD to

the chain in the Free List.

-31-

Algorithms of the LFS

The detailed logical flowcharts of each of the

submodules making up the LFS phase are given in Appendix A.

Flowcharts for two utility routines, FDMGT and ACESS, which

search the file directory hierarchy and perform the actual

accessing, deleting, and inserting of entries into

directories, are also given in Appendix A. The syntax and

semantics of the arguments required by each of these

submodules are found with the flowcharts. The error

handling functions performed by the submodules are

incorporated into the flowcharts.

Protection Performed by the LFS

The LFS phase checks each access to confirm that it

checks the condition for which the file was opened. This

phase prevents any user from creating two or more files

in the same directory with identical symbolic names. The

organization of the file hierarchy prevents any user

from accessing files of another user unless links have been

made to those files.

.32-

CHAPTER III

BASIC FILE SYSTEM PHASE

Functional Description

The Basic File System phase must convert the unique

file identifier from the Logical File System phase into

a file descriptor. The file descriptor provides all

information needed by the next level of the file system,

the File Organization Strategy Module, to physically

locate the file. The file descriptor provides a means

by which the access rights of a file can be dynamically

modified by the owner of a file. The BFS phase decides

if a file may be opened by verifying access rights and

checking read/write interlocks.

Fil Descriptor

There must be a single file descriptor for each

file that resides on secondary storage regardless of how

many symbolic names the file may have or of how many

different file directories in which it may be found.

There are two reasons- why the file descriptor is not

included in the file directory along with the symbolic

name. First, it is more efficient in time and space to

maintain one copy of the file descriptor instead of a

copy for each symbolic file in the file hierarchy which

-33-

eventually points to the same physical file. For example,

suppose an owner of a file decided to change the access

rights of one of his data files from read and write to

read only, then the descriptor of every file in the file

hierarchy which was linked to this file would have to be

found and. changed. Second, it is much easier to insure a

unique mapping between the symbolic file and the

corresponding physical file through a single file

descriptor in a sophisticated environment which allows a

single file to be referenced. by different names and which

permits links that allow a file to be referenced from

various directories in the file hierarchy or from different

users.

Since each file requires a file descriptor, the set

of file descriptors will reside on secondary storage. The

file descriptor for a file must reside on the same volume-

as the file. This is a reasonable condition since, if the

volume is mounted, then the file descriptor and the file

can both be accessed. A volume refers to the physical

medium on which the information is stored where a device

refers to the I/O mechanism used to read or write

information. For most drums and many disk units, the

device and volume are inseparable. However, for tape units

and many of the smaller disk units, the volume, magnetic

tape reel, and disk pack, respectively, are removable.

-34-

For each volume, there is a Volume Descriptor File

(VDF) whose fixed length entries contain the file descriptors

for each file stored on that volume. Since the entries

have a fixed length, the location of a particular file

descriptor is specified by its index within the VDF. The

descriptor of the VDF is the first descriptor in the VDF.

The rationale for selecting a symbolic volume and index to

represent the unique file identifier was to allow the file

descriptors to be accessed without having to search the

VDF. The symbolic volume specifies the volume containing

the VDF, while the index specifies the position within

the VDF which contains the file descriptor. The information

which defines the physical location of the VDF is contained

within its descriptor.

To facilitate efficient access to the file descriptors,

an Active Volume Descriptor File (AVDF) is maintained in

core storage for all the active or open files. The AVDF is

the only core resident data base of.the BFS phase. Each

of the fixed length entries in the AVDF can contain one

file descriptor. It is feasible to have a core resident

AVDF, since the number of active file descriptors is in

general only a small fraction of the total number of file

descriptors. The file descriptors of the VDF'S are always

resident in the AVDF since one of them is used in the access

of. each file descriptor. The file descriptor entries in

the AVDF.have the format shown in Figure 3.1. The

functions of each of the fields contained in the file

descriptor are discussed in the following sections.

Vol Index PRCDA Length Key ACRTS FO USRCT

Figure 3.1--Format of a File Descriptor Entry in AVDF

Controlled Access Rights

When a user creates a file, he specifies the initial

access rights (read only, write only, etc) associated with

his file. He has the capability to modify these access

rights at a later time. These access rights are preserved

within the ACRTS field of the file descriptor. Controlled

data file sharing is tied very closely to the access rights

contained in the file descriptor. A simple means by

which a versatile set of access rights are allowed and

controlled is given in the Outline of Design of the Basic

File System Phase. The BFS phase decides if a file may

be opened to be accessed in a particular way. It also

confirms the physical existence of a data file to be

opened by comparing the key passed as an argument in the

OPEN command from the LFS phase with the key in the file

descriptor. If the keyr fail to match, the data file

linked to has been deleted. Once a file has been

successfully opened, it is the responsibility of the LFS

-36-

phase to confirm that a file is really being accessed

according to the permission granted in the OPEN request.

Read/Write Interlocks

A data file is allowed to be open for the sole purpose

of reading by any number of users. Only one user at a

time is permitted to open a file for writing or for

reading and writing. The BFS phase enforces these read/

write interlocks. The count of the number of users who

simultaneously have a file open for reading is saved in

the USRCT field of the file descriptor in the AVDF. The

value of the user count is used by the BFS phase to

prevent it from closing a file prematurely when a set of

users are reading a data file concurrently.

Outline of Design of the Basic File System Phase

The Basic File System consists of a mainline module,

BFS, that calls one of a set of submodules. Each submodule

corresponds to one of the nine commands processed by the

BFS phase. The overall tasks of the Basic File System,

along with those submodules which perform that task, are:

CREAT 1. Creates a file descriptor entry in the

VDF for a file.

OPEN 2. Opens a file for accessing by trans-

ferring the file descriptor of this

-37-

file from the VDF on disk to the core

resident AVDF if the OPEN command is

allowed.

CLOSE 3. Closes a file by deleting its file

descriptor from the AVDF.

READ 4. Retrieves the information from the AVDF

which is used by the File Organization

Strategy Module to physically locate the

file.

WRITE 5. Same submodule as 4.

TRCAT 6. Same function as 4.

PROT 7. Modifies the access rights of the file

descriptor in the VDF as specified by

the owner of the file.

DELET 8. Deletes a file descriptor from the VDF

maintained on secondary storage.

LINK 9. Checks the file descriptor of the file

to which a link is requested to see if

the link is allowed.

Data Bases of BFS

The BFS phase generates and maintains a set of VDF's,

one on each volume. Ea4a VDF is actually a directory

containing an ordered sequence of fixed length entries.

Each entry represents a file descriptor for some file on

-38-

the same volume. The format of each entry of a VDF is

given in Figure 3.2.

PRCDA Length Key- ACR1TS FO
.-- L

Figure 3.2--Format of Entry in VDF

The structure of the Active Volume Descriptor File

(AVDF) is presented in Figure 3.3. The core resident AVDF

contains a file descriptor for each OPEN file. The OPEN

submodule transfers entries into the AVDF and the CLOSE

submodule removes these entries.

Vol Index PRCDA Lenth Key ACRTS FO USRCT

tz -J - i- -

R

0

N+R

Figure 3.3--Structure of
File (AVDF)

R entries
reserved
£ or
descriptors
of VDF's

Active Volume Descriptor

-39-

The access rights field of a file descriptor is

divided into a set of subfields as depicted in Figure 3.4.

A B C

Figure 3.4--Subfields of ACRTS Field

Subfield A is used to determine if a link can be made to

the file. Subfield B is used to specify the access rights

of an allowed Link. Subfield B contains one of the access

rights, Read, Write, Read/Write, or Protected. Subfield C

contains either Read, Write, or Read/Write and is used

to specify the access rights of the owner of the file. The

owner of a file is the only user authorized to delete his

files.

This organization allows certain classes of global

control of data file sharing to be easily implemented.

For example, suppose Subfield A allows a Link; Subfield

B stipulates Read, and Subfield C permits Read/Write.

Then, the owner of the file is authorized to make Read/

Write accesses, and Links to the file, for the sole

purpose of Reading, are allowed to every user of the file

system. In this case, as well as all other cases, except

when Subfield B is protected, the verification of access

rights can be made directly from the information contained

in the file descriptor.

