IR AR F W P TR e .
PR e T SO T
ot e VE e AT .

FILE SYSTEM TO SUPPORT TIME SHARING IN A
MULTIPROGRAMMING ZINVIRONMENT
by

-+

Jerry Wililam Johnson

;.l

S.B., Universlty of Houston
(1968)

SUBMITTED IN PARTIAL FULFILLEMENT OF THE
BREQUIRENMENTS FOR THE DEGREE OF
MASTER OF SCIENCE®
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1970

Signature of Authox |
Department of/“1¢cﬁ%ﬁcaﬂ"ngfﬁeering, June &, 1970

Certified by

Y’ (/ - / Taeuis Sm)erviaor
Accepted by !

Chairmen, Béparfmﬂntul Committee on Graduate Students

— Room 14-0551
- —— 77 Massachusetts Avenue

» » Cambridge, MA 02139
M IT leran eS Ph: 617.253.5668 Fax: 617.253.1690
' Email: docs@mit.edu
Document Services http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Pages 85 and 125 are not in the original document.
This could possibly be a pagination error by the
author.

j_morris
Typewritten Text
Pages 85 and 125 are not in the original document.
This could possibly be a pagination error by the
author.

-2 -

FILE SYSTEM TO SUPPORT TIME SHARING IN A

MULTIPROGRAMMING ENVIRONMENT

by
JERRY WILLIAM JOHNSON

Submitted to the Department of Electrical Engineering
on June 4, 1970 in partial fulfillment of the
requirements for the degree of Master of Sclence

ABSTRACT

This thesis presents a design for a flexible, versatile
file system to support time sharing in a multiprogramming
environment on small core computers., However, many of the
concepts and techniques developed in this design may be
readlly adapted to take advantage of extra core storage
avallable on large core computers. The activities performed
by this file system are divided into a hilerarchical sequence
of logically complete functions. Each loglcally complete
function forms a level in the hierarchical structure of the
file system. The overall function of the flle systen 1s
the hierarchical composition of the logically complete
functions performed by each level, This re-entrant
file system provides its users with a uniform file
structure 1ln the form of virtual memory, a set of hler-
archical structured directories, a protected environment
which permits and encourages file sharing, and the
capablilities to create, open, write, read, link, truncate,
delete, and close files with no a priorl knowledge of
secondary storage devices,

Thesis Supervision: John J., Donovan
Title: Associate Professor of Electrical Engineering

-3-

ACKNOWLEDGEMENTS

I express my apprecliation to my thesis advisor,
Professor John J.vDonovan for his active interest,
technlcal asslstance, and encouragement; to Project Hac
for providing & stimulating environment where many
ideas contained in thils thesls were developed; to
Stuart Madnick and Stephen Zilles for thelr assistance
and enlightening criticism; to the National Science
Foundation for financial support; to my wife, Janet,
for her patience and perservance while typing my thesis;
and also, to my wife, Janet, who has been a constant
source of encouragement and understanding through my

years of academic study.

I

TABLE OF CONTENTS

- CHAPTER 1. INTRODUCTION. s vuvuvevensocoassncosasosaanas I
' Goals, Accomplishments, and
Implementation AldS...veeeeeeeecesease 9
Hierarchical Modularity of the
Fille System Desigh.ieeeeceesesossesess 11
Overview of Hierarchical Levels
in the File SystemMi..veeevesssoersessdd?
CHAPTER 2, LOGICAL FILE SYSTEM PHASE......cveeveevsss 16
Functional DeSCTiDtloN..ceeeeeeeeees. 16
Directory FlleS.ieeeeessssacoscasesas L7
Hierarchical File Structure
Without LANKS...eeeesesessonsensaness 18
Concept Of & LiNK,ueeeuwsooeoososossens 23
Hierarchical File Structure
With LInKS..uieeeeeeoeeesooasesoeaoses 24
Concept of Ke¥Siiveeeresssorsnnssasas 26
Outline of Design of the Loglcal
File System Phase......c.eeeueevseess 28
Data BasesS Of LFS.ieeeeseecoescnosens 29
Algorithms of the LFS.....vveeesessss 31
, Protection Performed by the LFS...... 31
CHAPTER 3. BASIC FILE SYSTEM PHASE....eeeeeesnesaceas 32

CHAPTER 4,

FILE

-5-

Functional Description..ceeeeeeeeeces
File DeSCTiDEOT:ssnernernennenaesenes
Controlled Access RightS.sievevernces
Read/Write InterlockS.veeeereesreeense
Cutline of Design of the Basic

File System Phase.,.iieeeeeacsasoscans
Data Bases O0f BFS.c.iviseectcasssocsos
Algorithms of BFS...eeeeeeessseccsnes
Protection Performed by the BFS......
ORGANIZATION STRATZEGY MODULE...esvses
Functional Descriptlon..seeeecossccoe
Physical Records and Volumes.....;...
Virtual File MemoOry.veeecoseoesennnnss
Indexed Flle Organization
Strategyeeeeeevecececosescssssssecenane
Design of a Fille Organization
Strategy Module...iieveeeeocossooscane
Mapping Virtual File Memory into
ngioal RCCOTAS e s v evnesnecnneanncases
File IndexX Table...eeeeeseeeeonnnasces
Active File Index Tableeisseeseoocses
Mapping Logical Records into
Physic8l ReCOTrAS...eeeveocensssncness

Algorithms of File Organization

» Strategy ModﬂulettﬁDIVOOCDQQOQOOCCQQOO‘.

32
32
35
36

36
37
2
12
43
43
43
146
50
51
55
59

63

66

CHAPTER 5.

CHAPTER 6.

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D,

-6

ALLOCATION STRATEGY MODULE....eeeeeeoeesss 07
Functional DesScriptioN..veeescesessss 67
Design ConsiderationS,.ceeeeesseesesss 07
Design of Allocation Strategy
MOAULE, e veeereerosasnnnsssssnssasess 08
Algorithms of the ASM..evieeeseeoscees 72

DEVICE STRATEGY MODULE..e:eveescoonossoace 73
Design of a Device Strategy
MOAULE . vevevseenscoescoonsscssssonscee (3
Interaction with the I/0
CONETOLLET e s e eevenenesnsnsenennenees Tl
AlgOTrithImS. cessernernessonnssecansnss 0

FLOWCHARTS AND DATA BASES FOR THE

ALGORITHNMS OF THE LOGICAL FILE

SYSTEM . v eeeeneacsesosncsasosassscsoanananall

FLOWCHARTS AND DATA BASES FOR THE

ALGORITHMS OF THE BASIC FILE

SYSTEM. v vuneeaneeaneanns P .

FLOWCHARTS AND DATA BASES FOR THE

AIGORITHMS OF THE FILE ORGANIZATION

STRATEGY MODULE. ..vuvuvvavsnsnonnnneneoss 104

FLOWCHARTS AND DATA BASES FOR THE

AIGORITHMS OF THE ALLOCATION

STRATEGY MODULE. euueneneenencesnsennesessal23

-7

APPENDIX E. FLOWCHARTS FOR THE ALGORITHMS OF THE
DEVICE STRATEGY MODUIE. 4 ueeeessscasssesasss 130

REFEBENCESQl.I...".l.....'Ql‘.'.."......'......'..l..' 135

Figure
nvFigure
Flgure
Figure
Figure
Filgure

Figure

Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

2.1
2.2
2.3
2.4
3.1
3.2
3.3

3.k
b.1
k.2
11’03
hL
b,s5

b,6
b.7

.8

5.1

-8-

LIST OF ILLUSTRATIONS

Format of Entry in a Directory Filleiieeeeeoes18
Typleal Hierarchical File StIUCEUTE.......sss 21
Hierarchical File Structure with Links,......22
Structure ovaFD: Structure of Freé Liét.....29
Format of a Flle Descriptor Entry in AVDF....35 "
Format of Entry In VDF..iuiieeseeeeorenconcess38
Structure of Active Volume Descriptor

File (AVDF)ivuuuoeeronesetenosnanasenaaseansslB
Subflelds of ACRTS.tieeessssscsasasssssnasssel9
Schematic of Relationshié between Core

Memory, Virtual File Memory, and Physical
Records...;.......Q.........................:47

Scheme of Partitioning a File's Virtual

’ Memory 1nto Logical ReoOrdSOOOOO.0.0.“.0.....52

Virtual File Memory Requést Mapped into

Logical Records and Parts Thereof.seeeeeessss53
Format of Loglcal Record LiSt...eeeeeeeceesss st
Structure of the Flle IndexX Tableicieeeeeoses 57
Structure of Active File Index Table.........60
Physical Record List (PRCDL).v:eieseeocceoeeeb3
Format of Buffer Control Table.....eceesessssb5
Format of Entry within Active Allocatlion

Bit I‘Ta’pOCQOl......‘."'.'.......‘00000000000.069.

CHAPTER I

INTRODUCTION

Goals, Accomplishments, and Implementatlon Alds

The initial goal of this thesis was to design a
flexible, versatile file system to support a multi-
tasking environment on an 8K or 16K IBM 1130 computer,
lacking memory vprotection, a timing clock, and an interrupt-
masking facility. Another goal of this thesls was to
provide a hierarchical structured file system design which
could be easily implemented and debugged.

These goals were accomplished in the following sense,
The fille system design presente@ will support multi-
tasking and time sharing (for 1130's with timing clocks)
environments on the IBM 1130 computer. The file system
design provides the users of the system with a flexible,
versatlle file system which permits and encourages
controlled data file sharing, In a larger context,
the design approach has been sufficiently machine- A
independent such that it has considerableVapplicability
to small computers in general., Many of the concepts and
technlques presented in this file systém design may bé
readlily adapted for use on large computer systems, The
file system design has been organlzed into a hierarchical

sequence of logically independent functions or levels,

«10- !

with well defined interfaces. This internal structure
coupled with well defined interfaces provides a conducive
environment for 1hdependently implementing and debuggiﬁg
each hierarchical level.

The primary contribution of this theslis 1s a
description of a methodology for the design of file

éystems which provide a versatile set of capabilitiles
simultaneously for several users in a small core
environment,

During the implementation phase on the IBM 1130,
precasutions must be taken to prevent common data bases
from being simultaneously modified. This can be
accomplished by utilizing a software disable, which must
be provided by the multi-tasking monltor, each time a
common data base within the file system is belng
accessed, Time sharing and multi-tasking places the
constraint that the file system deslign must be
implemented as reentrant or pure pfocedures; A re-
enterable program must be dividéd'into two logically
and physically distinct parts-a constant part and
a variable part. The constant part 1s loaded into
memory once and services several taéks concurrently by
switching from one task to another task at hilgh speed;'
This is wh& the software disable must be usgdbwhen a
particular task is accessing the data bases of the pufe

procedures,

-11- .

Hierarchical Modularity of the File System Design

The activities performed by this flle system are

divided into a hierarchical sequence of loglcally complete

functions., Each logically complete function forms a level
in the hierarchical structure of the file system. Each
level in the structure can only communicate with one
successor ond one predecessor level. In fact, each level
in the hierarchical structure can only "call" one
predecessor level. The users of the file system interface
with the highest level on the hierarchical structure. Fach
)level in the file system hierarchy 1s more "powerful"

than its predecessor level in the sense that it may
utilize the capability of 1ts predecessor to perform its
logical function,

The rationale for choosing this hierarchical structure
is to segregate each logically complete function of the
file systen in order to'make the overall file system
easier to design; implement, and verify that it performs
1ts intended function., After the interfaces are well
4défined,vthe design of theioﬁerall file systém reduﬁes
to designing a set of independent levels in the
hierarchical structure. The overall function of the flle
system is the hierarchical composition of the logically
’complete functions performed by each level,

The modular structure inoorporated into the design of

-12-

this file system is similarlio the hlerarchical
organizetion presented by S.E. Madnick in a recent M.I.T.
thesis (Madnick 69).

Experlience with complex file systems has shown that
is 1s a very difficult and time consuming task to localize
and identify (debug) the errors\in the system during the
implementation phase. A goal of this hierarchical design
is to present an internally structured file systéem which

provides a conducive environment for efficlent "debugging."

Overview of Hierarchical Levels iﬁ the File Systen

The design of this file system consists of five
hierarchical levels, These five hlerarchical levels are:w

1., Device Strategy Module

2. Allocation Strategy Module

3. File Organization Strategy Module

L, Basic File System phase

5. LogicalyFile System‘phase‘

The design of these hiefafchical levels is presented
in "reverse"_order éince this is ﬁhelérder that they are
employed tb'sequentially process the user's request, The
users of the file system interface with,the highest level
in the hierarchical structure which is the Logical File

-13-

System phase, For example,“a user's program may call the
Logical File System phase to READ file SQuare Root into
core storage from secondary storage., There may be more
than one Square Root file on secondary storage. There

may be a Square Root file in the System Library, a second
Square Root flle containing & routine programmed by somé‘
user to calculate square roots very fast but only to slide
rule accuracy, and a third Sqoare Root flle containing a
square root routine, perhaps designed by a freshman in
'Computer Science, which has not been debugged. The function
of the Logioal File System phase 1s ﬁo'transform the
symbolic name, Square Root, into a unique file number
which identifies the particular Square Root file requested
by the user. A more detailed discussion of how the |
Loglcal File System phase performs 1its functions is given
in Chapter II. The Loglcal File'System phase now calls
the Basic File System phase to read the file corresponding
to the unique file number into core.

The Basic File System phase converts the unique flle
number -into the phys;oal,description,of the flle to be
read, The physical description of this file provides all
the 1nformation needed by the next level of the file system
to physioally locate the file on secondary storage. A more
extensive discussion of the functions performed by the

Basic File System phase'isvpreSéhted in Chapter III. The

14

Basic File System calls a File Crganization Strategy
Module to read the file whose location‘is specified in the
physical descriptor.