For the case that occurs when Subfield B is Protected,

-40-

verification of the access rights of the LINK command or the

access rights of an OPEN command when the file to be opened

is linked is made indirectly from the information contained

within the file descriptor. The extra processing overhead

for Protected data files due to the associated indirection

is accrued by only the above two commands. A Protected

data file means that access rights are assigned to users

on an individual basis at the descretion of the owner. For

each Protected data file, the BFS phase maintains an

Access Rights File (ARF) which contains the identification

of each user given permission to link and the access rights

permitted with that link. If a data file is Protected,

the file descriptor of the data file in the VDF is

immediately followed by the file descriptor of its ARF.

Therefore, the symbolic volume and index fields of the

file descriptor in the AVDF for the Protected data file

can be used to access the file descriptor of the ARF.

One needs simply to use the symbolic volume and add one to

the index to generate the unique file identifier of the

ARF. After accessing the file descriptor of the ARF,

the ARF can be read into a buffer and searched for the

identification and access rights of the user requesting

use of the data file.

The decision to Protect a data file must be made

when the file is created so that adjacent pairs of file

descriptors can be assigned.

If data file sharing on a global basis instead of an

individual basis is satisfactory for a particular

implementation of the file system design, then the design

of the LINK and OPEN submodules could be simplified by

prohibiting the protect feature.

The physical record address (PRCDA) field of the file

descriptor specifies the address of the physical record

which contains the mapping function used by the File

Organization Strategy Module to map logical file requests

into physical file requests. The volume containing this

physical record is given within the symbolic volume

field.

The file organization (FO) field is used to

determine the organization of the file on secondary

storage. The appropriate File Organization Strategy

Module at the next level in the file system is in general

selected according to the file organization contained in

the file descriptor. Since only one File Organization

Strategy Module is presented in this design, the FO field

is not actually required. It was incorporated into the

file descriptor to.allow other File Organization Strategy

Modules to be easily added if they were needed and if

sufficient core memory was available.

Algorithms of BFS

The detailed logical flowcharts for the algorithms

of the submodules contained in the BFS phase are given

in Appendix B. The arguments required by each of these

submodules are found with each flowchart. The error

handling functions performed by the submodules are

incorporated into the flowcharts.

Protection Performed by the BFS

The BFS phase confirms the physical existence of

linked files by verifying that the key in the OPEN

command is the same as the key in the file descriptor.

The BPS will not allow files to be opened or linked

unless the accessing request stipulated in the OPEN and

LINK commands agrees with the permitted accessing rights

contained in the file descriptor.

-43-

CHAPTER IV

FILE ORGANIZATION STRATEGY MODULE

Functional Description

The File Organization Strategy Module is responsible

for the physical organization of a file on secondary

storage volumes. The primary function of the File

Organization Strategy Module (FOSM) is to transform each

request to transfer a portion of a file between core

memory and the file's "virtual" memory into a collection

of requests which can be used to transfer the same portion

of the file between core memory and physical or "buffered"

secondary storage memory. Stated more simply, the FOSM

maps logical file addresses into physical record addresses.

"Buffered" secondary storage memory refers to the physical

records of secondary storage which are currently core

resident in the I/0 Buffer Management System. In order to

minimize I/O requests to secondary storage devices, physical

records contained in buffers are. transferred directly to

the stipulated core areas. In the ensuing design, the

FOSM is delegated the duty to detect and transfer

buffered physical records. It is the responsibility

of the FOSM to interact with the Allocation Strategy

Module to dynamically allocate and deallocate physical

records for files as required.

The FOSM selects a volume on a secondary storage

device when a file is created unless a symbolic volume is

specified by the creator. The FOSM maps symbolic volume

names into physical volume addresses.

Physical Records and Volumes

A physical record corresponds to a unit of transmission

between core storage and a volume through an I/0 device.

A physical record is generally capable of containing

several computer words. For example, on the disk volumes

of the IBM 1130, a physical record consists of 320

computer words. Each physical record on a volume has a

unique address by which it may be accessed.

A volume is a single unit of secondary or external

storage, all of which can be read or written by a single

access mechanism called an I/0 device. A volume is

usually an entire disk, tape, or drum and may be

dismountable. The disk volumes on the disk drives

provided by the IBM 1130 are dismountable.

Virtual File Memory

Each file is an ordered sequence of addressable

elements. The size of each addressable element is the

same size as an addressable element in core storage.

Thus, each file has the form of a "virtual" core memory.

The real purpose of the file system is to provide an easy,

reliable means by which a specified number of elements may

be transferred between "real" core memory and the "virtual"

memory of the file system. A file's virtual memory may be

much larger than real memory. In fact, each file is

allowed to be arbitrarily long. When a user wants to

read or write a portion of a file, he specifies the

particular portion in the file's virtual memory. For

example, a user may request the file system to read 600

words, starting at address 2,000 within file Beta, into

core starting at location 12,250. It is the function of

the FOSM to transform this logically contiguous virtual

memory 600-word portion into its physical location on

secondary storage. In general, the physical location,

corresponding to a contiguous area in a file's virtual

memory, is designated by a set of physical records and/or

parts of physical records.

Several objectives of the file system are realized

through the technique of virtual file memory. The virtual

file memory provides the user with a flexible and versatile

uniform file structure. The virtual file memory provides

a shield between the user and the "obscure" mechanisms

required by the file system to successfully interact with

the secondary storage device. Thus, the user need have

no a priori knowledge of the pecularities or the physical

-46-

organization of the secondary storage devices to

triumphantly use the file system. Since only the virtual

memory of a file is addressable by a user, the file system

has complete control over the dynamic and automatic

allocation of secondary storage for all files. The

schematic relationship between core storage, virtual

file memory, and physical records on secondary storage is

exhibited in Figure 4.1.

Indexed File Organization Strategy

An indexed file organization strategy is the scheme

incorporated into the design of the FOSM. In this

strategy, the physical record addresses are kept in a

table or file which is "indexed" by use of logical record

numbers. The FOSM generates the logical record numbers

by partitioning the file's virtual memory into an ordered

set of logical records having the same size as a physical

record. Logical record 1 of virtual memory has the physical

record address found in entry 1 of the table; logical record

2 has the physical record address found in entry 2, etc.

The means by which the FOSM organizes its data bases to

convert logical records into physical records while

attempting to minimize cie I/O operation required to

update the data bases is present in the Design of the

FOSM section.

Write
into
File
Beta

File Beta's
Virtual
Memory

Record 8

~zz~
Record
2

Record
4

Physical Records Assigned
to File Beta on Secondary
Storage

Core Memory

Figure 4.1--Schematic of Relationship between
Core Memory, Virtual File Memory,
and Physical Records

-48-

The rationale for choosing this particular strategy

over other common strategies such as sequential file

organization and linked file organization is accredited

in part to the flexibility and generality of this strategy

and in part to the environment of the IBM 1130. The direct

access secondary storage devices of the IBM 1130

configuration provide excellent conditions for random or

direct access files which are particularily adaptable to

a multi-tasking environment-,

Of the above strategies, the indexed file organization

strategy is the only one which allows efficient direct

access files. The core memory available on a particular

IBM 1130 for the resident file system may be limited to the

extent that room for only one FOSM is permitted. The

capabilities provided by the indexed file organization

strategy are more adaptable and versatile than the

capabilities of either of the other strategies.

The indexed file strategy may simulate the sequential

file scheme, using a sequential allocation module, in the

sense that sequential physical records are assigned to

a file. The argument generally given for assigning

consecutive physical records to a file is to minimize

device latency and access time. However, in a multi-

tasking environment, a common condition is to have more

than one file actively in use on the same device. This

-49-

produces a state in which the read/write mechanism is

switching rapidly among many active files. This condition

does not give overwhelming credence to the argument that

sequential files minimize latency and access times in a

multi-tasking environment.

When space becomes available on a secondary storage

volume due to files being deleted and truncated, it

usually appears in disjoint fragments throughout the

volume. The indexed file organization allows the logical

records of the file's virtual memory to be "scattered"

-over the random-accessed storage volume. This technique

permits files to dynamically expand and contract.

Finally, the indexed file organization strategy

provides an efficient means to allow "sparse" files such

as files containing "hash coded" and random entry tables.