The File Organization Strategy Module "knows" that
secondary storage 1is phyéically divided into distinect
records of magnetic memory and that each distinct record
has a unique physical address. The FOSM utilizes the
information contailned in the physical description passed
from the Logical File System phase and its knowledge of
the organization of files on secondary storage to prepare
.a list of the physical record addressés which should be
read into core. For é‘meticulous discussion of the FOSM
see Chapter IV, The FOSM calls a Device Strategy Module
to read this list of physical récords into core.

The Device Strategy Module, using a strategy to
minimize the overall time, issues commands to the
appropriate I/0 device to read the physical records
requested,byvthe’FOSM from secondary storage ihto core
storage, Since the file system has read the requested
Square Root flle into core storage, it returns control
to the ﬁser. The detailed discussion.of the functlons |
perfofmed by the DSM is presented in Chapter VI,

| The Allocation Strategy Module was not discussed in
the above example sinée it is not involved in reading files,

When a flle 1s initially written to secondary Storage,

~15-

the same sequential process through the hlerarchical

file structure, as presented above, occurs wlth the Write

_ command replacing the Read command, until the FOSM is =

called, At this point, the FOSM calls the Allocatlion
Strategy Module to get a set of "empty" physical fecords
on secondary storage for this file, ‘The ASM keeps a
‘"félly" of the addresses of all "empty" physical.records
on secondary storage, It chooses a set o6f physical records
according to some strategy, updates its "tally" to
indicate these physical records are no longerr"empty" and
- returns the addresses of the physlcal records to the FOSM,
The FOSM saves these physical record.addresses for future
use, prepares a list of physlcal records and calls the
DSM to write the file located in core into these physical

records on secondary storage.

-16-

CHAPTER II
IOGICAL FILE SYSTEM PHASE

Functional Descrivtion

A user's program references each flle by a means of a
symbolic pathname.. It is the function of the LFS phase to
éonvert the symbolic pathnaﬁe into its unique file identifier,
It is the responsibility of the LFS phase to generate and
maintain a flexible, versatile, file directory organization
for the users of the'system. This ofganization must provide
an environment in which file sharing by users may be allowed
~and controlled. A user should ndt be allowed to reference
the files of other users without thelr permission.

The desbription of directory files and the hierarchilcal
file structure provided by the LFS phase wlll be presented
.1n thlis section, The concepts of linksvand keys, along
with the featurgs they provide the user, will be discussed,

» Finally, an outline Qf the design of the LFS phase will
be presented, The detailed 1ogicél'fIOWOharts for the
algorithms which constitute a specific design for the

LFS phase can be found in Appendix A,

-17-

Directory Filles

There are only two classes of files in the LFS phase.
_ The set of file directories which are maintained by the
LFS phase form one class and the set of all other files,
referred to as data files for clarity, form the other class.
The LFS associates a symbolic name with each of the files
in both classes.

A directory is a file of arbitrary length which contains
g list of entries. TFunctionally each entry polnts to
’ elther a data file or to another directory. Specifically,
each entry contains five fields. The first fleld contains
the entry name which is identical to the symbolic name
“of a file directory or data file. An entry name need
be unique only within the directory in which 1t occurs.
This condition permits éeveral files to exist simultaneously
on secondary storage with identical symbollc names. The
second and third fields contain a symbolic volume and
index, respec%i&ely, that correspond to the unique flle
identifier assigned to the symbolic name. This unique
file ideﬁtifier is used in resolving the ambigulty
~assoclated with files having common symbolic names. The
semantics associated with the symbolic volume and index
and the rationale for choosing these to represent the
unique file identifier will be deferred until the
" discussion of the LFS phase is undertaken. The fourth

-18.

field contains a unique key; if the entry corresponds to
8 file that is linked to another file; otherwise, this
field is empty. The concept of links will be discussed
in the following paregraphs. The fifth field contains a
set of attributes. The first attribute indicates whether
the file assoclated with this entry 1s a directory file
or data file. The second attribute stipulates whether
the file 1s linked or not linked. Figure 2.1 depicts the

format of an entry in a directory file.

Symbolic Name Volume Index Key Attributes

Flgure 2.1--Format of Entry in a Directory File

Hierarchical File Structure Without Links

-The hierarchical file structure is a set of multi-
leveled data structures meintalned on secondary storage.
Level zero of the flle structure contains the base
dlrectory, often called the root directory. The unique
file identifier of the root directory is known to the ‘
IFS., The entries of the root directory contain the unique
file identifiers for all directory files and data files
which are found at‘level,one of the file structure. There
exlsts one entry in the root directory for each user that
‘has permission to use the computer system. Therefore, if

e particular user had more than one file stored on

-19-

secondary storage, the unique flle identlfler corresponding
to his entry must point to his file directory located at

level one in the fille structure. The rationale for having
each entry of the root directory correspond to & unique user
or class of users is tied very closely to file proteétion.
Since each path through the hierarchical file structure
begins in the root directory, a particular user can
access only those flles in the file structure which are
located by a'path emmanating from his entry in the root
directory. Thus, there is a multi-leveled data structure
assoclated with each user or class of users. A user 1is
sald to own all files in the multi-ieveled data structure

associated with him.
| 'The entries of a user's directory flile at level one
" in the hierarchy contain ﬁhe symbolic names and unique
file.identifiers for all of his directory and data files
which are found at level two. A user can have as meny
levels in the hierarchical file structure, independently
of the other users, as he desires. In general, any user's
directory files aﬁ level "i" in the hierarchical filé
structure contain the symbolic names and unique~file
ldentifiers for all of>his directory and data files which
are found at level "i+1."

Any user's directory file or data file at lever "i"

in the hierarchical file structure must correspond to a

-20-

unigque path through the first "i" levels of the flle
structure. Therefore, a user may access one of his files
_at level "i" with a qualified symbolic path hame consisting
of "i-1" components. The LFS will append the identification
of the user to the front of the symbolic pathname specified
by the user to get the "i"-components necessary to access

' ﬁhe requested file‘at level "i" in the hlerarchical file
‘structure. Hence, the LFS allows &a user to access only
those files at level "i" of the hlerarchical file structure
. that emanate from hls entry in the root directory.

Figure 2.2 illustrates a typical hierarchical file
structure consisting of three separate multi-leveled data
structures, The numbers 1, 2, 3 correspond to the system's
identification of three different users or classes of
users, The numbers 1 and 2 point to the directory flles
on level 1 for user 1 and user 2, respectively.

The files 1, 2, and B, denoted by square symbols,
are directory files, and the files X, Y, and Z, denoted
in circles, are data files. The dlrectory files and the
data files do not necessarily have unique symbolic names,
The only requireméht is that all file names in each
directory be unique., There are three data files in
Figure 2.2 named "X"; this ambigulty is resolved by
the qualified pathnames "1.B.X," "2. X " and "1.B. B X."
Similarly, the ambiguity assoclated with the two

~21-

Root

1 | |
2 Level O
3 X
B Tevel 1
Y _
Y Z
X .
~ O : Q Level 2
B 2.X T2, 5
(:::) 4 . Level 3
1.B.X
Z
<:t:> " | . Level 4
1.B.B.X '

Figure 2,2--Typical Hierarchical File Structure

22 -

G

7

Figure 2,3--Hierarchical File Structure

with Links

-23-

directory files named "B" is resolved by the pathnames
"1,B" and "1.B.B." Note that user 3 has only one data
flle on level 1 and has no directorles, If user'B had
more than one data file, then he would need a directory

at level 1 in the file sturcture.

Concept of & Link
‘Recall that each directory file is owned by a

partlicular user or class of users, and that a user can

access only those data files which appear in his directory
' files., Without ilnks, entries in a user's directory file
point to other directory or data files that belong to
him in the next level of the file hierarchy. Primarily,
links provide a means by which a user can reference data
files that do not belong to him from any of his file
directories. Secondarily, links allow & user to reference
any of his data files from any of his directories,

The following example 1ls given to clarify the concept
and flexibility of a link., Suppose user 1 has a data file,
*"Y," which is-lécated,in_his hierarchical file structure
by the symbolic pathname "l;A.B.Y;""Assume user 1
has glven user 2 permlsslion to 1link to file "Y" to read
only. Since user 2 can link to fille "Y" from any of his
file directories for the purpose of reading! suppose he
chooses to link to file "Y" from his directory, "C," with

-24-

symbolic pathname “2,C." Suppose user 2 decldes to rename
file "Y" as file "Y2.," Now the link 1s accomplished by

) making an entry "Y2" in file directory "C" such that the
unique file identifier of "Y2" is the unique file identifier
of "Y.* When user 2 accesses hils data flle corresponding

to "2.C.Y¥2," the LFS phase will map this symbolic pathname
into the unique file identifier corresponding to file
"{,A.B.Y." Data file "2.C.Y2" is sald to be linked to
~data file "1.A.B.Y." -

Hierarchical File Sﬁfuéﬁtre with Links

The hierarchical file structure presented protects
a user's set of files since no other user with a different
system identification can access those files. If a user
is successful in masquerading as another user (convinecing
the computer system that he 1ls another user), then this
_protectlon schema fails, This hlerarchical file structure
does not allow file sharing and controlled access among
- individual users and classes of users.,

7 The flexibility and versatllity of;the above
hierarchical file structure can be enhanced by allowing
links to data files to be superimposéd on this structure.
File sharing and controlled access among users is
permitted and supervised through the use of links., The

allowable links to a particular file are controlled by

-25-

the owner of that file. The means by which permission 1is
given to link to a file is deferred until the discusslon
of the BFS phase is undertaken. The extent to which
1links modify the hierarchical file structure willl be
discussed here,

Iinks modify the basic hierarchical file structure
by allowing data files to be referenced directly from
any directory in the file hilerarchy. Figure 2.3 shows
a hierarchical file structure with links., User 2 has
linked to data file "Y" which belongs to user 1, Thils
1ink allows the 1FS to access data file "Y" for user 2
with the qualified pathname "2.Z." Note that user 2
can access this file by simply specifying the symbolilc
neme "Z." This is the mechanism by which the links allow
users to share data files., The extent of sharing is
controlled by the owner of & data file since the owmer
gives permission to link and gives the conditlons of a
link, For examble, e 1link might be allowed with the
condition of read only to some users and write only to
other users. Links also help to eliminate the need for
duplicate coples of sharable files. The other link shown
in Figure 2.3 serves as a shortcut to a data file located
somewhere else in the hlerarchy associated wlth user 1.
Thus, user 1 can reference file "Y" with elther of the two

pathnames "Y¥" or "B.Y."

-26-

Since 1links are not allowed to data filles that have

' not been created, the links are always superimposed on

 the existing hierarchical file structure, Loops can

never océur in the hilerarchical file structure,

Concept of Keys
" Functionally, keys are used to confirm the physical

existence of linked data files. It 1s necessary to confirm

the existence of linked data flles because of a conditlon
which may occur when some data file "Y" 1s linked to some
data file "Z" and data file "2" 1is subsequently deleted.
Since the unique file identifier that was assigned to
data file "Z" has been deleted, it may at some later
time be assigned to a new data fille "X;" The critical
condition occurs when the linked data file "Y" is
accessed after data file "X" has been created., The
symbolic name of data file "Y" is mapped into its unlque
file 1dentifier’which now corresponds to the unique flle
identifier of "X." The resulﬁ may be disasterous since
data file "Y" is now actually linked to data file "X

in lieu of data file "Z." Keys provide a means by which

~ -the IFS and BFS phases, working in conjunction, can solve

this conflict.
Before presenting exactly how the keys permit the

above conflict to be resolved, the relevant interaction

-27-

between the LFS phase and the BFS phase is outlined.

When a file is created, a unique key is generated by
the LFS and entered into the directory entry along wilth
'rthe symbolic name and unique file identifier. The BFS
phase uses the unique file identifier to access the flle
descriptor associated with the created file and inserts
the key into the file descriptor. The directory entry
of a linked file is assigned the key and unique file
identifier of the data file to which it 1s linked.
Therefore, no new file descriptor is created for the linked
file, since file descriptors have a one-to-one correspondence
 with the wnique file identifiers. The essential point 1is

that the key associated with a file is stored in the flle
| directory and in the file descriptor. |

The means by which keys solve the above conflict 1is
now presented. Since no two keys are ldentical, the
déscriptof of data file "X" will contain a different key
from the key contalined in the directoryventry of data file
*Y." The BFS using the unique file identifier of file
“Y" will still access the new descriptor associated with
data file "X." However, the key from the directory entry
of file "Y" will not agree with the key in the descriptor
of file "X." Thus, the confllct ls resolved since the
BFS detects that the file to which "Y" wés originally
linked has been deleted. '

-28-

Outline of Design of the Logical File System Phase

The Logical File System consists of a mainlline module,
LFS, that calls one of a set of submodules. Each sub-
.-module corresponds to one of the ten ﬁgé; cgg;éﬂds -
processed by the Logical File System phase. The overall
tasks of the Logical File System, along with those
submodules which perform that task, are:

CREAT 1. Creates a directory file or data flle
for a user in his hierarchical file
structure.

OPEN 2., Opens ‘a file for accessing by trans-

| ferring the direétory entry of this
file from secondary storage into a
core residént table (the Active File
Directory).

CLOSE 3. Closes a file by deleting its dlrectory
entry from the Actlive File Directory.

- READ b, Maps the symbollic pathname of the
‘referenced file into a unique file
jdentifier and key by‘use of the Active
File Directory if the dommand is

allowed.
WRITE 5. Seme submodule as b,
TRCAT 6. Same function as 4.

PROT 7. Same function as 4,

~29.

DELET 8. Deletes a file for a user in his

hierarchical file structure.

__LINK _. .9, Creates a data_file for a user in his - - ..

hierarchical file structure and links
it to the specified data file if the
link is ailowed.

ULINK 10. Same as 8.

Data Bases of LFS

The Active File Directory and the Free List are the
data bases which belong to the LFS phase, The LFS also ‘
utllizes a system wide buffer in its search through the
file directories for requested files., The structure of

the AFD and the Free List are shown in Figure 2.4,

Symbolic 701 |Index Key] ACRTS Sym. Nme, PTR
0 ‘ 0
1 1
2 2
3 3
N M
. Structure of AFD b. Structure of Free

| List
Figure 2.4--a. Structure of AFD; b. Structure of Free IList

-30-

Since the size and numger of file directories will
generally prohibit them from being malintained in core
storage, they are stored oﬁ secondary storage devices;

The AFD permits a set of N file directory entrles to be
core resident for efficient access, Since the access
times of secondary storage devices are inherently much
‘slower than cdre sﬁorage acceéé times, the time efficlency
of requests to the file system would berdrastically reduced
if each request had associated with it a sequence of
secondary storage accesses to locate the unlque file
identifier. The IFS phase utilizes the AFD coupled wlth
the Free List to efficiently perform lts frequent functlon
of mapping & symbolic pathname into a unique flle
identifier (volume and index). ‘

To make an entry into the AFD, the OPEN submodule
searches through the hierarchical file directories until
it finds the entry corresponding to the file to be opened.
This directory éntry is transferred to the AFD and the |
pondition‘associated with the OPEN cpmmand is put into
the flag fileld of the AFD. The remaining components of
the symbolic pathname are chalned together in reverse order
in the Free List. The last logzM bits of the ACRTS fleld
serves &s an ihdex ﬁhich connects the entry of the AFD tq

the chain in the Free List.

-31-

Algorithms of the LFS

The detailed logical flowcharts of each of the
submodules making up the LFS phase are givén in Appéndlx Af
Flowcharts for two utllity routines, FDMGT and ACESS, which
search the file directory hierarchy and perform the actual
accessing, deleting, and inserting of entries into
directories, are also given in Appendix A, The syntax and
semantics of the arguments required by each of these
submodules are found with the flowcharts. The error
handling functlons performed by the submodules are

incorporated into the flowcharts.,

Protection Performed éz the LFS

The LFS phase checks each access to confirm that it
checks the condition for which the file‘was opened., This
phase prevents any user from creating two or more files
in the same directory with identical symbolic names. The
organization of/the file hierarchyAprevents any user
from accessing files of another user unless links have been

made to those files.

~32-

CHAPTER III
BASIC FILE SYSTEM PHASE

Fuhctional Déscfipﬁion

The Basic File System phase must convert the unique
file identifier from the Logical Flle System phase linto
a file descriptor. The file descriptor provides all
information needed by the next level of the file system,
the File Organizatlion Strategy Module, to physically
locate the file. The file descriptor provides a means
by which the access rights of a file can be dynamically
modified by the owner of a file, Tﬁe BFS phase decides
if a file may be opened by verifying access rights and
checking read/write interlocks.

File Deéériptor

. There must be a single file descriptor for each
file that residés on secondary stofagé regardless of how
many symbolic names the file ﬁay have or of how many
different file directories in which it may be found,
~ There are two reasons why the file descriptor is not
included in the file directory along with the symbollc
name. First, it 1s more efficient in time and srace to
maintain one copy of the file descriptor instead of a
copy for each symbolic file in the file hieéarchy which

-33-

eventually points to the same physical file. For example,
suppose an owner of a file decided to change the access
rights of one of his data files from read and write to
read only, then the descriptor of every file in the file
hierarchy which was linked to this file would have to be
found and changed., Second, it is much easler to insure a
uﬂique'mapping between the symbolic file and the
corresponding physical file through a single‘file
descriptor in a sophisticated environment which allows a
single flle to be referenced by different names and which
permits links that allow a file to be referenced from
various directories 1n the file hierarchy or from different
users,
Since each file requires a file descriptor, the set
- of file descriptors will reside on secondary storage. The
file descriptor for a file must reside on the same volume.
as the flle, This 1s a reasonable condition since, if the
volume is mountéd, then the file descriptor and the file
can both be'aocessed.‘ A vcluﬁe référé to the physical
medium on which the information is stored where a device
refers to the I/0 mechanism useéd to read or write
information. For most drums and many d1sk units, the
, defice and volume ére inseparable, Howevef, for tape unilts
and many of the smaller disk units, the'VOlyme, magnetic

tape reel, and disk pack, respectively, are removable,

-3l

For each volume, there is a Volume Descriptor Flle
(VDF) whose fixed length entries contain the file descriptors
 for each file stored on that volume. Since the entries
have a fixed length, the locatlion of a particular file
descriptor is specified by its index within the VDF. The
descriptor of the VDF is the first descriptor in the VDF.
The rationale for selecting a symbollic volume and index to
represent the unique flle identifier was to allow the file
descriptors to be accessed without having to search the
VDF, The symbolic volume specifies the volume containing
the VDF, while the index specifies the posltion within
the VDF which contains the file descriptor. The informatlon
which defines the physical location of the VDF is contalned
within its descriptor.

To faclilitate efficient access to the file descriptors,
an Active Volume Descriptor File (AVDF) is maintained in
core storage for all the active or open files. The AVDF 1s
the only core résident data base of the BFS phase. Each
of the fixed length entries in the AVDF can contain one
file descriptor. It is feasible to have a core resldent
AVDF, since the number of actlive file descriptors is in
general only & small fraction of the total number of file
descriptors; The file descriptors of the VDF'S are always
resident in the AVDF since one of them is used in the access

of. each file descriptor. The file descriptor entries in

-35..

the AVDF have the format shown in Flgure 3.1. The
functions of each of the fields contained in the flle

descriptor are discussed in the followlng se

ctions,

Figure 3;1~-Format of a File Descriptor Entry in AVDF

Controlled AcgeSS Rigﬁ%s

When a user creates a file, he specifies the initlel
access rights (read only, write only, etc) assoclated with
his file. Hs has the capability to modlfy these access
rights at a later time, These acoeés rights are preserved
within the ACRTS field of the file descriptor. Controlled
data file sharing is tled very closely to the access rights
contained in the fille descriptor(A simple means by
whiéh a versatile set of access rights are allowed and
controlled is given in the Outline of Design of the Basic
File System Phase. The BFS phase decides if a file may
be opened to be accessed in a partlcular way; It also
confirms the physical existence of a data flle to be
opened by comparing the key passed as an argument in the
OPEN command from the LFS phase with the key in the file
descriptor, If the keys fall to match, the data file
linked to has been deleted. Once a file has been

successfully opened, it is the responsibility of the LFS

Vol |Index | PRDA | Length |Key | Acrrs | Fo| usmer|

-36-

phase to confirm that a file 1s really belng accessed

according to the permission granted in the OPEN request.

Read/Write Interlocks

A data file is allowed to be open for the sole purpose

of reading by any number of users., Only one user at a
time is permitted to open a file for writing or for
reading and writing. The BFS phase enforces these read/
write interlocks, The count of the number of users who
simultaneously have a file open for reading 1is saved in
the USRCT field of the file descriptor in the AVDF. The
value of the user count is used by the BFS phase to
prevent 1t from closing a flle prematurely when a set of

users are readling a data file concurrently.

outline of Design ég the Basic Flle System Phase

The Basic File System consists of a mainline module,
BFS, that oalls‘one of a set of submodules, Each submodule
corresponds to one of the nine commands processed by the
BFS phase; The overall tasks of the Baslc File Systen,
along wlth those submodules which perform that task, are:
CREAT 1. Creates a file descriptor entry in the
VDF for a file.

OPEN 2, Opens a file for accessing by trans-

ferring the flle descriptor of this

CLOSE

READ

WRITE

TRCAT

PROT

DELET

LINK

Data Bases of BFS

-37-

file from the VDF on disk to the core
resident AVDF if the OPEN command is

allowed.

Closes a file by deleting its file

descriptor from the AVDF,

Retrieves the information from the AVDF
which is used by the File Organlzation
Strategy Module to physically locate the
file,

Same submodule as 4,

Same function as 4,

Modifies the access rights of the file
descriptor in the VDF as specified by
the owner of the file,

Deletes a file descriptor from the VDF
maintained on secondary storage.

Checks the file descriptor of the fille
to which a 1link 1s requested to see if
the link is allowed.

The BFS phase generates and malintalins a set of VDF's,

one on each volume,.

Eacii VDF is actually a directory

containing an ordered sequence of fixed length entries,

Each entry represents a file descriptor fof some file on

-38-

the same volume., The format of each entry of a VDF 1s

gilven in Figure 3.2.

| PRCDA™ | Length{ Key | ACRIS|} O}

Pigure 3.2--Format of Entry in VDF

The structure of the Active Volume Descriptor File
(AVDF) is presented in Figure 3.3. The core resident AVDF
contains a file descriptor for each OPEN file, The OPEN
submodule transfers entries into the AVDF and the CLOSE

submodule removes these entries.

Vol Index PRCDA Lenth!Key ACRTS] FO bSBCT
0 R entries
1 reserved
for

. descriptors
. of VDF's

R

N+R

Figure 3.3--Structure of Active Volume Descriptor
File (AVDF)

-39~

The sccess rights fileld of a file descriptor is

divided into & set of subfields as deplcted in Figure 3.4.

Figure 3.4--Subfields of ACRTS Field

Subfield A is used to determine 1f a 1link can be made to
the file. Subfield B is used to specify the access rights
of an allowed Link, Subfield B contains one of the access
rights, Read, Write, Read/Write, or Protected. Subfield C
contains elther Réad, Write, or Read/Write and is used
to specify the access rights of the owner of the file, The
owner of a file 1is the only user auﬁhorized to delete his
files.

This organization allows certain classes of global
control of data file sharing to be easily implemented,
For example, suppose Subfield A allows a Link; Subfileld
B stipulates Read, and Subfield C permits Read/Write.
Then, the owner of the file is authorized to make Read/
Write accesses, and Links to the flle, for the sole
purpose of Reading, are allowed to every user of the file
system, In this case, as well as all other cases, except
when Subfield B 1s protected, the verification of access
rights can be made dlirectly from the information contalned
in the flle descriptor.

For the case that occurs when Sybfield B 1s Protected,

~40-

verificatlion of the access rights of the LINK command or the

access rights of an OPEN command when the file to be opened

is linked is made indirectly from the information contained

within the file descriptor. The extra processing overhead

for Protected data files due to the associated indirection

is accrued by only the above two commands, A Protected
déta file means that access rights are assligned to users
on an individuel basis at the descretion of the owner, For
each Protected data file, the BFS phase maintains an
Access Rights File (ARF) which ccntains the identification
of each user given permission to link and the access rights
permitted with that link., If a data flle 1s Protected,
the file descriptor of the data file in the VDF is
immediately followed by the file descriptor of its ARF.
Therefore, the symbolic volume and index fields of the
file descriptor in the AVDF for the Protected data file
can be used toyaccess the file descriptor of the ARF.
One needs simply to use the symbolic volume and add one to
the index to generate the unique flle identifier of the
ARF, After accessing the flle descriptor of the ARF,
the ARF can be read into a buffer and searched for the
identification and access rights of the user requesting
use of the data file,

The decision to Protect a data file must be made

when the flle is created so that adjacent palrs of file

<471

descriptors can be assigned.
If data flle sharlng on a global basis instead of an

individual basls 1s satlisfactory for a particular

implementation of the file system design, then the design'wm-w' -

of the LINK and OPEN submodules could be simplified by
~prohibiting the protect feature,

The physlcal record address (PRCDA) field of the file
descriptor specifies the addressvof the physical record
which contains the mapping function used by the File
Organization Strategy Module to map logical file requests
into physical file requests. The volume containing this
physical record is given within the symbolic volume
field. |

The file organization (FC) field is used to
determine the organization of the file on secondary
storage; The appropriate Flle Qrganization Strategy
Module at the next level in the file systeﬁ is in general
selected according to the file organlzation contained in
the file descriptor. Since only one File Organization
Strategy Module is presented in thls deslign, the FO fleld
is not actuadlly required; It was incorporated into the
file descriptor to.allow other Flle Organizatlion Strategy
Modules to be‘easiiy adcosd 1f they were needed and if

sufficient core memory was avallable,

-2~

Algorithms of BFS

The detailed loglcal flowcharts for the algorithms
of the submodules contained in the BFS phase are“given
in Appendix B. The arguments required by each of these
subnodules are found with'each flowchart. The error
handling functions performed by the submodules are

incorporated into the flowcharts,

Protection Performed by the BFS

The BFS phase confirms the physical exlstence of
linked files by verlfying that the key in the OPEN
command is the same as the key in the file descriptor.
The BFS will not allow flles to be opened or linked
unless the accessing regquest stipulated in the OPEN and
LINK commands agrees with the permitted accessling rights
contained in the file descriptor. |

43

CHAPTER IV
FILE ORGANIZATION STRATEGY MODULE

Functional Descripticn

The File Organization Strategy Module is responsible’
for the physical organization of a file on secondary
storage volumes. The primary function of the File
Organization Strategy Module (FOSM) is to transform each

request to transfer a portion of a file between core

~memory and the file's "virtual" memory into a collection

of requests which can be used to transfer the same portion
of the file between core memory and‘physical or "buffered”
secondary storage memory. Stated more simply, the FOSM

maps loglical file addresses into physical record addresses.
*"Buffered" secondary storage memory refers to the physical
records of secondary storage which are currently core
resident in the I/0 Buffer Management System., In order to
minimize I/0 reQuests to secondary storage devices, physical
records contained in buffers are transferred directly to

the stipulated core areas. In the ensulng design, the

FOSM 1s delegated the duty to detect and transfer

. buffered physical records. It is the responsibility

of the FOSM to interact with the Allocation Strategy
Module to dynamically allocate and deallocate physicel

records for files as required.