A "sparse" file may be characterized as having a much

larger virtual memory than the physical memory actually

assigned to the file on secondary storage. For

"-pedagodical reasons, assume a user created a file and

transferred data into only the portions of the virtual

file's memory corresponding to logical records 1, 50, and

100. At this point in time, the length of the file's

virtual memory is one hundred times the number of elements

in a physical record. However, only four physical records

are required to represent this file. One physical record

-50-

is needed to contain the physical record addresses and

three physical records are needed to contain logical records

1, 50, and 100. Additional physical records will be

dynamically allocated as required for a sparse file as

more information is written into the file.

A request to read an "unwritten" portion of a sparse

file may occur. The FOSM.realizes this, while processing

the Read request, when it detects that physical record

addresses have not been assigned to the requested portion

of the sparse file. In such a case, the FOSM returns zeros

to give the illusion that the unspecified contents of a

sparse file are initialized to zero.

Design of a File Organization Strategy Module

The indexed File Organization Strategy Module (FOSM)

is a mainline module that calls one of a set of submodules.

Each submodule corresponds to one of the five commands

processed by the FOSM. The overall tasks of the FOSM,

along with those modules which perform that task, are:

CREAT 1. Chooses a volume for a file that is

being created unless the creator of

the file has specified a symbolic

volume name, verifies that a specified

volume is mounted, and calls ASM to

allocate a physical record for the

-51-

File Index Table.

READ 2. Maps virtual file memory requests into

physical record requests and transfers

physical records in buffers immediately

to the user.

WRITE 3. Maps virtual file memory requests into

physical record requests, allocated

physical records to files as needed,

and transfers physical records in

buffers immediately to the user.

CLOSE 4. Updates disk copy of modified core

resident data bases associated with

specified files including modified

physical records in buffers.

TCATE 5. 1-Reduces the length of a file by

calling ASM to deallocate physical

records assigned to truncated portions

of files.

Mapping Virtual File Memory into Logical Records

The virtual file memory is logically partitioned

into an ordered set of logical records. The size of a

logical record is equal to the size of a physical record

of this file. Figure 4.2 displays the concept of

partitioning a virtual file memory into logical records.

-52-

Virtual File
Memory

I

Figure 4.2--Scheme of Partitioning a File's Virtual
Memory into Logical Records

Logical Record
0

Logical Record
1

Logical Record
N

Virtual File Memory
Partitioned into
Logical Records

User's
View

-53-

Virtual File
Memory Request

"Leading Partial"
Logical Record

Intermediate
"Full" Logical
Records

"Lagging" Partial
Logical Record

Request Mapped into
Logical Records and Parts
Thereof

Figure 4.3--Virtual File Memory Request Mapped
into Logical Records and Parts
Thereof

User's
Request

.. fol

-54-

The.virtual file memory is partitioned into logical

records in order for the FOSM to associate distinct physical

records with each logical record. When a request is made

to the FOSM to read or write a portion of the file's

virtual memory, the Prepare Logical Record List (PLRL)

routine is called which maps the request into the

appropriate collection of logical records and parts

thereof. This mapping involves only simple mathematical

manipulations of the file address and core address

specified by the user in his read or write request. A

requested portion of virtual file memory and the

corresponding collection of logical blocks is exhibited in

Figure 4.3 found on the preceeding page.

The output of the PLRDL routine is called the

Logical Record List. The format of the Logical Record

List. is shown in Figure 4.4

"Leading" Entry

"Intermediate" Entry

"Lagging" Entry

Figure 4.4--Format of Logical Record List

The format of the Logical Record List simplifies the

tasks of mapping logical records into physical records

and controlling the transfer of partial physical records

LRCDI CA Index Num CT

-55-

through buffers.

The three entries represent the information which

describes the leading partial logical record, the set

of intermediate full logical records, and the lagging

partial records, respectively.

The Logical Record Index (LRCDI) field of an entry

contains the index of the logical record described by that

entry. The Core Address (CA) field stipulates the

beginning of the user's area in core storage corresponding

to the logical record of that entry. These two fields

pertain to the first intermediate full logical record

of the second entry. The Index field specifies the index

within the logical record corresponding to the first

record of the logical record contained in the read/write

request. The Number (Num) field gives the number of

words within the logical record contained in the read/

write request. The Count (CT) field contains the number

of logical records associated with each entry. The CT

field of the record entry specifies the number of

intermediate full logical records. The CT field of any

entry is zero when that entry is not required in a particular

read/write request.

File Index Table

A File Index Table (FIT) contains the mapping function

-56-

used by the FOSM to map logical records into physical

records. There is a FIT maintained on secondary storage

for each file in the file system except the FIT. The

FIT is actually a chained file having the structure shown

in Figure 4.5.

Each entry of the FIT is indexed by a logical record

number. Entry 0 corresponds to logical record 0; entry

1 corresponds to logical recore 1, etc. Each entry in the

FIT contains the physical record address of the logical

record defined by the index of the entry if the physical

record has been allocated; otherwise, the entry contains

a zero, to indicate that a physical record has not been

allocated. The FOSM is responsible for the generation

and deletion of entries in the FIT as a file "grows" and

"shrinks." This indexing scheme incorporated into the

FIT permitts logical records to be mapped into physical

records without having to search the FIT.

The last entry of each physical record assigned to

the FIT contains the physical record address of the next

physical record assigned to the FIT. The last physical

record in the chain is denoted by a zero in its last entry.

Additional physical records are dynamically assigned to

the FIT as needed by the FOSM interacting with the

Allocation Strategy Module.

For most files only one physical record is required

-57-

Logical Record Numbers Logical Record Numbers

Entry &

First Physical
Of FIT

Record

l2

Figure 4.,5--Structure of the File Index Table

Phy. Rcd. Addr.

etc

0

Next Physical
Record of FIT

If end
of chain

2n-1

2n

-58-

for the FIT. For example, in the IBM 1130 environment

with 320 word physical records, a single physical record

of the FIT may contain the physical addresses of 319

physical records which represents the mapping function

of a file 102,080 words long.

The physical record address of the appropriate FIT

is one of the arguments contained in each Read or Write

command issued to the FOSM by the BFS phase.

In order to better understand how the BFS phase is

able to specify the physical record address of the FIT

the following brief digression is given. At the time a

file is created, the FOSM assigns and initializes a

physical record for the FIT on the volume which will

contain the file. The address of this physical record

is returned to the BFS phase. As the BFS phase creates

the file desceiptor, it enters the address of the physical

record for the FIT into the physical record address (PRCDA)

field of the file descriptor. When a user makes a request

to JRead or Write a file, the BFS phase employs the unique

file identifier to locate the file descriptor in the

core resident Active Volume Descriptor File. The physical

rebord address of the FIT is extracted from the file

descriptor and the FOSM is called.

-59-

Active File Index Table

Certain sections of the File Index Table must be in core

in order to map logical records into physical records.

Since sufficient core storage is not available on the IBM

1130 system to keep the File Index Tables for all opened

files in core, contiguous "sections" of the File Index Tables

are maintained in core, for the active or opened files, in

an Active File Index Table (AFIT).

The Active File Index Table should be structured to

allow efficient mapping of logical records into physical

records. The contiguous sections of the File Index Tables

contained in the Active File Index Table should be "large"

to minimize the number of I/0 operations required to "shuttle"

sections back and forth between the. File Index Tables

maintained on secondary storage. However, the sections

contained in the Active File Index Table are required to

be "small" in order to conserve core storage. Thus, a

compromise must be made on the lenght of the sections allowed

in the Active File Index Table. The structvre of the Active

File Index Table is delineated in Figure 4.6.

The Active File Index Table is divided into two logical

parts. The first part is an index to the second part which

contains the '.active" sections of the File Index Tables.

There is a one-to-one correspondence between the entries of

the index part and the entries of the second part. The

-60-

lol-PRCDA SLRCD Mod Idx

___1-i-rn
___I-

Index Part

"Active Sections"

0
1

2

k-1
k

0

1

2

k

1 2 3 . . 0 .0

of FIT

n-1 n

Figure 4.6--Structure of Active File Index Table

El -
- -

PFICDA PRODA etc ___________________

- - ~ -

- - - - -

- - U -

-61-

correspondence is defined by letting entry "i" of the index

part specify entry "i" of the second part.

An entry of the second part contains a contiguous

collection of logical record entries from the File Index

Table uniquely identified by the volume and physical record

address contained in the first field of the index entry.