~bhyo

The FOSM selects a volume on & secondary storage
device when a file is created unless a symbolic volume 1is
specified by the creator. The FOSM maps symbolic volume

names into physical volume addresses.

Physidal Redords and Volumes

A>physica1 record corresponds to a unit of transmission
betﬁeen core storage and a volume through an I/0 device.
A physical record is generally capable of contalning
- several computer wbrds. For example, on the disk volumes
of the IBM 1130, a physical record consists of 320
computer words. Each physical record on a volume has a
unique address by which it may be accessed.

7 A volume is a single unit of secondary or external
storage, all of which can be read or written by a single
eccess mechanism called an I/0 device. A volume is
usually an entire disk, tape, or drum and may be

dismountable. The disk volumes on the disk drives

provided by the IBM 1130 are dlismountable.

Virtual File Meﬁorj'

Each file is an ordered sequence of addressable
elements. The size of each addressable element is the
same size as an addressable element 1n core storage.

Thus, each file has the form of a "virtual" core memory.

-L5-

The real purpose of the file system is to provide an easy,
reliable means by which a specified number of elements may
be transferred between "real" core memory and the "virtual"
memory of the file system. A file's virtuval memory may be
much larger than real memory. In fact; each file 1is
allowed to be arbitrarily long. When a user wants to

read or write a portion of a file, he specifles the
particular portlon in the file's virtual memory. For
example, a user may request the file system to read 600
words, starting at address 2,000’W1thin,f11e Beta, into
core starting at location 12,250; It is the function of
the FOSM to transform this logicallj contiguous virtual
memory 600-word portion into its physical location on
secondary storage,. AIn general, the physical location,
corresponding to a contiguous area in a flle's virtual
memory, is designated by a set of physical records and/or
parts of physical records.

Several obgectives of the filé system are realized
through the technique of virtual file memory. The virtual
filé memory provides the user with a flexible and versatile
uniform file structure. The virtual file memory provides
& shileld between the user and the *obscure"” mechanisms
requlired by the flle system to successfully interact with
the secondary storage devlice., Thus, the user need have

no a priori knowledge of the pecularities or the physlcal

-46-

organization of the secondary storage devlices to
triumphantly use the file system. Since only the virtual

memory of a flle 1is addressable by a user, the file system

“has complete control over the dynzmic and automatic
allocation of secondary storage for all files. The
schematic relationship between core storage, virtual

file memory, and physical records on secondary sitorage 1is

exhibited in Figure 4.1,

Indexed File Organization Sﬁraﬁegy

An indexed file orgénization stfategy is the scheme
incorporated into the}design of the>FOSM. In this
strategy, the physical record addresses are kept in a
table or flle which is "indexed" by use of logical record
numbers, The FOSM generates the logical record numbers -
by partitioning the file's virtual memory into an ordered
set of logical records having the same size as & physical
record, Loglcael record 1 of virtual memory has the physical
record address found in entry 1 of the table; loglical record
2 hés the physical record address found in entry 2, etc,
The means by which the FOSM organizes its data bases to
_coqvert logical records into physical recofds while
attempting to minimize rciie I/0 opefation required to
update the data bases is present in the Design of the

FOSM section.

e

oo \ =l ”// Record 8
'27327'4’ 7= > | Record -
rite ——— Record 2
et Z zzz1
File CRALYAW! ‘ — Record "’
File V7774 B
. Physical Records Assligned
File Beta's to File Beta on Secondary
Virtual Storage

Memory

Core Memory

Figure 4,1--Schematic of Relationship between
Core Memory, Virtual Flle Memory,
end Physical Records -

-L8-

The ratlonale for cho&sing this particular strategy
over other common strategles such as sequential flle
organization and linked file organization 1s accredited
in part to the flexibility and generallty df thls strategy
end in part to the enviromment of the IBM 1130, The direct
access secondery storage devices of the IBM 1130
configuration provide eicellent conditions for random or
direct access files which are particularily adaptable to
a multli-tasking environment.,

0f the above strategles, the 1ndexed file organization
strategy is the only one which allows efflclent direct
access files. The core memory available on a particular
IBM 1130 for the resident file system may be limited to the
extent that room for only one FOSM is permitted. The
capabilities provided by the indexed file organlzation -
strategy are more adaptable and versatlle than the
capabilities of either of the other strategles.

The indexed file strategy may.simulate the sequential
filg scheme, usingka sequential allocation module, in the
sense that sequential physical records are assigned’tb
a file. The argument generally given for assigning
consecutive physical records to a file is to minimize
"device latency and access time. However, in a multl-
tasking environment, a common condition is to have more

than one file actively in use on the same device, This

~Lo.

produces a state in which éhe read/write mechanism 1s
switching rapidly among many active files. This conditlon
does not give overwhelming credence to the argument that
sequential files minimize latency and access times in a
multi-tasking environment,

When space becomes avallable on a secondary storage
volume due to files being deleted and truncated, it
usually appears in disjoint frasgments throughout the
volume. The indexed file organization allows the logical
records of the flle's virtual memory to be "scattered"®
.over the random-accessed storage volume, This technique
permits files to dynamically expand and contract.

Finally, the indexed file organlzation strategy
provides an efficient means to allow "sparse" files such ™
as flles containing "hash coded” and random entry tables.
A "sparse" file may be characterized as having a much
larger virtual memory than4the physical méméry actually
assigned to thé file on secondary storage. For
~—pedggodical reasons, assume a user created a file and
transferred data into only the portlons of the virtual
file's mémoryfcorresponding to logical records 1, 50, and
100. At this point in time, the length of the file's
virtual memory is one hundred times the number ol elements
in a physical'record; However, only four physlcal records

are required to represent this file. One physical record

-50-

is needed to contain the physical record addresses and

three physical records are needed to contain logical records

1, 50, and 100, Additlonal physical records will be
dynemically allocated as required for a sparse—fiié és
more information is written into the file,

A request to read an "unwritten" portion of a sparse
file may occur. The FOSM realizes thils, while processing
the Read request, when it detects that physical record
addresses have not been assigned to the requested portion
of the sparse flle, In such a case, the FOSM returns zeros
to give the 1llusion that the unspecifled contents of a

sparse file are initlalized to zero.

Design of a File Organization Strategy Module

The indexed File Organization Strategy Module (FOSM)
1s a mainline module that calls one of a set of submodules,
Each submodule corresponds to one of the five commands
processed by the FOSM. The overall tasks of the FOSM,
elong with those modules which perform that task, are:

CREAT 1. Chooses a volume for & file that 1s

being created unless the creator of

. : the file has specified a symbolic
volwu.e name, verifies that a specified
volume 1s mounted, and calls ASM to

- allocate a physical record for the

READ

WRITE

CLOSE

TCATE

-51<

File Index Table,

Maps virtual file memory requests into
physical record requests and transfers
physical records in buffers immediately
to the user,

Maps virtual file memory requests into
physical record requests, allocated
physlcal records to files as needed,
and transfers physical records in
buffers immediately to the user.
Updates disk copy of modified core
resldent data baées assocliated wlith
specified files including modified
physical records in buffers.

“Reduces the length of a file by
calling ASM to deallocate physical

records assigned to truncated portions

of files;

Méﬁpiﬁé Virtual File ﬁemory into Logical Records

The virtual file memory is logically partitioned

into an ordered set of loglical records. The size of a

logical record is equal to the size of a physical record

of this file. TFigure 4,2 displays the concept of

partitioning a virtual file memory into logical records,

-52-

Loglcal Record
0

Logical Record
1

User's i
View 7 : .

Logical Record
‘N

Virtual File Virtual File Memory
Memory Partitioned into
Logical Records

Figure 4,2--Scheme of Partitioning a File's Virtual
Memory into Loglcal Records

-53-

//(//
\\ "Leading Partial®

/// Logical Record
/ ‘\\ g
Intermediate
User's "Full" Loglcal
Request I//// \g\\ Records

/ :/ "Tagging" Partial
S, Y ' Logical Record

Virtual File Request Mapped into
Memory Request Logical Records and Parts
Thereof

Figure 4,3--Virtual File Memory Request Mapped
into Logical Records and Parts
Thereof

~5lym

The virtual file memory is partitioned into logical
records in order for the FOSM to assoclate distinct physical
records with each loglical record. When a request is made
to the FOSM to read or write a portion of the file's
virtual mémory, the Prepare Logical Record List (PLRL)
routine is called which maps the request into the
approprlate collection of logical records and parts
thereof. This mapping involves only simple mathematical -
manipﬁlations of the flle address and core address
specified by the user in hls read or write request, A
requested portion of virtual file memory and the
corresponding collection of logical blocks is exhibited in
Figure 4.3 found on the preceeding page.

The output of the PLRDL routine 1is called the
Logical Record List. The format of the Logical Record
List is shown in Figure 4.4

"Leading" Entry LRCDI| cA | Index| Num | CT

"Intermediate" Entry

"Lagging" Entry

Figure 4. 4--Format of Logical Record List
«
The format of the Logical Record List simplifies the
tasks of mapplng logical records into physical records

and controlling the transfer of partial physical records

-55-

through buffers.

The three entries represent the information which
describes the leading partial loglcal record, the set
of intermediate fﬁll logical records, and the lagging
partial records, respectively. ‘

The Logical Record Index (LRCDI) field of an entry
contains the index of the logical record described by that
entry. The Core Address (CA) field stipulates the
‘beginning of the user's area in core storage corresponding
to the loglcal record of that entry. These two flelds
pertain to the first intermediate full logical record
of the second entry. The Index field specifies the index
within the loglcal record corresponding to the first
record of the logical record contained in the read/write
request. The Number (Num) field gives the number of
words within the logical record contained in the read/
write request, The Count (CT) fileld contains the number
of logical reoérds assocliated with each entry. The CT
field of the record entry specifies the number of
intermediate full logical records. The CT field of any
entry is zero when that entry 1s not required in a particular

read/write request,

File Indéx Taﬁle

A File Index Table (FIT) contains the mapping function

56~

used by the FOSM to map 1oé1cal records into physical
records. There is a FIT maintained on secondary storage
for each file in the file system except the FIT. The

FIT is actually a chained file having the structure shown
in Figure 4.5,

Each entry of the FIT is indexed by a loglcal record
number. Entry O corresponds to logical record O0; entry
1 corresponds to logical recore 1, etc. Each entry in the
FIT contains the physical record address of the loglcal
record defined by the index of the entry if the physical
record has been allocated; otherwise, the entry contalns
a zero, to indicate that a physical record has not been
allocated. The FOSM is responsible for the generatlion
and deletion of entries in the FIT as a file "grows" and
"shrinks.” This indexing scheme incorporated into the
FIT permitts loglcal records to be mapped into physical
records without having to search the FIT.

The last entry of each physical record assigned to
the FIT contains the physical record address of the next
physical record assigned to the FIT. The last physlical
record in the chain is denoted by a zero in its last entry.
Additional physical records are dynémically assigned to
the FIT as needed by the FOSM interacting with the
Allocation Strategy Module,

For most files only one physical record is required

-57-

Logical Reccord Numbers Logical Record Numbers
Entry G _Phy. Red. Addr. ntl
1 ete nt2
2
3
2n-1
2n
0 If end
of chain
First Physical Record Next Physical

of FIT Record of FIT

Figure l.5-.-Structure of the File Index Table

-58.

for the FIT. For example, in the IBM 1130 environment
with 320 word physical records, & single physical record
of the FIT may contain the physical addresses of 319
physical records which represents the mapping function
of a file 102,080 words long.

The physical record address of the appropriate FIT
is one of the arguments contained in each Read or Write
command issued to the FOSM by the BFS phase.

In order to better understand how the BFS phase 1is
able to specify the physical record address of the FIT
the following brief digression is gilven. At the time a
file is created, the FOSM assigns and initlalizes a
physical record for the FIT on the volume which will
contain the file. The address of this physlecal record
is returned to the BFS phase, As the BFS phase creates
the file desceiptor, 1t enters the address of the physical
record for the FIT into the physical record address (PRCDA)
field of the file descriptor. When a user makes a request
to Read or Write a file, the BFS phase employs the unique
file identlfier to locate the filé descriptor in the
core resident Actlve Volume Descriptor File. The physical
retord address of the FIT is extracted from the file
descriptor and the FOSM is called,

Active File Index Table

Certain sections of the Flle Index Table must be in core
in order to map logical records into physical records.

Since sufficlent core storage 1s not avallable on the IBM
1130 systém to keep the File Index Tables for all opened
files in core, contiguous "sections" of the File Index Tables
are maintained in core, for the active or opened files, 1n
an Actlve Fille Index Table (AFIT).

The Active File Index Table should be structured to
allow efficlient mapping of logical records into physical
records. The contiguous sectlons of the File Index Tables
contalned in the Active File Index Table should be "large"
to minimize the number of I/0 operations required to "shuttle"
sections back and forth between the Flle Index Tables
maintalned on secondary storage. However, the sectlons
contailned in the Actlive File Index Table are regquired to
be "small" 1in order to conserve core storage. Thus, a
compromise nust be made on the lenght of the sections allowed
in the Active File Index Table. The structure of the Active
File Index Table is delineated in Figure 4.6:

The Active File Index Table is divided into two logical
parts,- The first part is an index to the second part which
contains the Yactive" sectlons of the File Index Tables,
There is a oné-to-one correspondence between the entries of

the index part and the entries of the second part. The

e o o N O

~60-

701-PRCDA | SLRCD

Mod

Idx

Index Part

"“Active Sections" of FIT

PRCDA

PRCDAJ etc

Figure 4,6--Structure of Active File Index Table

-61-~

correspondence 1s defined ﬁy letting entry "i" of the index
part speclfy entry "i" of the second part.

An entry of the second part contains a contlguous
collection of logical record entrles from the Fiié Index
Table uniquely identified by the volume and physical record
address contained in the first field of the index entry,
The first loglcal record contained in the contliguous
collection of logical records of an entry 1s glven by the
second field of the index entry, The Mod field of an index
entry 1s turned on when physical records are allocated
or deallocated to the logical records contained in the
entry to which it refers. The age field of an index entry
contains the "age" of the indexed entry. The "age" 1s
a function of the frequency an entry 1ls accessed relatlve
to the other entries. An entry which 1s referenced
frequently would be "younger" than an entry that was seldom
referenced but had been in the Active File Index Table a
long time, The Index (Idx) field bontains the index part
of the unique file identifier, This is required in the
AFIT to insure that all physical records assigned to a FIT
are updated when a file is "closed.” '

-« As space 1s required in the Actlve File Index Table for
sections of the mapping functions of the other File Index
Tables, the entries having the "greatest age* are transferréd
to secondary storage if modified; else, théy are simply re-

placed by the new entrles.

-62-

The index part of the Actlive File Index Table provldes
an efficlent means to access the physical record address
contained in the loglcal record entries., After finding the
the appropriate entry, i, in the index part, the address of
logical record "X" relative to the beginning bf the Active
File Index Table can be calculated from Equation 4,1,

Relative Address = 1 ¥ + (X - SLRCD) + Constant

Equation 4,1
The conétant term is the total number of words required for
the index part of the table. For the meaning of the other
variables see Figure 4. 6. |

The size of the complete Actlve File Index Table can
be limited to 320 words for used on the IBM 1130 System
and still provides efficient mapping capabilities. Recall
that for a 320-word physical record, each physical record
of the File Index Table contains the mapping function for
319 logical records of a file's virtual memory. Divide these
319 logical records into 11 contiguous sections of 29 logical
records each, Each contiguous section.represents 9,180
contiguous words in a file's virtual memory. NQW, in 320
words of core, one cen kKeep ten of these contiguous sectlons
and their index entries for ten different active files. The
FOSM can dynamically choose to keep more than one entry in
the Active File Index for a single file if more than one

9,180 contiguous word sectlons are belng actively accessed

-63-

by one or more users., In fact, the FOSM will use the Age
field to Xeep the most active sections of the File Index

Tables in the Active File Index Table in order to minimlze

I/0 operations required to mé;miééiéél redérdémiﬁﬁo'thSiééi”f:'"

records., : B

Mapping Logical Records into Physlcal Records

The loglcal Record List 1s used by the FOSM to drive
another routine called Prepare Physical Record List (PPRL)
which maps logical records into physical records using
the Active File Index Table., The format of the Physical
Record List is shown in Flgure 4.?.- After the FOSM completely
prepares the Physical Record List, the Devlice Strategy Module -
is called, with the Physical Record List as an argument, |

to transfer the request between core storage and secondary

storage.
n .
1 }Vol-PRCDA | Core Addr
2 |Vol-PRCDA | Core Addr
_ n-1
* \ n |Vol~PRCDA | Core Addr

Figure 4,7-Physical Record List (PRCDL)

~64-

There may not be enough space in the Physlcal Record
List to contain all the logical records in a particular

request. In such cases, a user's request wlll be accessed

in units of n-requests., The Logical Record List will
always indicate the extent to which a partiéular request
has been processed,

After the loglcal records have been mapped 1nto
physical records, the FOSM sequences through the Physical
Record List one entry at a time to see if the reguested
physical record is in the I/0 buffers, For physical
records which are contained in the 1/0 buffers, the FOSM
directly transfers the requested pﬁysical record or parts
thereof between the I/0 buffers and the stipulated area in
core storage. The Logiceal Record List 1s used to determine
the number of words and the starting word in each physical
record of a request contained in a buffer, For each
physical record directly transferred by the FOSM, the
corresponding entry in the Physical Record List is deleted.

Next, the FOSM assigns buffers for the "partial"
physical records contained in the request, The filrst and
third entries of the Loglcal Record List are used to
determine{if.buffers are required. If buffers are assigned;
the Core Address field - the appropriate entry 1n the
Physical Record List 1s changed to the address of the

assigned buffer. After transferring the 1ﬁformation into

-65-

the assigned buffer, the Loglcal Record List contains all

the information necessary to transfer the correct part of

—the physicalmrecord~to—£heruserjs~areawinmcore;~AFor each-——---

read or write request to the FOSHM, there are at_most two

I/0 buffers required, one for the leading partial logical

rgcord and one for the lagging'partial logical record.

Either or both of these record conditions may be absent

in any particular request. If two buffers are requlred to

completely transfer a request, the FOSM attempts to

assign two buffers. If only one buffer 1s avallable, the

request is divided into two parts and processed sequentially.
The buffers available for the FOSM to use for

transferring partial record requests between core and

secondary storage are maintained in a Buffer Control Table.

The format of the Buffer éontrol Table 1s shown in

Figure 4.8,

Entry 1 | BA| vol| Idx| PRA | Age | Mod | Bk

r

Figure 4,8--Format of Buffer Control Table
The fields of each entry speclify, respectively, the
available buffer address (BA), volume (Vol) and index (Idx)

of the file in the buffers, physical record address (PRA)

-66-

of the record in a buffer, age (Age) of the record entry

in the Buffer Control Table, whether or not the entry

_1s modified (Mod), and if the entry is blocked (Bk).

An entry is blocked from the time it 1s assigned to a

record of & file until after the record has been trans-

ferred to the buffer. If a definite reqguest is made for

a;buffer when 21l entries in the Buffer Control Tgble are
blocked and the Storage Management System can not provide
8 new buffer, the user's process associated wlth the
buffer request 1s blocked untll a buffer is avellable,

By utilizing avallable buffers for partial records
of the file as well as file maps, the FOSM may

substantially reduce the number of I/0O operations for

flle &accesses,

Algorithms of File Organization Strategy Module

The logical flowcharts of the submodules and routines
contained in the FOSM are;giveh in Appendix C. The

arguments required By these submodules and routines are -

presented wlth the flowcharts.

-67-

CHAPTER V

ALTOCATION STRATEGY MODULE

Functional Deéoription

The function of an Allocation Strategy Module (ASM)
is to find and allocate physical records for a file that 1is
béing created or expended, It is also the responsibility
of an ASM to deallocate or free the physicalfrecords assigned

to a file when the file is deleted or truncated.

Design Considerations

The particular allocation stréfegy chosen to assign
physical records to a file should be closely correlated with
the file's organization and hence to a particular File
Organization Strategy Module in order to achleve the intended
performance of the overall system design. In fact, different
File Organization Strategy Modules may require distinct
allpcation strétegies.

“The amount of core storage required for allocation
information shoﬁld be kept as small as possible while the
number of I/0 operations is minimal.

+ The design of an Allocation Strategy Module to support
the File Organization Module, already discussed, will now
be presented., The concepts and techniques used in thils

design can be readily modified to produce.other tailored

-68-

Allocation Strategy Modules.

mDesign of Allocation Straﬁégerédule_d

A bit map is assoclated with each physical volume,
The Volume Bit Map (VBM) defines a function which assoclates
each physical record on a volume with a bit position within
tﬂe bit map. Bit O corresponds to physical record 0, blt
1 to physical record 1, etc. If a bit is set to 0, the
corresponding physical reocrd is avallable for allocation,
When a physical record is allocated to a file, the corresponding
bit is set to 1. The VBM provides a relatively small space
within which to represent the allocatlon information required
by the Allocatlion Strategy Module, However, for a fille
system with several volumes, each containing hundreds of
physical records, the ASM may not have enough core storage
available to keep all the compact VDM's core resident.

To overcome the problem, the Allocation Bit Map can
be subdivided into contiguous segments., A segment from
each ABM can be‘maintained in a core resldent table for
easy access, The core resident table will be called the
Active Allocation Bit Map (AABM). The format of a typicel
entry within the AABM is shown in Figure 5.1.‘ The information
contained within such an entry is particulary useful for

volumes mounted on dlrect access devices.

Entry 1

-69-

K-word blt segment

SPRCD

PRCDA

CcT

MOD

Figure 5.1-Format of Entry within Active

Entry O corresponds to volume O, entry 1 to volume 1,
etc, The number of words, K, in the bit segment wlll depend

on the number of physical volumes and the amount of core

Allocation Bit

storage avallable for the AABNM,

Record (SPRCD) field stipulates the physical record number
that corresponds to the first bit of the k-word bit segment.

Map

"The Starting Physical

This field is required to effectively calculate which

physical record corresponds to which bit position in the

bit segment,

contains the physical record address of the ABM. This is

used to "shuttle" different segements of the ABM to and from

the AABM, VThe count (CT) field of entry "i" contains the

nunber of physlcal records avallable for allocatlon on volume "1

This count may be useful in the selection of a particular

The Physical Record Address (PRCDA) field

volume on which to put a file,

Strategy Module selects a volume for a fille that is being

created, the AABM may be a common data base for the FOSM

and the ASM.

If the File Organization

An alternative 1s to assign the functlon

"
[]

-70-

of selecting volumes when files are created to the ASM.
The Modification (MOD) fleld consists of a bit which

is either on or off., The MOD bit is off until some bit
position within the K-word bit segment is modified, then
the bit is turned on. The MOD.bit permits a means by
which the modifled bit segments in the AABM may be
periodically transferred to the respective ABM's without
having to transfer the unchanged bit segments. For many
-small computers which do not have protected areas in core,
it 1s advisable to periodically update the permanent ABM's
on secondery storage in order to efficiently overcome the
damage which occurs when the contents of core storage
are lnadvertently destroyed; This is indeed a difficult
problem to overcome and have therfile system pefform
efficlently., In the design presented for the IBM 1130
computer which does not have protected areas in core, the
FOSM calls the ASM to update the ABM's before it updates
the Flle Becord Mpas. Thils procedure never allows a
physical record to be assigned to more than one file, The
Closé command 1é used to‘triggér the FOSM to-update the |
-the Flle Record Map of a particular file.

« The Close command was chosen to initliate the perlodic
updating of data bases residing on secondary storage to

minimize the relatively slow I/O operations required for

updating and to localize the temporary-damage, inflicted

-71-

by the destruction of the contents of core storage, to
the modifications being made to Open flles.

_ ﬂ99g§s§qn§1}y3_Ehg_phyg;ca¥wmedium on which a physical

record is stored will become deféctive, When & defectlive

physical record is detected, the corresponding bit position

in the ABM is turned on to give the illusion that it 1s
allocated.

Since the ASM supports a random or direct access FOSM,
the strategy incorporated into the ASM will be random in
the following sense. When the FOSM calls the ASM to
allocate a physical record for a file on a particular
volume, the ASM will scan the appropriate bit-segment in
its AABM until it encounters & bit position which is
available for allocation. This bit position will be set
to 1 to indicate it has been allocated to some file and
the corresponding physical record number will be calculated
for return to the FOSM. The FOSM calls the ASM to
deallocate a sét of physical records when a flle 1is
deleted or truncated. This strategy allows the ASM to
minimize the nuﬁber of I/0 operations required to access
the different bit;segments which contain the bit positions
corresponding to the physical records in the deallocated

request.

-72.

Algorithms of the ASY

The detalled loglcal flowcharts of each of the
. submodules makling up the ASM are given in Appendix D.

The arguments required by each of these submodules are

found with each flowchart.

-73-

CHAPTER VI
DEVICE STRATEGY MODULE

The Device Strategy Module converts a set of I1/0
reduests from the FOSM and the ASM into actual machine
I/0 command sequences,

The design of the DSM 1s extremely dependent on the
characteristics of the I/0 devices and on the I/0
controller, within the Monitor, which coordinates all
physicel I/0 on the computer system.

A Device Strategy Module which interfaces with the
direct access, moveable head, disk devices of the IBM
1130 is described. Thils Device Strategy Module performs
its function within an I/0 environment provided by an
I/0 Controller like the one discussed in C, H, Hollander's
recent MIT Thesis on a multi-tasking monitor for the
IBM 1130 computer (Hollander 69).

Deslign of a Devide Strétegy Module

The FOSM calls the DSM with a list of I/0 requests
associated with a particular user such as read physical
redord 600 of volume 1 into core location 2000, read
physlical record 200 of volume 1 into core location 2320,
end read physical record 601 into core location 2640,

The physical records are ordered, on the'disk volumes

=70

of the IBM 1130, into cylinders and tracks. The disk
device has a movable read/write access head which moves
across the surface of the disk volume perpendicular to
the cylinders; 1t traces out a set of tracks on the disk
volume as the volume rotates., Each track contains an
ordered subset of the set of physical records.

In order to physically access physical records 600,
200, and 601 in the above example of a read request, the
accessing head must be positioned over the cylinders
containing physical records 600, 200, and 601‘respect1#ely
before the read command is issued. In order to minimize
the time consuming back and forth motion seeks of the
accessing head for requests of this type, the DSM sorts
the 1ist of I/0 requests from the FOSM into a new list
having physical records in ascending order., When the DSM
issues the machine I/0 commands to access the individual
physical records in the new list, 1t processes the 1llst
in a "top down" or "bottom up" manner depending on the
actual position of the accessing head when the process

commences,

Interadtibh wiﬁh éﬁe I/O Coﬁfrbiier

In order for the DSM to issue I/0 channel ccamands to

a disk device unger -the scheme incorporated into the I/0

~75-

Controller,* an ATTACH call for a particular disk device

1s made to the I/0 Controller. The arguments of the ATTACH
call are contained wlthin a Device Control Block prepared
by the DSM. The device identification, address of
interrupt processing routine pfovided by'thevDSM, and user
ldentification are 1nq1uded in the Device Control Block,
The I/0 Controller determines if the device requested by
the DSM through the Devlice Control Block is currently
"owned" by any user, If the device 1is not currently owned,
i1t will be assigned to the user stipulated in the Device
Control Block, If the device 1s owned by some user,

this I/0 Controller adds the Device Control Block to a
queue which it maintains for each disk device, The I/0
Controller will notify the DSM when the disk device is -
assigned to the user in the Device Control Block,

. After a successful ATTACH has been made to a
particular disk device, the DSM initializes the interrupt
processing routines for that device, 1ssues the first
I/0 channel command, and prepares to return to the
FOSM or ASM, The interrupt processing routines 1ssue the
remaining 1/0 channel commands for all the requests in the

reguest list. After each I/0 channel command is completed,

* For a more detalled discussion of the regirements for user

interactlon with the I/O Controller, see C, R, Hollander's
Thesis (Hollander 69).