The first logical record contained in the contiguous

collection of logical records of an entry is given by the

second field of the index entry. The Mod field of an index

entry is turned on when physical records are allocated

or deallocated to the logical records contained in the

entry to which it refers. The age field of an index entry

contains the "age" of the indexed entry. The "age" is

a function of the frequency an entry is accessed relative

to the other entries. An entry which is referenced

frequently would be "younger" than an entry that was seldom

referenced but had been in the Active File Index Table a

long time. The Index (Idx) field contains the index part

of the unique file identifier. This is required in the

AFIT to insure that all physical records assigned to a FIT

are updated when a file is "closed."

As space is required in the Active File Index Table for

sections of the mapping functions of the other File Index

Tables, the entries having the "greatest age" are transferred

to secondary storage if modified; else, they are simply re-

placed by the new entries.

-62-

The index part of the'Active File Index Table provides

an efficient means to access the physical record address

contained in the logical record entries. After finding the

the appropriate entry, i, in the index part, the address of

logical record1 "X" relative to the beginning of the Active

File Index Table can be calculated from Equation 4.1.

Relative Address i * + (X - SLRCD) + Constant

Equation 4.1

The constant term is the total number of words required for

the index part of the table. For the meaning of the other

variables see Figure 4.6.

The size of the complete Active File Index Table can

be limited to 320 words for used on the IBM 1130 System

and still provides efficient mapping capabilities. Recall

that for a 320-word physical record, each physical record

of the File Index Table contains the mapping function for

319 logical records of a file's virtual memory. Divide these

319 logical records into 11 contiguous sections of 29 logical

records each. Each contiguous section represents 9,180

contiguous words in a file's virtual memory. Now, in 320

words of core, one can keep ten of these contiguous sections

and their index entries for ten different active files. The

FOSM can dynamically choose to keep more than one entry in

the Active File Index for a single file if more than one

9,180 contiguous word sections are being actively accessed

-63-

by one or more users. In fact, the FOSM will use the Age

field to keep the most active sections of the File Index

Tables in the Active File Index Table in order to minimize

I/0 operations required to map logical records into physical

records.

Mepping Logical Records into Physical Records

The logical Record List is used by the FOSM to drive

another routine called Prepare Physical Record List (PPRL)

which maps logical records into physical records using

the Active File Index Table. The format of the Physical

Record List is shown in Figure 4.7. After the FOSM completely

prepares the Physical Record List, the Device Strategy Module

is called, with the Physical Record List as an argument,

to transfer the request between core storage and secondary

storage.

n

2

n-1

n

Vol-PRCDA Core Addr
Vol-PRCDA Core Addr

Vol-PRCDAI Core Addr

Figure 4.7-Physical Record List (PRCDL)

-64-

There may not be enough space in the Physical Record

List to contain all the logical records in a particular

request. In such cases, a user's request will be accessed

in units of n-requests. The Logical Record List will

always indicate the extent to which a particular request

has been processed.

After the logical records have been mapped into

physical records, the FOSM sequences through the Physical

Record List one entry at a time to see if the requested

physical record is in the I/O buffers. For physical

records which are contained in the I/O buffers, the FOSM

directly transfers the requested physical record or parts

thereof between the I/0 buffers and the stipulated area in

core storage. The Logical Record List is used to determine

the number of words and the starting word in each physical

record of a request contained in a buffer. For each

physical record directly transferred by the FOSM, the

corresponding entry in the Physical Record List is deleted.

Next, the FOSM assigns buffers for the "partial"

physical records contained in the request. The first and

third entries of the Logical Record List are used to

determine if-buffers are required. If buffers are assigned,

the Core Address field 'f the appropriate entry in the

Physical Record List is changed to the address of the

assigned buffer. After transferring the information into

-65-

the assigned buffer, the Logical Record List contains all

the information necessary to transfer the correct part of

the physical record to -the user -areain core. - For each

read or write request to the FOSM, there are at most two

I/O buffers required, one for the leading partial logical

record and one for the lagging partial logical record.

Either or both of these record donditions may be absent

in any particular request. If two buffers are required to

completely transfer a request, the FOSM attempts to

assign two buffers. If only one buffer is available, the

request is divided into two parts and processed sequentially.

The buffers available for the FOSM to use for

transferring partial record requests between core and

secondary storage are maintained in a Buffer Control Table.

The format of the Buffer Control Table is shown in

Figure 4.8.

Entry 1 BA Vol Idx PRA Age Mod Bk

r

Figure 4.8--Format of Buffer Control Table

The fields of each entry specify, respectively, the

available buffer address (BA), volume (Vol), and index (Idx)

of the file in the buffers, physical record address (PRA)

-66-

of the record in a buffer, age (Age) of the record entry

in the Buffer Control Table, whether or not the entry

is modified V(od), and if the entry is blocked (Bk).

An entry is blocked from the time it is assigned to a

record of a file until after the record has been trans-

ferred to the buffer. If a definite request is made for

a buffer when all entries in the Buffer Control Table are

blocked and the Storage Management System can not provide

a new buffer, the user's process associated with the

buffer request is blocked until a buffer is available.

By utilizing available buffers for partial records

of the file as well as file maps, the FOSM may

substan-tially reduce the number of I/O operations for

file accesses.

Algorithms of File Organization Strategy Module

The logical flowcharts of the submodules and routines

contained in the FOSM are given in Appendix C. The

arguments required by these submodules and routines are

presented. with the flowcharts.

-67-

CHAPTER V

ALLOCATION STRATEGY MODULE

Functional Description

The function of an Allocation Strategy Module (ASM)

is to find and allocate physical records for a file that is

being created or expanded.. It is also the responsibility

of an ASM to deallocate or free the physical records assigned

to a file when the file is deleted or truncated.

Design Considerations

The particular allocation strategy chosen to assign

physical records to a file should be closely correlated with

the file's organization and hence to a particular File

Organization Strategy Module in order to achieve the intended

performance of the overall system design. In fact, different

File Organization Strategy Modules may require distinct

allocation strategies.

The amount of core storage required for allocation

information should be kept as small as possible while the

number of I/O operations is minimal.

The design of an Allocation Strategy Module to support

the File Organization Module, already discussed, will now

be presented. The concepts and techniques used in this

design can be readily modified to produce other tailored

-68-

Allocation Strategy Modules.

Desig of Allocation Sratey Module

A bit map is associated with each physical volume.

The Volume Bit Map (VBM) defines a function which associates

each physical record on a volume with a bit position Within

the bit map. Bit 0 corresponds to physical record 0, bit

1 to physical record 1, etc. If a bit is set to 0, the

corresponding physical reocrd is available for allocation.

When a physical record is allocated to a file, the corresponding

bit is set to 1. The VBM provides a relatively small space

within which to represent the allocation information required

by the Allocation Strategy Module. However, for a file

system with several volumes, each containing hundreds of

physical records, the ASM may not have enough core storage

available to keep all the compact VDM's core resident.

To overcome the problem, the Allocation Bit Map can

be subdivided into contiguous segments. A segment from

each ABM can be maintained in a core resident table for

easy access. The core resident table will be called the

Active Allocation Bit Map (AABM). The format of a typical

en'try within the AABM is shown in Figure 5.1. The information

contained within such an entry is particulary useful for

volumes mounted on direct access devices.

-69-

Entry i K-word bit segment SPRCD PRCDA CT MOD

Figure 5.1-Format of Entry within Active
Allocation Bit Map

Entry 0 corresponds to volume 0, entry 1 to volume 1,

etc. The number of words, K, in the bit segment will depend

on the number of physical volumes and the amouht of core

storage available for the AABM;, The Starting Physical

Record (SPRCD) field stipulates the physical record number

that corresponds to the first bit of the k-word bit segment.

This field is required to effectively calculate which

physical record corresponds to which bit position in the

bit'segment. The Physical Record Address (PRCDA) field

contains the physical record address of the ABM. This is

used to "shuttle" different segements of the ABM to and from

the AABM. The count (CT) field of entry "i" contains the

number of physical records available for allocation on volume "i."

This count may be useful in the selection of a particular

volume on which to put a file. If the File Organization

Strategy Module selects a volume for a file that is being

created, the AABM may be a common data base for the FOSM

and the ASM. An alternative is to assign the function

-70-

of selecting volumes when files are created to the ASM.