-76-

the devlice issues a hardware interrupt which signals the
I/0 Controller to transfer control to the interrupt

processingrroutine, for that device, provided by the DSM.
“rThg interrupt processing routine services the interrupt
and returns control to the I/0 Controller, When the last
interrupt assocliated with the list of requests occurs,
the asychronous switcheé are turned on to indicate that
the I/0 requests have been completed and the device is
DETACHED.

Algorithms

 The logical flowcharts for the Devlice Strategy Module

-

- and the interrupt processing routines are given 1n

Appendix E,

~77-

APPENDIX A

This appendix contains the detailed logical flowcharts
for the algorithms and the data bases for a specific
deslign of the Logical File System for implementatlion on
an IBM 1130 computer.

The LFS phase is called by the users of the flle
system, The allowable calls from the users are listed
below in flowchart notation for easy comprehension. For
example CALL LFS(READ,SYMBOLIC PATHNAME,CA;FA,NUM) is the
flowchart notation of a CALL to the LFS to process the
READ command., The arguments in mnemonic form requlired by
the READ command are Symbolig Pathname,‘CA, FA, and Num,
The arguments corresponding to the mnemonlc forms are given

with the flowchart of each command,

CALL LFS(READ,SYMBOLIC PATHNAME, CA,FA,NUM)
CALL LFS(WRITL SYMBOLIC PATHNAME CA FA "NUM)
CALL LFS(OPEN, SYMBOLIC PATHNAME, >conD. §
CALL LFS(CLOSL SYMBOLIC PATHNAME)
CALL LFS(CREAT SYMBOLIC PATHNAME
CALL LFS(DELET,SYMBOLIC PATHNAME]
CALL LFS(TCATE SYMBOLIC PATHNAME,LENTH)
CALL LFS(LINK, ?YMBOLIC PATHNAMEL ,) SYMBOLIC PATHNAMEZ,
COND.
CALL LFS(PROT,COMND,SYMBOLIC PATHNAME,PERM, (USER))
CALL LFS(ULINK SYMBOLIC PATHNAME)

(voL) ACRTS)

L] L] L2

oW ooNOoMn W
*

=

CALL SHAFD |
(PATHNAME)
returns j

|

-78..

LFS PHASE

FLOWCHART FOR AIGORITHHM OF MAINLINE MODULE (LFS)

Arguments of LFS:
1. See preceeding page

1 PATHNME ,CA,FA,
NUM, 1)

CALL RW(COMND,

CALL OPEN

(P?THNME,COND,
i

CALL CLOSE
(PATHNME, j)

CALL CREAT

(PATHENME, (VOL) |

CRTS,)

CALL DELET

(PATHNME, j)

CALL TCATE

» Error No

(?ATHNAME,LENTH

[caTT TINK
| (PATHNMEL , COND

CALL ULINK

Yes

Print error
message to

(PATHNAME, j)

Set error

code to comd e~

not defined

[caLr PROT(COMN

-

PATHNAME , PERM |

(USER) , 1§

usexr

-79-

LFS PHASE
FLOWCHART FOR ALGORITHM OF READ, WRITE SUBMODULE (RW)
Arguments of RW:
1. The Command Read or Write
. Symbolic Pathname of a file
Core Address
File Address
Number of words to transfer
Index of entry in AFD containing pathname or -1

o FL
L) .

et errg
Lode to Set errqr
K omnd. rode to
hot 2114 file not
bpen
¥
Get V,I of
pathname o
from AFD
CALL BFS
(CoMND,CA,
FA,NUM,V,
I)

-80-

LFS PHASE
FLOWCHART FOR ALGORITHM OF OPEN SUBMODULE
Arguments of OPEN:
1. Symbolic Pathname of file
2, Condition for which file 1s to be opened
Allowable conditions: Read, Write, Read/Write
3. Index of entry in AFD containing pathname or -1

Set error
code to
file open

athname

Yoy
in AFD

Set error
code to
AFD full

CALL FDMGT to

et pthnme
entry from
FD*s on dsk

Set error

code to No

file not 3
created

— es

Get V,I from entry
and CALL BFS(OPEN,
STATE, V., I KEY)

T A~

y i
F‘i'»o—'

No ~_~BFS
open
Yes

‘Put entry and cond
into AFD,chain
pathnme into FL

LN

-81-

LFS PHASE
FLOWCHART FOR AIGORITHM OF CLOSE SUBMODULE
Argument of CILOSE:
1. Symbolic Pathname of g file

2, Index of entry in AFD contalning pathname or -1

Get V,I of
pthnme from
AFD

A

Delete
pthnme ent
from

AFD

a

CALL BFS
(CLOSE,V,
I)

X R]

-82-

LFS PHASE
FLOWCHART FOR ALGORITHM OF CREATE SUBMODULE (CREAT)
Arguments of CREAT:
1. Symbolic Pathname of file
2., Symbolic Volume nsme may be given Optional
3. Access Rights specified by user to describe file
4, Index of entry in AFD containing pathname or -1

(Enter)

Defline a key]
for this filﬁ

CALL BFS(CREAT,
KEY, (VOL),
ACRTS)

<D
Yes

CALL FDMGT to
insert data
file ent into
FD on disk

CALL BFS
(DELET,V,I)

Set error code
tto fille already
created

\I

-83-

LFS-PHASE
FLOWCHART FOR ALGORITHM OF DELETE SUBMODULE (DELET)
Arguments of DELET:

1. Symbolic Pathname of a flle
2, Index of entry in AFD containing pathname or -1

Set error
code to
f'ile open

CALL FDMGT
to delete
file from
FD on disk

bet error
code to

file not “‘ﬁ
created

File
deleted

Get V,I rtned
from FDMGT

CALL BFS(TCATL}
0,v,I) |

-8l

LFS PHASE
FLOWCHART FOR ALGORITHM OF TRUNCATE SUBMODULE (TCATE)
Arguments of TCATE:
1. Symbolic Pathname of a fille
2. Length to which file wil be reduced
3. Index of entry in AFD contalning pathname or -1

Set error

code to

file not

open
Get V,I of |
pathname
from AFD

J

ALL BFS
(TCATE,LEN,
v,I)

[\

(Return >

FLOWCHART FOR

-86-

LFS PHASE
ALGCORITHM OF LINK SUBMODULE
Arguments of LINK:
1. Symbolic Pathname of data file to
be created
2. Symbolic Pathname of data file to
which created file willl be linked
3. Condition of link-Alowable are:
Read, Write, Read/Write
Index of entry in AFD containing
pathname or -1

CALL FDMGT to get
pathname2 entry f
FD on disk

roxn

tr No code to
rine pathnme?2 >
es deleted

Set error

No code to

Yes

Set error

1ink not
allowed

CALL FDMGT to
Insert Key,V,I
of fille 2 into
entry for file

}

Set error
code to
file 2
alrdy created

S

{ Return)

-87..

LFS PHASE

FLOWCHART FOR AIGORITHM OF PROTECT SUBMODULE (PROT)
Arguments of PROT:

1.

W FWw

The Command Add or Delete

Symbolic Pathname of a flle

The Permission Read, Write, Read/Write, Link
User assoclated wlth permission Optiocnal
Index of entry in AFD containing pathname or -1

Set error
code to
1file not
open

Set error
code to
linked
file
Get V,I of
pathname
from B
- AFD
i\
" ICALL BFS
- |(PrOT ,COMMD,
v,I,PER,
USER)

Return

-88-

LFS PHASE

FLOWCHART OF ALGORITHM OF SHAFD
Arguments of SHAFD:

1.

Search AFD for

No

A1l
AFD

earched

Yes

No All
cmpts nteh
Yes

last component
f pathname

Last
comp, fnd

list to see if
all compts match

Search chainedl

[Set j to -1

L

Set j to index of]
AFD that contains
pathname

4.

Symbolic Pathname of a file

HS8et J to -1

{ Return J)

-89~

IFS PHASE
FLOWCHART FOR ALGORITHM OF FDMGT
Arguments of FDNMGT:
1. The Command Access,Delete, Insert (4,D,I)
2, Symbolic Pathneme of flle
__"Wmmm,W_";m,mwi,_wKey,associatedmwithmfilemmmﬁptionalv

. Access Rights associated with file Optional

Get a bufrfer
needed in
search
J
CALL ACESS t B Set error
search FD fo code to
 |pathname file not fnd

Yes|Save this
entry for

return

Set error No_rq7e No _~f1* Set error
code to flle| nd rqst ——3iccde to file
ot found : alrdy exists
Yes
cP RSN Insert entry
oave entry for
return; delete ggi féie igto
entry from FD _ e rectory
L 5
e
CALL BFS to

write buffer
back to dsk

7

Mark buffer
free

[4

..(Return)

-90-

LFS PHASE

FLOWCHART FOR ALGORITHM OF ACCESS

Arguments of ACCESS:
1. Symbolic Pathname of
2, Address of buffer to

(Enter)

=

a file
be used 1n searching

i1
V,le-V,Iof ¥

J

]

4

Get hash
addr of
comn(%)

,——_,l

blk of FD,"V,I",
containing hash

CALL BFS to read

1

Update hash

addr into buffer

addr to addr

Search buffer;

for comn(i)

start at hash add

of first entry
in next blk FQ

No

i+l Yes _“flore
V,I<v,I . comp in
of conp Nt

found

Empty
recd fnd

Prepare to return

-file found

~index in buf cont

entry for this
ile :

Prepare to rtn
~-file not fnd
~comp of pthnme
not found

Prepare to rtn
=FD found

-index in buf to
put ent of thigJ
file

~91-

LFS-PHASE
FLOWCHART FOR AGORITHM OF UNLINK SUBMODULE (ULINK)
Arguments of ULINK:
1., Symbolic Pathname of file
2, Index of entry in AFD contalning pathname or -1

Set error
code to
file
open
CALL FDMGT
to delet)
file from
FD on dsk
Set error

Flle

deleted code to

file does

not exlst

-92-

DATA BASES OF LFS FOR IMPLEMENTATION ON
IBM 1130 COMPUTER

~ “Ketive File Directory

Entry Symbolic) Pathneme| Vol| Index | Key| AcmTs |

Each entry in the AFD is eight words long. The
symbolic pathname occupies four words and symbolic volume,
index, key, and access rights each occupy one word of the
entry. The entry for the MFD is always contained in the
first row of,the’AFD

ACRTS pits | o |1 |23] |11 15
Supbfields A B C D ",‘4;-
Subfield |
A 0--Unlinked file

1--Linked file
B 0--Data file
 {--Directory file
c . 01--Open for reading
10--0Open forrwriting i o
11--Open for reading and writing
D positive integer--Index to Free List

zero--Symbolic name contalned in AFD

-93-

Free List

Entry

Symbolic Pathname lPointer

Each entry in the Free List is five words long.
The fir;t four words can contain cne component of the”
symbolic pathname., The last word in the entry 1is
used to chain together the entries representing a

synbolic pathnane,

Fiié Difectofiés’

Entry - Symbolic Pathname Vol | Index}] Key

Each entry in 2 fille directory 1s seven words long.
The symbolic pathname occupies four words and the volume,

index, and key each occupy one word of the entry.

_9h..

APPENDIX B

This appendix contains the detailed logical flowcharts
for the algorithms and data bases for a specific design
of the Basic File System phase for implementalon on
an IBM 1130 computer.

The BFS phase is called by the LFS phase, The
allowable calls from the LFS phase are listed below in
flowchart notation for comprehension., For example,

CALL BFS(READ,V,I,CA,FA,NUM) is the flowchart notation

of a Call command to the BFS to process the Read command.

The arguments in mnemonic form required by the Read

command are V, I, CA, FA, Num, The arguments corresponding

to the mnemonic forms are given with the flowchart of each

command.,
CALL BFS(READ,V,I,CA,FA,NUM)
CALL BFS(WRITE,V,I,cA FA,NUM)
CALL BFS(OPEN,V,I,COND,KEY)

' CALL BFS(CLOSE,V,T)
CALL BFS(CREAT, KEY
CALL BFS(DELET,V,I)
CALL BFS(TCATE,V,I,LENTH)

CALL BFS(LINK, v 1 COND)
CALL BFS(PROT, COMND vV,I,PERM, (USER))

[y
* []

-

(VOL) ,ACRTS)

O O~NOMWn FW D

FLOWCHART FOR ALGORITHM OF MAINLINE MODULE

~95-

BFS PHASZE

Arguments of BFS:

1.