The Modification (MOD) field consists of a bit which

is either on or off. The MOD bit is off until some bit

position within the K-word bit segment is modified, then

the bit is turned on. The MOD bit permits a means by

which the modified bit segments in the AABM may be

periodically transferred to the respective ABM's without

having to transfer the unchanged bit segments. For many

small- computers which do not have protected areas in core,

it is advisable to periodically update the permanent ABM's

on secondary storage in order to efficiently overcome the

damage which occurs when the contents of core storage

are inadvertently destroyed. This is indeed a difficult

problem to overcome and have the file system perform

efficiently. In the design presented for the IBM 1130

computer which does not have protected areas in core, the

FOSM calls the ASM to update the ABM's before it updates

the File Record Mpas. This procedure never allows a

physical record to be assigned to more than one file. The

Close command is used to trigger the FOSM to update the

the File Record Map of a particular file.

The Close command was chosen to initiate the periodic

updating of data bases residing on secondary storage to

minimize the relatively slow I/O operations required for

updating and to localize the temporary damage, inflicted

-71-

by the destruction of the contents of core storage, to

the modifications being made to Open files.

Ocassionally, the physical medium on which a physical

record is stored will become defective. When a defective

physical record is detected, the corresponding bit position

in the ABM is turned on to give the illusion that it is

allocated.

Since the ASM supports a random or direct access FOSM,

the strategy incorporated into the ASM will be random in

the following sense. When the FOSM calls the ASM to

allocate a physical record for a file on a particular

volume, the ASM will scan the appropriate bit-segment in

its AABM until it encounters a bit position which is

available for allocation. This bit position will be set

to 1 to indicate it has been allocated to some file and

the corresponding physical record number will be calculated

for return to the FOSM. The FOSM calls the ASM to

deallocate a set of physical records when a file is

deleted or truncated. This strategy allows the ASM to

minimize the number of I/O operations required to access

the different bit-segments which contain the bit positions

corresponding to the physical records in the deallocated

request.

-72.

Algorithms of the ASM

The detailed logical flowcharts of each of the

submodules making up the ASM are given in Appendix D.

The arguments required by each of these submodules are

found with each flowchart.

-73-

CHAPTER VI

DEVICE STRATEGY MODULE

The Device Strategy Module converts a set of I/0

requests from the FOSM and the ASM into actual machine

I/0 command sequences.

The design of the DSM is extremely dependent on the

characteristics of the I/0 devices and on the I/0

controller, within the Monitor, which coordinates all

physical I/O on the computer system.

A Device Strategy Module which interfaces with the

direct access, moveable head, disk devices of the IBM

1130 is described. This Device Strategy Module performs

its function within an I/O environment provided by an

I/O Controller like the one discussed in C. H. Hollander's

recent MIT Thesis on a multi-tasking monitor for the

IBM 1130 computer (Hollander 69).

Design of a Device Strategy Module

The FOSM calls the DSM with a list of I/O requests

associated with a particular user such as read physical

reaord 600 of volume 1 into core location 2000, read

physical record 200 of volume 1 into core location 2320,

and read physical record 601 into core location 2640.

The physical records are ordered, on the disk volumes

of the IBM 1130, into cylinders and tracks. The disk

device has a movable read/write access head which moves

across the surface of the disk volume perpendicular to

the cylinders; it traces.out a set of tracks on the disk

volume as the volume rotates. Each track contains an

ordered subset of the set of physical records.

In order to physically access physical records 600,

200, and 601 in the above example of a read request, the

accessing head must be positioned over the cylinders

containing physical records 600, 200, and 601 respectively

before the read command is issued. In order to minimize

the time consuming back and forth motion seeks of the

accessing head for requests of this type, the DSM sorts

the list of I/O requests from the FOSM into a new list

having physical records in ascending order. When the DSM

issues the machine I/0 commands to access the individual

physical records in the new list, it processes the list

in a "top down" or "bottom up" manner depending on the

actual position of the accessing head when the process

commences.

Interaction with the I/0 Controller

In order for the DSM to issue I/0 channel cozmmands to

a disk device under -the scheme incorporated into the I/0

-75-

Controller,* an ATTACH call for a particular disk device

is made to the I/O Controller. The arguments of the ATTACH

call are contained within a Device Control Block prepared

by the DSM. The device identification, address of

interrupt processing routine provided by the DSM, and user

identification are included in the Device Control Block.

The I/0 Controller determines if the device requested by

the DSM through the Device Control Block is currently

"owned" by any user. If the device is not currently owned,

it will be assigned to the user stipulated in the Device

Control Block. If the device is owned by some user,

this I/O Controller adds the Device Control Block to a

queue which it maintains for each disk device. The I/O

Controller will notify the DSM when the disk device is

assigned to the user in the Device Control Block.

. After a successful ATTACH has been made to a

particular disk device, the DSM initializes the interrupt

processing routines for that device, issues the first

I/O channel command, and prepares to return to the

FOSM or ASM. The interrupt processing routines issue the

remaining I/0 channel commands for all the requests in the

request list. After each I/O channel command is completed,

* For a more detailed discussion of the regirements for user
interaction with the I/0 Controller, see C. R. Hollander's
Thesis (Hollander 69).

-76-

the device issues a hardware interrupt which signals the

I/O Controller to transfer control to the interrupt

processing routine, for that device, provided by the DSM.

The interrupt processing routine services the interrupt

and returns control to the I/O Controller, When the last

interrupt associated with the list of requests occurs,

the asychronous switches are turned on to indicate that

the I/0 requests have been completed and the device is

DETACHED.

Algorithms

The logical flowcharts for the Device Strategy Module

and the interrupt processing routines are given in

Appendix E.

-77-

APPENDIX A

This appendix contains the detailed logical flowcharts

for the algorithms and the data bases for a specific

design of the Logical File System for implementation on

an IBM 1130 computer.

The LFS phase is called by the users of the file

system. The allowable calls from the users are listed

below in flowchart notation for easy comprehension. For

example CALL LFS(READ,SYMBOLIC PATHNAME,CA,FA,NUM) is the

flowchart notation of a CALL to the LFS to process the

READ command. The arguments in mnemonic form required by

the READ command are Symbolic Pathname, CA, FA, and Num.

The arguments corresponding to the mnemonic forms are given

with the flowchart of each command.

1. CALL LFS(READ,SYMBOLIC PATHNAME, CAFANUM)
2. CALL LFS(WRITE,SYMBOLIC PATHNAMECAFA NUM)
3. CALL LFS(OPENSYMBOLIC PATHNAME, COND.)
4. CALL LFS(CLOSE,SYMBOLIC PATHNAME)
5. CALL LFS(CREATSYMBOLIC PATHNAME (VOL),ACRTS)
6. CALL LFS(DELET,SYMBOLIC PATHNAME)
7. CALL LFS(TCATESYMBOLIC PATHNAME,LENTH)
8. CALL LFS(LINK,SYMBOLIC PATHNAME1,SYMBOLIC PATHNAME2,

COND.)
9. CALL LFS(PROT ,COMND ,SYMBOLIC PATHNAME,PERM,(USER))

10. CALL LFS(ULINK,SYMBOLIC PATHNAME)

LFS PHASE
FLOWCHART FOR ALGORITHi OF MAINLINE MODULE (LFS)

Arguments of LFS:
Enter 1. See preceeding page

CALL TCATE
(PATHNAME ,LENT:

CALL LINK
(PATHM4E1, CON:

Error

Yes
Print error
message to
user

-78-

-79-

LFS PHASE
FLOWCHART FOR ALGORITHM OF READ, WRITE SUBMODULE (RW)
Arguments of RW:
1. The Command Read or Write
2. Symbolic Pathname of a file
3. Core Address
4. File Address
5. Number of words to transfer
6. Index of entry in AFD containing pathname or -1

Enter

-80-

LFS "PHASE
FLOWCHART FOR ALGORITHU4 OF OPEN SUB4ODULE
Arguments of OPEN:
1. Symbolic Pathname of file
2. Condition for which file is to be opened

Allowable conditions: Read, Write, Read/Write
3. Index of entry in AFD containing pathname or -1

Enter

-81-

LFS PHASE
FLOWCHART FOR ALGORITIM OF CLOSE SUBMODULE
Argument of CLOSE:
1. Symbolic Pathname of a file
2. Index of entry in AFD containing pathname or -1