Set error
code to Cmd
not found

See preceeding page

CALL RW(CMD,

V,I,CA,FA,
NOH §

CALL OPEN(V

I,COND,KEY) '

CALL CLOSE

(v,I)

CALL CREAT
=1 (KEY, (VOL),
ACRTS)

CALL DELET
(v,1)

CALL TCATE
(V,I,LENTH)

CALL LINK
(v,I,COND)

CALL PROT
- (COMND,V,I
PERM , (USER})

(‘ Return)

(BFS)

o3, Core Address_(CA)

-96-

BFS PHASE
FLOWCHART FOR ALGORITHM OF READ, WRITE SUBMODULE (RW)
Argunents of RW:
1. The Command Read or UWrite

2. Unique file identifier (Vol,Index)

L, File Address (F34)
5. Number of words to trensfer (NUM)

lGet PRCDA’;li
from descpt
in AVDF J

Note:

CALL FOSM. to
read in des

= of this fileg~———>

‘from VDF

This path is only used when
LFS reads in directorles
leading to qualified name.,
This keeps user from having
to open directory files A and
B when he opens data flle Y
with qualified name A.B.Y.

from rtned
descriptor

J

<

%
CALL FOSM
(COMND,CA,
'FA,NUM,V,
| PRCDA)

No

A 4

Set error
code to
file
deleted

1

k

v

Return

-97-

BFS PHASE
FILOWCHART FOR ALGORITHM CF OPEN SUBMODULE
Arguments of OPEN:
1. Unique file identifier (Vol,Index) of file
2, Condition for which file is to be opened

S s e e —e - AT T owable _OOYiditiOHS'QRead';WTité;R’éad_/wri'be e

3. Key of file to be opened

(:_ Enter :)

o
CALL FOSM to
y read in desc
of thls file
from VDF

: Yes
returned Fre——

XYes

Open
for res _

Set error codd No
to access &
conflict

ccessh

.Set
: allowved

error
to
2L E

Put descriptor

of file in AVDF
with requested

access rights

Set error
code to acs
Lnot allowed

%)
Increment user, (
count by one
in AVDF
- L4

-98-.

BF'S PHASE
FLOWCHART FOR ALGORITHM OF CLOSE SUBMODULE
Arguments of CLOSE:
1. Unique file identifier (Vol,Index) of file

‘ Enter >
ecrement

USRCT by |Yes /7NSBEC
one 1

& 0
Remove des,

of file
from AVDF

X

Get PRCDA | -
from this
descriptor

CALL FOSM
(CLOSE,V,I
PRCDA)

5

L

-99-

BFS PHASE
FLOWCHART FOR ALGORITHM OF CREATE SUBMODULE (CREAT)
1. Key for file to be created
2, Symbolic Volume may be gilven Optional
3. Access Rights (ACRTS) specified by owner

{ Enter >

CALL FOSM
1 (CREAT, (VOL)
ACRTS) A

File ' 4 No

No

N b S
No Assgn palr of
Ques 1 indexes for des
of file of ARF
_ s :

Assgn index in
VDF for desc,
of file

CALL FOSHM to
write descrpts
of file into VDK

repare to rtn
vol,index of |
file descrlptor

J.
7

Question 1?--Did FOSM return a value for volume and PRCDA
v for file? =
Question 27--Did FOSM return a value for volume and two
PRCDA's? First PRCDA is for created file,
Second PRCDA is for Access Rights File (ARF),

-100~

BFS PHASE
FLOWCHART FOR AIGORITHM OF DELETE SUBMODULE (DELET)
Arguments of DELET:
1. Unique file identifier (Vol,Index) of file

Set flag
on
File Yes}Set error
open code to
file open
A A Nﬂ

CALL FOSM to
ead in des
of file fromn.

N

, T
Eet PRCDA fim

esc rtned
vy FOSH

CETL O3S To
write dlted
desc in VDEF

1}
CALL FOSM
(TCATE,V,I,
LENTH,PRCDA)

urn flag
of f;increm, f
index by 1

‘Iiiiiﬁiil'

-101~

BFS PHASE
FLOWCHART FOR ALGORITHM OF TRUNCATE SUBMNODULE (TCATE)
Arguments of TCATE:
1. Unique file identifier {Vol,Index) of file
2. new length (Lenth) of file

conflict A code to fil

Length "\ Yes] Set error
too short

Get PRCDA fm
descriptor
1in AVDFE

CALL FOSM
(TCATE,V,I,
LENTH,PRCDA)

|
poT

Return

-102-

BFS PHASE

FLOWCHART FOR ALGORITHM OF LINK SUBMODULE

Arguments of LINK:

1. Unique file identifier (Vol,Index) of file
2, Condition of 1link .
Allowable conditions: Read,Write,Bead/Write

< Enter >

J
ALL FOSM to
read in file

desc, from VDF

protected”

of file desc.
by one

Tincrement index |

CALL FOSM to
of ARF

read in file des.

Get a buffer

CALL FOSH to
vbuffer

read ARF into

buffer

Get user entry
from buffer; freﬂ

3

3

vermitted >©

hNo Set errorx
1 code to link

10t _permitted

(Return >

FLOWCHART FOR ALGORITHEM OF PROTECT SUBMODULE (PROT)

-103-

BFS PHASE

Arguments of PROT:

The Command Add or Delete
Unique file identifier (Vol,Index) of file
The Permisslion: Read,Write,Read/UWrite,Link
If permission not global, the User assocliated with
individual permission must be given

10
2,
3.
L,

of file desc,
by one

CALL FOSM to

Modify ACRTS

~q field of file

desc. in AVDF

i

CALL FOSM to

whtite modified
file des to VDF

* R\
read in desc,) Ret
bt _apr (eturn)
Note: The ARF may Get a buffer
contain up to
160 individual ¥
access rights. CALL FOSM to
' read ARF into
huffer
Search buffer No
for first elete
empty entry
fres
Set error Search buff
code to for user
ARF full entry
+. | Make new Set error
zg; in buff 4 code to |
Loerm not glven
‘ 25N
in buff ARF
" |
CALL FO3SW to]
write buff into
ARF;free buffy
L L J

-104-

DATA BASES OF BFS FOR IMPLEMENTATION ON
IBM 1130. COMPUTER

Active Volume Descriptor Fille

Entry Vol | Index | PRCDA } Lenth| Key | ACRTS| USRCT

Each entry in the AVDF consists of seven one word
fields., The File Organization (FO) field has been
incorporated into the ACRTS field. The first R entries
in the AVDF are reserved for descriptors of the Volume
Descriptor Files. Since there is one VDF for each mounted
volume, the exact value of R 1s detefmined by the available
hardware configuration. Most IBM 1130 hardwaere configurations

allow one, three,;or five volumes to be mounted

simultaneously.
ACRTS Bits |0 |1,2] 3,4 [- J13-153
Subfields A B c D
Subfield

A 0--Links not allowed
"~ 1--Links allowed
B 00-Links are protected by individual user
01-Link to. Bead permittéd by any user
10-Link to Wrlte permitted by any user

11-Iink to Read/Write permitted by any user

-105=

C 01-Read permitted by owner
10-Write permitted by owner

. _11-Read/Write permitted by owner

D O~~Direct Access File Organization
1-7-~Reserved for 6mp1ementation of additional

Fosn's

Volume Déscriptor File

Entry PRCDA Lenth Key ACRTS

Each entry in the VDF is four words long. All the
flelds are each one word long. The ACRTS field is
subdivided as indicated for the AVDF,

-106-

APPENDIX C

This appendix contains the loglcal flowcharts for
the algorithms and data bases for a design of a Flle
Organizatlon Strategy Module for implementation on an
IBM 1130 computer,

The FOSM is called by the BFS phase, The allowable
calls from the BFS phase are listed below in flowchart
notation as discussed in Appendix B, |
CALL FOSM(READ,CA,FA,NUM,V,I,PRCDA)

CALL FOSM(WRITE,CA,FA ,NUN,V,I,PRCDA)
CALL FOSM (CLOSE,V,I,PRCDA)

CALL FOSM (CREAT (VoL) ,ACRTS)
. CALL FOSM (TCATE v,I LENTH PRCDA)

wmEEwhor

-107-

FOSM
FLOWCHARTS FOR ALGORITHMS OF FILE ORGANIZATION
STRATEGY MODULE (FOSM)
Arguments of FOSM:
1. See previous page

CALL KEAD (TH,
FA, NUM,V,I,
PRCDA)

CALL WRITE (CA,
A,NUM,V,T,
PRCDA }——"

CALL CLOSE ‘
(V,I,PRCDA)

CALL CREAT((VO
ﬁCRTS) ' '

S
-

Set error ;
code to comd
not allowed |

CALL TCATE (V
I,LENTH,PRCDAs

L -)'

< Return)

-108-

FOSM
FLOWCHARTS FOR ALGORITHMS OF UDFIT ROUTINE

Arguments of UDFIT:
1. Unique file identifier (V,I) of a file

Set k to O
Set Sw to O

1 Set Sw to 1}

¥
CALL AsM
(UPDAT,VOL)

1

Increment k

to next entry)2 Get a buffer

for FIT

1]

CALL DSM to
read FIT rd.
into buffer

Read all Mod
entries of FIT
in AFIT to buf

J

-~109-

FOSM
FLOWCHART FOR ALGORITHM OF TRANSFER BUFFER TOUTINE (TRBUF)
Arguments of TRBUF: ‘
1. Logical Record List (LRL)
2. Physical Record List (PRL)
3. Read or Write command
, Volume (V) of the file

(Enter)

Set k to 0

Transfer zeros
to user's
area

Transfer rgst |
between buf and
juser's area

Update PRL and|
IRL to indicate
transfer :

Increﬁent k
to next entry

More
entries 1
. PRL

No

-110~

FOSM

FLOWCHART FOR ALGORITHM OF ASSEMBLE BUFFERS ROUTINE (ASBUF)

Arguments of ASBUF:
1. Logical Record

List

2, Physical Record List
-3, V, I, of the frile

for this
physical rcd B ggir into

Put addr of]

ry to get extra
buffer to spee
request

BCT entry into
fst row LRL |

et a buffer—
for this phy
rcd of file V,

ot Yes ut buff addr
buf Zlinto PRL
No
L

Reduce num of
entries in PRL
y one

Put addr of BCH
ent in last row
of LRL

[Update last ent
of LRL

—
4

-
(Return)

Ques 1?--Is a buffer needed for first request in Physical
_ Record List?
Ques 2?--Is a buffer needed for last request in Physical
Record List? ’

Ques 3?--Do we already have one buffer?

-111-

FOSM

FLOWCHART FOR ALGORITHM OF READ SUBMODULE
Arguments of READ:

[]

wm Wi

.

Core Address (CA)

File Address (FA)

Number (NUM) of words to transfer

Volume and Index (V,I) of the file

Physical Record Address (PRCDA) of FIT for this

file

CALL PLEL to |}
prepare Loglca
Record List

CALL PPRL to |
prepare Physical
Record fist

{CALL TRBUF to
read entries of
PRL if in buf

RL | Yés
empty

No

CALL ASBUF to
assemble reqd
buffers

CALL DSM (READ,
PRL)

Se values in
IRL to read
rast if in buf

L

-112-

FOSH
FLOWCHART FOR ALGORITHM OF CLOSE SUBMODULE
Arguments of CIOSE:
1. Unigue file identifier (V,I) of file

(Enter)

CALL UPFIT to
vpdat FIT and
ABM

Set k to first
entry in BCT

CELL DSM to .
write buffer to
disk

Yes Any

I
nerement k to more buff

next entry of
BCT

- No

-113-~

FOSM

FLOWCHART FOR AIGORITHM OF CREATE SUBMODULE (CREAT)
Arguments of CREAT:

1.
2.

o Sym Vol not

Set error code
t
vounted

Symbolic Volume may be given,
Access Rights (ACRTS) specified by owner

Mep sym Vol
into phy Vol

This 1s optional,

Choose a Vol
for file

L
\U

CALL ACATE (V)
to allocate phy

red for FIT
J

Initialize phy
red to all

lzeroes

File
protected

Yes'

!

CALL ACATE(V) |

tto allocate phy

rcd_ffi:ABE__J

L

Sym Vol and Al
Phy Re

Prepare to rtnL
oc

Addre s

(Return >

Initialize
phy rcd to all
zexroes

-114.

FOSHM

FLOWCHART FOR AIGORITHM OF WRITE SUBMODULE
Arguments of WRITE:
1. Core Address (CA)
2. File Address (FA)

3. Number (NUM) of words to transfer
T L T Yolume and Index of filet T T

5, Physical Record Address (PRCDA) of FIT

CALL PLRL to -
prepare Loglcal
Record List

Save CT of ent
2 of LRL
Set CTJto 0

No

/2
CALL PPRL to
prepare Phy

Record List
L prepare Phy

Record List

CALL TRBUF to

write entries : 3
. CALL TRBUF to
of PRL 1f in buf write entries

of- PRL if in bu

Restore CT of
entry 2 of
LRL

CALL ASBUF to
assemble read

buffers, o R CALL DSM(WRITE}
L _ PRL)

CALL DSM(READ, : |

PRL) R

Usé vdkues in
LRL to wrlte
rqsr to buffer

Ul

1.
2.,

3.

-115-

FOSM

FLOWCHART FOR AIGORITHM OF PREPARE LOGICAL RECORD LIST (PLRL)
Arguments of PLRL:

Core Address of request
File Address of request
Number of words in request

Enter

Initialize

Logical Record

List
T

logical rcd in
request

Ques 1?~~Is this the "Laggling
Partial" logical record
in request?

Ques 27--Is thls the "Leading
Partial" logical record
in request?

Ques 37-~Is this the first "full
intermediate” logical
record in request?

Ques 4?--Any more logical blocks
in request?

- Set k to 3

Set k to 1 |

Tncrement - .-

count in Ent

Ques 3
2 of LRL by 16_<<\\§f//;>
) — Yes

Set k to 2

| "3

)3 o
Make entry k in

Logical Record
List

Tncerement

A and FA by

og rcd sze

’Return LRL

-116-

FOSHM
FLOWCHART FOR AIGORITHM OF PREPARE PHYSICAL RECORD LIST ROUTINE (PPRL)
Arguments of PPRL:
1., Read or Write command
2., Logical Record List (LRL)
3. Volume (V) of file
4, Physical Record Address (PRCDA) of File Index Table

Enter

Get first log.
from LRL

L’I

7

-
- CALL TRENT to
N .
Que;\?>>——2—Atransfer entry

Yes into AFIT

Use Eq 4.1 to
calc exact

locatiﬂn - :
N Yes :
CALL ASHM to
@ No 61N) allocate Phy
o5 » fo HBed Ad%f
Put Vol-PRCDA, , Put PRCDA into
CI into entry fF— AFIT, Turn
n of PRL , Mod bit on
& ,
Increm. n by 2% Ques 1?--Log. Rec in
Increm, CA by 320 : - - any entry of -
Increm, CT by 1 - - AFIT?
: - Ques 27?--Physical Record
- Address Allocated?
Ques 37--Any more Log.
: Rec, in LRL?
Yes Ques 4? Is this Log.
Rec, in same

No

appe o o
N 108-/%%}2 - 7 entry of AFIT?