-82-

LFS PHASE
FLOWCHART FOR ALGORITHM OF CREATE SUBMODULE (CREAT)
Arguments of CREAT:
1. Symbolic Pathname of file
2. Symbolic Volume name may be given Optional
3. Access Rights specified by user to describe file
4. Index of entry in AFD containing pathname or -1

-83-

LFS PHASE
FLOWCHART FOR ALGORITHM OF DELETE SUBMODULE (DELET)
Arguments of DELET:
1. Symbolic Pathname of a file
2. Index of entry in AFD containing pathname or -1

-84-

LFS PHASE
FLOWCHART FOR ALORITIM OF TRUNCATE SUBMODULE (TCATE)
Arguments of TCATE:
1. Symbolic Pathname of a file
2. Length to which file wil be reduced
3. cIndex of entry in AFD containing pathname or -1

-86-

FLOWCHART FOR
LFS PHASE

ALGORITHM OF LINK SUBMODULE
Arguments of LINK:
1. Symbolic Pathname of data file to

be created
2. Symbolic Pathname of data file to

which created file will be linked
3. Condition of link-Alowable are:

Read, Write, Read/Write
4. Index of entry in AFD containing

pathname or -1

-87-

LFS -PHASE
FLOWCHART FOR ALGORITH4 OF PROTECT SUBMODULE (PROT)
Arguments of PROT:
1. The Command Add or Delete
2. Symbolic Pathname of a file
3. The Permission Read, Write, Read/Write, Link
4. User associated with permission Optional
5. Index of entry in AFD containing pathname or -1

-88-

LFS PHASE
FLOWCHART OF ALGORITHM OF SHAFD
Arguments of SHAFD:
1. Symbolic Pathname of a file

Search AFD for
last component

Search chained
list to see if
all compts mat

_Yes
Set j to index o
AFD that contain

No

-89-

LFS PHASE
FLOWCHART FOR ALGORITHIM OF FDMGT
Arguments of FDMGT:
1. The Command Access,Delete, Insert (AD,I)
2. Symbolic Pathname of file
3. Key associat ed with -file- -Optional

4. Access Rights associated with file Optional

Get a buffer
needed in
search

CALL ACESS t Set error
search FD fo code to
-athname file not fnd

-90-

LFS PHASE
FLOWCHART FOR ALGORITHMI OF ACCESS
Arguments of ACCESS:
1. Symbolic Pathname of a file
2. Address of buffer to be used in searching

Enter

i <- 1

VIf-VIof Mee

Get hash
addr of

Comp(iN mt

CALL BFS to read
blk of FD,"

fiei no f
containing hash
adder into buffer ot h pf h

addr to addr
Searh bufer; of first entry

in next blk FD

for comp(i) N

Comp (i No Empty
found r d fnd

Yes Yes

1+-1+1I Yes More rchi y NoVI-VI comp ini br last
of nomp th m

-on No Yes

-Prepare to return"1 Prepare to rtn
-file found -file not fnd
-index in buf con ~comp of pthnme
entry for this no t found
.ffIle

Prepare to rtn
.- -Fj) found

-index in buf to
puont of this

-file

Return

-91-

LFS -PHA SE
FLOWCHART FOR AGORITHM OF UNLINK SUBMODULE (ULINK)
Arguments of ULINK:
1. Symbolic Pathname of file
2. Index of entry in AFD containing pathname or -1

-92-

DATA BASES OF LFS FOR IMPLEMENTATION ON
IBM 1130 COMPUTER

Active File Directory

Entry Symbolic Pathname Vol Index Key ACRTS

Each entry in the AFD is eight words long. The

symbolic pathname occupies four words and symbolic volume,

index, key, and access rights each occupy one word of the

entry. The entry for the MFD is always contained in the

first row of the AFD

Bits

Subfields

01 23 111 15
A B C D

Subfield

A

B

C

D

0--Unlinked file

1--Linked file

0--Data file

1--Directory file

01--Open for reading

10--Open for writing

11--Open for reading and writing

positive integer--Index to Free List

zero--Symbolic name contained in AFD

ACRTS

-93-

Free List

Entry Symbolic Pathname Pointer

Each entry in the Free List is five words long.

The first four words can contain one component of the

symbolic pathname. The last word in the entry is

used to chain together the entries representing a

symbolic pathname.

File Directories

Entry Symbolic Pathname Vol I Index Key

Each entry in a file directory is seven words long.

The symbolic pathname occupies four words and the volume,

index, and key each occupy one word of the entry.

APPENDIX B

This appendix contains the detailed logical flowcharts

for the algorithms and data bases for a specific design

of the Basic File System phase for implementaion on

an IBM 1130 computer.

The BFS phase is called by the LFS phase. The

allowable calls from the LFS phase are listed below in

flowchart notation for comprehension. For example,

CALL BFS(READ,V, I,CAFA,NJM) is the flowchart notation

of a Call command to the BFS to process the Read command.

The arguments in mnemonic form required by the Read

command are V, I, CA, FA, Num. The arguments corresponding

to the mnemonic forms are given with the flowchart of eadh

command.

1. CALL BFS(READ ,V,ICA ,FA ,NUM)
2. CALL BFS(WRITE ,V , I, CA ,FANUM)
3. CALL BFS(OPEN ,V , I, COND ,KEY)
4. CALL BFS(CLOSE,V,I)
5. CALL BFS(CREAT,KEY (VOL),ACRTS)
6. CALL BFS(DELET,V,I
7. CALL BFS(TCATE,V,I,LENTH)
8. CALL BFS(LINK,V,I,COND)
9. CALL BFS(PROT,COMNDVI,PERM,(USER))

-95-

BFS' PHASE
FLOWCHART FOR ALGORITH4 OF MAINLINE MODULE (BFS)
Arguments of BFS:
1. See preceeding page

-96-

BFS PHASE
FLOWCHART FOR ALGORITHM OF READ, WRITE SUBMODULE (RW)
Arguwents of RW:
1. The Command Read or Write
2. Unique file identifier (Vol,Index)

3.Core.Address (CA)
4. File Address (FA)
5. Number of words to transfer (NUMl)

Note: This path is only used when
LFS reads in directories
leading to qualified name.
This keeps user from having
to open directory files A and
B when he opens data file Y
with qualified name A.B.Y.

-97-

BFS PHASE
FLOWCHART FOR ALGORITHII CF OPEN SUBMODULE
Arguments of OPEN:
1. Unique file identifier (Vol,Index) of file
2. Condition for which file is to be opened

Allowable -corditions-Read,Write,Read/Write
3. Key of file to be opened

BFS PHASE
FLOWCHART FOR ALGORITHM OF CLOSE SUBMODULE
Arguments of CLOSE:
1. Unique file identifier (Vol,Index) of file

-99-
BFS PHASE

FLOWCHART FOR ALGORITM OF CREATE SUBMODULE (CREAT)
1. Key for file to be created
2. Symbolic Volume may be given Optional
3. Access Rights (ACRTS) specified by owner

Enter

CALL FOSM
(CREAT,(VOL)

File Yes Ques 2 No
Protecte

No Yes

No ssgn pair of
Ques 1 indexes for des

o f fi leP o f A RF
es

Assgn index in
VDF for desc.

of file into VDF

repare to rtn
vol,index of
file descriTtor

Question 1?-.Did FOSM return a value for volume and PRCDA
for file?

Question 2?--Did FOSM return a value for volume and two
PRCDA's? First PRCDA is for created file.
Second PRCDA is for Access Rights File (ARF).

-100-

BFS PHASE
FLOWCHART FOR ALGORITHM OF DELETE SUBMODULE (DELET)
Arguments of DELET:
1. Unique file identifier (Vol,Index) of file

-101-

BFS PHASE
FLOWCHART FOR ALGORITHi OF TRUNCATE SUBMODULE (TCATE)
Arguments of TCATE:
1. Unique file identifier (Vol,Index) of file
2. new length (Lenth) of file

-102-

BFS PHASE
FLOWCHART FOR ALGORITHM OF LINK SUBMODULE
Arguments of LINK:
1. Unique file identifier (VolIndex) of file
2. Condition of link

Allowable conditions: ReadWriteRead/Write

GALL 1FU011 7.O
read in file
desc. from VDF

CALL FOSM to
read in file des

CALL FOSM to
read ARF into
buf fer2

Get user entry
from buffer; fre

-103-

BFS, PHASE
FLOWCHART FOR ALGORITM OF PROTECT SUBMODULE (PROT)

Arguments of PROT:
1. The Command Add or Delete
2. Unique file identifier (VolIndex) of file
3. The Permission: ReadWrite,Read/Write,Link
4, If permission not global, the User associated with

individual permission must be given

Irm Enter

Note: The ARF may
contain up to
160 individual
access rights.

-104-

DATA BASES OF BFS FOR IMPLEMENTATION ON
IBM 1130- COMPUTER

Active Volume Descriptor File

Entry Vol Index PRCDA Lenth Key ACRTS USRCT1, _I I I
Each entry in the AVDF consists of seven one word

fields. The File Organization (FO) field has been-

incorporated into the ACRTS field. The first R entries

in the AVDF are reserved for descriptors of the Volume

Descriptor Files. Since there is one VDF for each mounted

volume, the exact value of R is determined by the available

hardware configuration. Most IBM 1130 hardware configurations

allow one, three,.or five volumes to be mounted

simultaneously.

ACRTS Bits 0J,j2 3,4
Subfields A B C

-j13-15
D

Subfield

A 0--Links

1--Links

B 00-Links

01-Link

10-Link

11-Link

not allowed

allowed

are protected by individual user

to Read permitted by any user

to Write permitted by any user

to Read/Write permitted by any user

C 01-Read permitted by owner

10-Write permitted by owner

11-Read/Write permitted by owner

D 0--Direct Access File Organization

1-7--Reserved for omplementation of additional

Fosm's

Volume Descriptor File

Entry PRCDA Lenth Key ACRTS

Each entry in the VDF is four words long. All the

fields are each one word long. The ACRTS field is

subdivided as indicated for the AVDF.

APPENDIX C

This appendix contains the logical flowcharts for

the algorithms and data bases for a design of a File

Organization Strategy Module for implementation on an

IBM 1130 computer.

The FOSM is called by the BFS phase. The allowable

calls from the BFS phase are listed below in flowchart

notation as discussed in Appendix B.

1. CALL FOSM((READ ,CAFA ,NUM ,V,I,PRCDA)
2. CALL FOSM(WRITECA,FA,NUM,V,I,PRCDA)
3. CALL FOSM (CLOSE ,VI, PRCDA)
4. CALL FOSM (CREAT,(VOL),ACRTS)
5. CALL FOSM (TCATEV,I,LENTH,PRCDA)

-106-

-107-

FOSM
FLOWCHARTS FOR ALGORITHMS OF FILE ORGANIZATION

STRATEGY MODULE (FOSM)
Arguments of FOSM:
1. See previous page

bALL WRITE (CA
FA ,NUMV,I,
PRCDA)

CALL CLOSE
(V,I ,PRCDA)

bet error
code to com
not allowed

Yes CALL TCATE (V
I ,LENTH,PRCDA

FOSM
FLOWCHARTS FOR A LGORITHi'4S OF UDFIT ROUTINE
Arguments of UDFIT:
1. Unique file identifier (VI) of a file

Set k to 0
Set Sw to 0

CALL DSM to
read FIT rd.
into buffer

Read all Mod
entries of FI'
in AFIT to bu:

Increment k
to next entry

-109-

F.OSM
FLOWCHART FOR ALGORITHM OF TRANSFER BUFFER TOUTINE (TRBUF)
Arguments of TRBUF:
1. Logical Record List (LRL)
2. Physical Record List (PRL)
3. Read or Write command
4. Volume (V) of the file

-110-

FOSM
FLOWCHART FOR ALGORITHM OF ASSEMBLE BUFFERS ROUTINE (ASBUF)
Arguments of ASBUF:
1. Logical Record List
2. Physical Record List
3. V, I, of the file

s~G-a-t-a-buf f er-

Fut acr or I
BCT entry into
fst row LRL I

Ques 1?--Is a buffer needed for
Record List?

Ques 2?--Is a buffer needed for
Record List?

Ques 3?--Do we already have one

first request in Physical

last request in Physical

buffer?

-111-

FOSM
FLOWCHART FOR ALGORITHIM OF READ SUBMODULE
Arguments of READ:
1. Core Address (CA)
2. File Address (FA)
3. Number (NUM) of words to transfer
4. Volume and Index (VI) of the file
5. Physical Record Address (PRCDA) of FIT for this

file

CKLL PLRL to
prepare Logica
-Record List

CALL PPRL to
prepare Physical
Record List

CALL TRBUF to
read entries o
PRL if in buf

Yes

Use values in
LRL to read
rast if in bu:

No

-112-

FOSM
FLOWCHART FOR ALGORITHM OF CLOSE SUBMODULE
Arguments of CLOSE:
1. Unique file identifier (v,I) of file

-113-

FOSM
FLOWCHART FOR ALGORITHM OF CREATE SUBMODULE (CREAT)
Arguments of CREAT:
1. Symbolic Volume may be given. This is optional.
2. Access Rights (ACRTS) specified by owner

et error code
o Sym Vol not
ounted

CALL ACATE (V
to allocate ph;

Prepare to rtnI
Sym Vol and Alloc
"D - T7 'D^A A AA -A#C

CALL ACATE(V)
to allocate phy
rcd.-.fo ARF

Initialize
phy rcd to all
zeroes

FOSM
FLOWCHART FOR ALGORITHM OF WRITE SUBMODULE
Arguments of WRITE:
1. Core Address (CA)
2. File Address (FA)
3. Number :(NUM) of words to transfer
4. Volume and Index of file
5. Physical Record Address (PRCDA) of FIT

Save CT of ent
2 of LRL
Set CT to 0

CALL PPRL to
prepare Phy
Record List

-11.5-

FOSM
FLOWCHART FOR ALGORITM OF PREPARE LOGICAL RECORD LIST (PLRL)
Arguments of PLRL:
1. Core Address of request
2. File Address of request
3. Number of words in request

Enter

Initialize
Logical Record
List

Cale num of nxt
logical rcd in
request

Set k to 1

Increment No 3
count in Ent
2 of' LRL by 1

Ye s

Set k to 2

Make entry k in
Logical Record
List

Ques 1?--Is this the "Lagging
Partial" logical record
in request?

Ques 2?--Is this the "Leading
Partial" logical record
in request?

Ques 3?--Is this the first "full
intermediate" logical
record in request?

Ques 4?--Any more logical blocks
in request?

ncrement
A and FA by
og rcd sze

10

Return LRL

-116-

FOSM
FLOWCHART FOR ALGORITHM OF PREPARE PHYSICAL RECORD LIST ROUTINE (PPRL)
Arguments of PPRL:
1. Read or Write command
2. Logical Record List (LRL)
3. Volume (V) of file
4. Physical Record Address (PRCDA) of File Index Table

Enter

Get first log.
from LRL

CALL TRENT to
ues 1 No transfer entry

Yes into AFIT

Use Eq 4.1 to
cal exact
location

Yes CALL ASM to
Ques 2 No rt)allocate Phy

es NoRcd Addr

Put Vol-PRCDA Put PRCDA into
CI into entry AFIT. Turn
n of PRL Mod bit on

Increm. n by 21
Increm. CA by 20
Increm. CT by 1

Ques 3 No

Yes

No No
Ques

Ques 1?--Log. Rec in
any entry of
AFIT?

Ques 2?--Physical Record
Address Allocated?

Ques 3?--Any more Log.
Rec. in LRL?

Ques 4? Is this Log.
Rec. in same
entry of AFIT?

Return

-117-

FOSM
FLOWCHART FOR ALGORITHM OF TRANSFER ENTRY ROUTINE (TRENT)
Arguments of TRENT:
1. Volume and Index (V,I) of file
2. Physical Recore Address (PRCDA) of FIT
3. Logical Record Num (LRN) to transfer to AFIT

CALL ASM to
assign phy
record

Put chain into
FIT

Initialize
new record

-118-

FOSM
FLOWCHART FOR ALGORITHM OF GET ENTRY ROUTINE

(GTENT)

-119-

FOSM
FLOWCHART FOR ALGORITHPM OF TCATE SUBMODULE
Arguments of TCATE:
1. Physical Record Address (PRCDA) of FIT
2. Volume and Index of file
3. Length of file

-120-

DATA BASES OF FOSM FOR
IMPLEMENTATION ON IBM 1130 COMPUTER

The discussion of these data bases is contained within

Chapter IV.