<o)

o
o
0

-117-

FOSM
FLOWCHART FOR ALGORITHM OF TRANSFER ENTRY ROUTINE (TRENT)
Arguments of TRENT:
1. Volume and Index (V,I) of file
2. Physical Recore Address (PRCDA) of FIT
3. Logical Record Num (LRN) to transfer to AFIT

CATT GTENT to
get a empty
entry in AFIT

Yes
No
) Y
Get a buffer
for FIT
.J/
CALL DSM to read J[get address Get address
red of FIT intd of FIT from of FIT from
buffer | arg of TRENT | (chain

YeS Yes

in buffer . too small

Transfer section . _ CALL ASM to

of FIT having
LREN to AFIT assign phy
) ‘ , Put chain into
. L |
" L Initialize

new record

-118-

FOSHM

FLOWCHART FOR AIGORITHM OF GET ENTRY ROUTINE

(GTENT)

Set 1 to O
Set age k to 0

Ye

Increment
Age by one

Set age of k to
e ofdi

—

Increment i
to next
entyry

Yes

More
entrles in

AFIT
No

Set 1 to k

CALL UDFIT
write entry t
disk

-119-

FOSM

FLOWCHART FOR ALGORITHM OF TCATE SUBMODULE
Arguments of TCATE:
1. Physical Record Address (PRCDA) of FIT
2, Volume and Index of file

e~ 3. Length of file

Set PRCDA to

(Enter)

Set LRCD to
number of fst
log. recd to
deallocate

a

Get a buffer
for FIT

value of
chain

N

Set LRCD %o
no, of nxt log.
rcd., to dealloc,

y

CALL DSM to read
FIT(PRCDA) into
buffer

- Unblk
- buffen

into FIT on

disk 1

CALL ASH
(PRL,k,VOL)

N

, o
CALL DSM to (Return)
write buffer]

y

Set chain to]|
1st. entry of
FIT in buff.]

CALL ASM to |

1 dealloc (PRCDA)

fst red of FIT

Addr of LRC

in buff, Se
k to 320-LBQD

Set PRL to |
&

~

-120-~

DATA BASES OF FOSM FOR
IMPLEMENTATION ON IBM 1130 COMPUTER

The discussion of these data bases is contained within

Chapter IV,

File Index Tgble

Entry Physical Record Address

Each entry is one word long and contains a physical
record address if allocated; else, the entry contains |
a zero to indicate the physical record has not been

allocated,

Active File Index Table

‘Entry of Index Part Vol-PRCDA| SLRCD | MOD| Age | Idx

Each entry of the Index part of the Active File Index
Table containsg three words., The first two fields each
occupy one word, Theblastrthree flelds collectively occupy

one word as shown below,

-

~ Bits 0f 1-4 |5 - 15

Function Mod Age Idx

Entry of Indexed Part | PRCDA “prCDA ...| O

NOo

-121-~

EBach entry contains 29 consecutive entries of the File

Index Tabhle.

Buffer Control Téble

Entry BA |vol | Iax| PrA| Age | Moa | Bk

Each entry contains three words. The buffer address (BA)
consists-of one word. The physical volume and index

representing the unique file identifier occupy one word.,

Bits 0-4 | 5-15

Function Vol Idx

The last four fields collectlvely occupy one word.

Blts 0 - 10 J11-13 14| 15

Function "PRA Age Mod Bk

Symbolic Volume Mab

Entry Sym. Vol, Owner -

‘Each entry of the Symbolic Volume Map contalns two
woids. The symbolic volume name cohsists.of four
characters or deoimalinumbers in hexldecimal rep.esentation.
The Symbollc Volume ﬁap has one entry for each disk device,

vThe index of an entry in the map 1s the physlcal address

-122-

of the disk device having the symbolic name contained wlthin
the entry. The owner field specifies if the symbollc

volume mounted on the disk drive 1s a system volume or

& personal volume. The FOSM allocates a volume for a

file which is being created only on system volumes.,

| The FOSM also has knowledge of the location of the
Active Volume Map_which is a data base of the Allocation
Strategy Module, The FOSM only reads the count fleld of

the Active Volume Map to declde which system volume to

allocate to a file which is belng created.

-123-

APPENDIX D

This appendix contains the detailed logical flow-
charts for the algorithms and the data bases for a
speclfic design of an Allocation Strategy Module for
implementation on the IBM 1130 computer.

The ASM is called by the FOSM. The allowable
calls from the FOSM are llsted below in flowchart
notation as discussed in Appendix B.’

1. CALL ASM(ACATE,VOL)

2. CALL ASM(DCATE,DL,VOL,K)
3. CALL ASM(UPDAT,VOL)

124

ASM
FLOWCHART FOR AIGORITHM OF MAINLINE MODULE (ASHM)
Arguments of ASM:
1., See preceeding page

CALL ACATE |—

(VOL)
CALL DCATE
fDL,VOL,K)
CALL UPDAT |
(voL) 11
[Set error
'lcode to cmnd
Jnot found -

 Retrn to
. . FosM

-126-

ASM
FLOWCHART FOR ALGORITHM OF ALLOCATE SUBMODULE (ACATE)
Arguments of ACATE:
1., Volume assigned to a file

(Enter)

<

Search vol ent

ggtAﬁ?g ‘cgsijtf;g o CALL UPDAT with
ooy o OP SPRCD of next
blt-segment

Set bit to 1; Set error
turn Mod on; code to
reduce CT by 1 vol full

Compute addr of
physical record
allocated (PRCDA)

N2
Prevare to return
vol, PRCDA

I- L

: (Return)

~127-

ASM

FLOWCHART FOR AILGORITHM OF DEALLOCATE SUBMODULE
Arguments of DCATE:
1. Deallocation list (DL) containing physical

record addresses to be deallocated
2, The Number, k, of entries in the PRCDL
3. Volume containing physical records to be
deallocated

No lIncrement
Jby 1

of bit segmen
regulired

Compute SPRCD4

CALL UPDAT to
read in reg
and bit segmnt

Set bit positn
"PRCDA : SPRCD"
to O

-

Deallocate
entry J of DL

L

Questlon 17--Is bit position, corresponding to the physical
record of entry j of DL, currently in AABRM?
Equivalently, is SPRCD £ PRCDA? Equivalently
is SPRCD<PRCDA£SPRCD+16%207?

Quéstion 2?--Have all entries of DL been deallocated?

-128-

ASM
FLOWCHART OF ALGCRITHM OF UPDATE UTILITY ROUTINE
Arguments of UPDAT:
1. Volume assigned to 2, Starting Physical Record
file (SPRCT) of bit segment
' - - _to read from ABM into __.
AABM. This argument 1ls
optional. If not specified,
the existing bit segment -
ABM will stay in
AABM,

PRCD N

Get a buffe;

CALL DSH to |
read ABM into
buffer

Transfer Mod blt
segment into
buff:tqfn mod off

ead D1t segment
with given SPRCD
from buff into AABM
Update SPRCD field]

N -
X
Free buffe%
] L »

2

-129-

DATA BASES FOR IMPLEMENTATION ON
IBM 1130 COMPUTER

" Active Allocation Bit Mep

Entry 21-word bit segment | SPreD| PRCDA | CT |1od

There is one 25-word entry in the AABM for each
mounted volume., The SPRCD, PRCDA, CT and MOD flelds

each occupy one word in the entry.

Allocation Bit Map

The ABM consists of five contiguous 21-word bit
segments representing 1680 physical records., Since a
disk volume for the IBM 1130 has only 1624 physical
records avéilable, bit positions 1625-1680 will be turned
on initially to give the 11lusion that they have been

ellocated,

-130-

APPENDIX E

~—— - Phis -appendix contains the logical flowcharts for the .

algorithms for a specific design of the Device Strategy
Module and the interrupt processing routines for | o
implementation on an IBM 1130 computer, Each disk device
requlires an individual interrupt processing routine.
Since they are all alike, the flowcharts of only one
set of the interrupt processing routines are given in
this appendix,

The DSM is called by the FOSM and ASM., The flowchart
hotation for the single allowable call 1s given below. -

1. CALL DSM(PRCDL,MODE)

Arguments of DSM call:

1. The physical record list (PRCDL) having the format

discussed in the FOSM,
2, The Mode of operation., The two allowable modes

are synchronous and asynchronous,

FLOWCHART FOR ALGORITHM OF DEVICE STRATEGY MODULE
of DSM: see previous page

Arguments

-131-
DSM

[
CALL SORT to
order entrie

U

[}
v

lock user;
qst monltor
o UNBLOCK
then ATTACH

s.nade

: ¥
Get first
rgst from

PRCDL

Y""‘ - e .«5

Note:
write

Must be

request

No
TRUPY, 6= B1 TRUPl¢—B2 TRUPLe— B2
IRUP2 éumD2 IRUP2¢—=B3 TRUP2gewe Bt
X R —
Igsue Seek issue Read Issue Read
X10 X10 after Seek
: X10
) L 1B

Block user;

¥rgst monitor

to unblk when
I/0 completes

R A

~132-

DSM
FLOWCHART FOR ALGORITH! OF MASTZR INTERRUPT PROCESSING
ROUTINES FOR ONE DISK DEVICE

Note: Control from I/0 Controller enters here,

(Enter '

Issue Sense
DSW X10

Incremen
error cnt
by 1

Set error Process
count to Hardware
0 . Errno

Go to Go to Go to
IRUP2 IRUP1 IRUP2

-133-

DSM

FLOWCHART FOR ALGORITHM OF SECONDARY INTERRUPT PROCESSING

ROUTINES FOR ONE DISK DEVICE

N
LRUPl@__Bi
| Nq IRUPZQ";B
k?
Note: Control
is transferred 3
to one of the Tssue Read
interrupt Trup® "
routines fron P pfter Seek
the Master N7 X9
Interrupt Issue Seek
Processing X10 Return
Routine,
Return
] I RUP1e— Bl
' RUP2 @ DB5
CTRUPL . B2 | Yes Tssue Writq
IRUP2 B3k X10
) 1%
Issue
Read X10 <:__§EEEEE:)

TRUP1 ¢===B5
_ AR
A1 ‘ Turn comptea Issue Read
ts Yes lswitches ong check X10
Lasvs ETACH | ,
rocsd , -
No ' L
Get next =

rgst from
§ PRCDL

‘ " Return , (Re’curn)

~134-

D3SM
FLCWCHART FOR ALGORiITHM OF SOBT BROUTINE
Argumernits of SORT:
1. Physical Record List (PRCDL)

Note: A simple inter~
(Enter > change sort was chosen ...
since the number of
requests in the PRCDL
T ' 1s expected to be

small in the 1130
environment.

Interchg
entries 1
and J of
PRCDL

Increment |Yes
1byl; je—t
by 1

Return

Question 1, Is physical record number of entry 1 in PRCDL
- greater than physical record number of entry Jj?
Question 2. Any more entries in PRCDL?
Questlon.3, Did we interchange any entries ‘the last time
through?

Abraham, C.T., Ghosh, S.P.,, and Ray-Chaudhurl, D.X.,

=135~

REFERENCES

File Organization Schemes Based on Finite Geometries,

Information and Control, February, 1968,

Bash, J.L., Benjafleld, E.G., and Gondy, M.L., The

MULTICS Operating System, Cambridge Information Systems

Laboratory, May, 1967.
Daley, R.C., and Neumsnn, P.G., A General Purpose File

System for Secondary Storage, Proceedings Fall Joint

Computer Conference, 1965,

Denning, P.J., Queulng Models for File Memory Operatlons,

MIT Project MAC Technlcel Report MAC-TR-21, October, 1965.
Dennis, J.B., Segmentation and the Deslign of Multi-

Programmed Computer Systems, Journal of ACM, October, 1965.

Dixon, P.J., and Sable, D.J., DM-1--A Generalized

Data Management System, Pfdceedings Spring Joint Computer

Conféfeﬁée,)1967.

~ Evans, D.C.,, and LeClerc, J.V., Address Mapping and the

‘Control of Access in an Interactive Cdmputer, MIT Project

MAC Document Room, December, 1966,

"Graham, R.M., Protection in an Information Processing -

Utility, Communications of the ACM, May, 1968.

Hartley, D.F., Landy, B., and Needham, R.M., The Structure

of a Multiprogramming Supervisor, Computer J.,

10,

11.

12.

13.

14,

15.

16.

~136-

November, 1968,

Henry, W.R., Hierarchical Structure for Dyta Management,

~ IBM Systems Journal, Vol, 8, No, 1, 1969.

Hollander, C.R., A Multi-Tasking Monltor for the IBM

1130 Computer, MIT Department of Ejectrical ‘Enginééi‘ihg,'

June, 1969,

Madnick, S.E., Design Strategles for File Systems,
S.M, thesis, MIT Department of Electrical Engineering,
June, 1969, 7 M
Rappaport, R.L., Implementing Mﬁlti-process Primitives
in a Multiplexed Computer System, S.M. thesis, MIT
Department of Electrical Engineering, August, 1968,

Rosen, Saul, Pfogfamming_SystemS'and Lahguages,

McGraw-Hill, New York, 1967.

Saltzer, J.H., Traffic Control in a NMultiplexed
Computer System, Sc.D. theéis, MIT Department of
Electrical Engineering, August, 1968.

Zilles,, S;N., Synchronizationvgf Resource Usaée'

in a Small Informatlion System