File Index Table

Entry Physical Record Address

Each entry is one word long and contains a physical

record address if allocated; else, the entry contains

a zero to indicate the physical record has not been

allocated.

Active File Index Table

Entry of Index Part
I Vol-PRCDA SLRCD MOD Age Idx

Each entry of the Index part of the Active File Index

Table contains, three words. The first two fields each

occupy one word. The last three fields collectively occupy

one word as shown below.

Bits 10 1.-4 5 - 15

Function Mod Age Idx

Entry of Indexed Part PRCD - 0

-121-

Each entry contains 29 consecutive entries of the File

Index Table.

Buffer Control Table

Entry BA Vol Idx PRA Age Mod Bk

Each entry contains three words. The buffer address (BA)

consists of one word. The physical volume and index

representing the unique file identifier occupy one word.

Bits

Function Vol Idx

The last four fields collectively occupy one word.

Bits - 10 11 -1 14 15
Function PRA Age Mod Bk

Symbolic Volume Map

Entry Sym. Vol. Owner

Each entry of the Symbolic Volume Map contains two

words. The symbolic volume name consists of four

characters or decimal numbers in hexidecimal rep.;esentation.

The Symbolic Volume Map has one entry for each disk device.

The index of an entry in the map is the physical address

-122-

of the disk device having the symbolic name contained within

the entry. The owner field specifies if the symbolic

volume mounted on the disk drive is a system volume or

a personal volume. The FOSM allocates a volume for a

file which is being created only on system volumes.

The FOSM also has knowledge of the location of the

Active Volume Map which is a data base of the Allocation

Strategy Module. The FOSM only reads the count field of

the Active Volume Map to decide which system volume to

allocate to a file which is being created.

-123-

APPENDIX D

This appendix contains the detailed logical flow-

charts for the algorithms and the data bases for a

specific design of an Allocation Strategy Module for

implementation on the IBM 1130 computer.

The ASM is called by the FOSM. The allowable

calls from the FOSM are listed below in flowchart

notation as discussed in Appendix B.

1. CALL ASM(ACATE,VOL)
2. CALL ASM(DCATE,DL,VOLK)
3. CALL ASM(UPDAT,VOL)

-124-

ASM
FLOWCHART FOR ALGORITHM OF MAINLINE MODULE (ASM)
Arguments of ASM:
1. See preceeding page

-126-

ASM
FLOWCHART FOR ALGORITHM OF ALLOCATE SUBMODULE (ACATE)
Arguments of ACATE:
1. Volume assigned to a file

-127-

ASM
FLOWCHART FOR ALGORITHM OF DEALLOCATE SUBMODULE
Arguments of DCATE:
1. Deallocation list (DL) containing physical

record addresses to be deallocated
2. The Number, k, of entries in the PRCDL
3. Volume containing physical records to be

deallocated
Enter

Question 1?--Is bit position, corresponding to the physical
record of entry j of DL, currently in AABM?
Equivalently, is SPRCD - PRCDA? Equivalently
is SPRCD4PRCDASPRCD+16*20 ?

Qudstion 2?--Have all entries of DL been deallocated?

-128-

FLOWCHART OF ALGORITHM
Arguments of UPDAT:
1. Volume assigned to

file

ASM
OF UPDATE UTILITY ROUTINE

2. Starting Physical Record
(SPRCT) of bit segment
to reai from ABM into

nter AABM. This argument is
optional. If not specified,
the existing bit segment
of the ABM will stay in

Vol AABM.
No PRCD NA

D md
pecfd

4 -fzYes

-129-

DATA BASES FOR IMPLEMENTATION ON
IBM 1130 COMPUTER

Active Allocation Bit Map

Entry 21-word bit segment SPRCD PRCDA I CT IMod

There is one 25-word entry in the AABM for each

mounted volume. The SPRCD, PRCDA, CT and MOD fields

each occupy one word in the entry.

Allocation Bit Map

The ABM consists of five contiguous 21-word bit

segments representing 1680 physical records. Since a

disk volume for the IBM 1130 has only 1624 physical

records available, bit positions 1625-1680 will be turned

on initially to give the illusion that they have been

allocated.

-130-

APPENDIX E

This -appendix contains the- logical-flowcharts_ for the

algorithms for a specific design of the Device Strategy

Module and the interrupt processing routines for

implementation on an IBM 1130 computer. Each disk device

requires an individual interrupt processing routine.

Since they are all alike, the flowcharts of only one

set of the interrupt processing routines are given in

this appendix.

The DSM is called by the FOSM and ASM. The flowchart

notation for the single allowable call is given below.

1. CALL DSM(PRCDLMODE)

Arguments of DSM call:

1. The physical record list (PRCDL) having the format

discussed in the FOSM.

2. The Mode of opertvtion. The two allowable modes

are synchronous and asynchronous.

-131-

DSM
FLOWCHART FOR AIGORITHi OF DEVICE STRATEGY MODULE
1. Arguments of DSM: see previous page

lock user;
qst monitor
;o UNBLOCK
rhen ATTACH

Note: Must be
write request

QW w

Block user;
rqst monitor
to unblk whe:
I/O complete

-132-

DSM
FLOWCHART FOR ALGORITHM OF MASTER INTERRUPT PROCESSING

ROUTINES FOR ONE DISK DEVICE

Note: Control from I/0 Controller enters here.

-'33-

DSM
FLOWCHART FOR ALGORITH4 OF SECONDARY INTERRUPT PROCESSING

ROUTINES FOR ONE DISK DEVICE

Note: Control
is transferred
to one of the
interrupt
routines from
the Master
Interrupt
Processing
Routine.

-134-

D SM
FLOWCHART FOR ALGORITI OF SORT ROUTINE
Arguments of SORT:
1. Physical Record List (PRCDL)

Note: A simple inter-
change sort was chosen
since the number of
requests in the PRCDL
is expected to be
small in the 1130
environment.

Question 1. Is physical record number of entry i in PRCDL
greater than physical record number of entry j?

Question 2. Any more entries in PRCDL?
Question.3. Did we interchange any entries the last time

through?

-135-

REFERENCES

1. Abraham, C.T., Ghosh, S.P., and Ray-Chaudhuri, D.K.,

File Organization Schemes Based on Finite Geometries,

Information and Control, February, 1968.

2. Bash, J.L., Benjafield, E.G., and Gondy, M.L., The

MULTICS Operating System, Cambridge Information Systems

Laboratory, May, 1967.

3. Daley, R.C., and Neumann, P.G., A General Purpose File

System for Secondary Storage, Proceedings Fall Joint

Computer Conference, 1965.

4. Denning, P.J., Queuing Models for File Memory Operations,

MIT Project MAC Technical Report MAC-TR-21, October, 1965.

5. Dennis, J.B., Segmentation and the Design of Multi-

Programmed Computer Systems, Journal of ACM, October, 1965.

6. Dixon, P.J., and Sable, D.J., DM-1--A Generalized

Data Management System, Proceedings Spring Joint Computer

Conference, 1967.

7. Evans, D.C., and LeClerc,_J.V., Address Mapping and the

Control of Access in an Interactive Computer, MIT Project

MAC Document Room, December, 1966.

8. Graham, R.M., Protection in an Information Processing

Utility, Communications of the ACM, May, 1968.

9. Hartley, D.F., Landy, B., and Needham, R.M., The Structure

of a Multiprogramming Supervisor, Computer j.,

-136-

November, 1968.

10. Henry, W.R., Hierarchical Structure for Data Management,

IBM Systems Journal, Vol. 8, No. 1, 1969.

11. Hollander, C.R., A Multi-Tasking Monitor for the IBM

1130 Computer, MIT Department of Electrical Engineering,

June, 1969.

12. Madnick, S.E., Design Strategies for File Systems,

S.M. thesis, MIT Department of Electrical Engineering,

June, 1969.

13. Rappaport, R.L., Implementing Multi-process Primitives

in a Multiplexed Computer System, S.M. thesis, MIT

Department of Electrical Engineering, August, 1968.

14. Rosen, Saul, Programming Systems and Languages,

McGraw-Hill, New York, 1967.

15. Saltzer, J.H., Traffic Control in a Multiplexed

Computer System, Sc.D. thesis, MIT Department of

Electrical Engineering, August, 1968.

16. Zilles,, S.N., Synchronization of Resource Usage

in a Small Information System

