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ABS TRACT

The System Process Model (SPM) is used to represent behavior of
the multiprogramming module of a compnter system operating under a demand
paging strategy. It models the system as a network of states and assoc-
iated queues. The level of multiprog:rnaing is varied by changing the
average n-unber of pages that users are permitted in main memory. De-
vices are explicitly characterized by parameters representative of their
behavior, and sample programs run unde2e CP-6( are parameterized in terms
of I/O and paging activity for use in representing jobs in the system.

With the intention of using this model for performance projection,
a notential oroblem characteristi of such virtual memory systems is
discussed. The thrasingr -oroblem is defined as the less than optimal
ise of system resources resulting from excessive competition for primary

memory. Novel definitions for pinpointing this degredation are prorosed.
SPM is then used as a vehicle to analyze the operations of a CP-67

like system. Performance is predicted under full load for various levels
of multiprogramming and optimal performance as well as thrashing degreda-
tion are quantified. Scheduling is shown ;o be a key tecimique for improv-
ing system performance as well as iOprovements in device technology. An
interesting characteristic of the system, the law of diminishing returns
to scale, is uncovered as a result of the investigations.

Analysis is performed with both analytical and simualation models.
This permits comparative analysis of the methods based on some interest-
ing and revealing criteria. The techniques, which are of both theoret-
ical and oractical value in the area of performance evaluation, are rat-
ed on their approach to modeling SPM.
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SYN4OPSIS AJD ORGANIZATIONAL REMARKS

The abstract is provided as an overview of the contents of this

thesis. The following outline gives a more indepth look into the chap-

ters. This will facilitate selection of the host appropiate

for the reader.

CHAPTER 1: motivation for computer modeling is provided as well
as a brief introduction to current techniques being
used in the field. The thesis objectives are stated.

CHAPTER 2: a review of the literature is given and the specific
work of researchers that is relevent to this thesis
is discussed in more detaiihboth in analytical and sim-
ulation modeling.

CHAPTER 3:

CHAPTER 4:

an example multiprogrammed, demand-paged, virtual mem-
ory system is presented. A conceptual view of the com-
puter called the System Process Model is proposed to
represent the system 5 a manner conducive to perfor;.a-
ance evaluation.

analytical models are designed and solved in an attempt
to provide useful information about the system under
study. This includes analysis of continuous time
Marhov-state models and a queuing network model which
is another continuous time Markov modd



CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

APPEIIX A:

APPENDIX B:

APPETIX C:

a simulation model is developed and implemented to
study the same system. Characteristics and problems
of simulation are outlined, and then tackled in the
GPSS model dcsigned. vxten;.ons of simulation analr-
sis are discussed.

the performance projection results are obtained and
discussed at length. Thrashing is pinpointed, the cp-
timal level of multiprogramm-ing is found, and schedul-
ing of critical devices is shown to improve system per-
formance. The device technology of the paging channel
is upgraded with encouraging performance results. The
system as a whole is observed to obey the law of dimLin-
ishing returns.

the modeling techniques are compared on the basis of the
level of detail describable, the number of parameters
needed to describe the model, the ease of implementation,
the ease and exactness of the solution, and the overall
cost of the approach. In addition, areas of future ie-
search are suggested.

a PL/l programused to solve the continuous time Markov-
state models, is Lsplayed with an extended program list-
ing and sample output.

a PL/l program , used to solve the queuing network mod-
el, is displayed with an extended program listing and
sample output.

the extended program listing of the GPSS model is pre-
sented.

Chapters 1 and 2 are review for anyone familiar with computer modeling.

They are suggested for the reader interested in an introduction to this

field.

Chapter 3 lays the ground work for the rest of the thesis and should

be read in its entirety. The proposed computer system module is presented

in detail so that the conceptual model, SPM, can be completely specified.

Chapters 4 and 5 are basically independent, presenting the analytical

and simulation models used in analysis of SPM. However, the parameter-



ization of the GPSS simulation in Cha(.er 5 is based on the underlying

path selection formulation of the queuing network model in Chapter '.

So, in fact, sections (4.4.1 and 4.4.2.) which introduce the sy;tem

representation for the network of que-tes are recommended prerequisites

to Chapter 5.

Chapter 6 presents the results ottained for the performance projection

performed and is essential to the understanding of the flavor of the

models.

Chapter 7 is of interest to the reader that is about to select a

modeling technique for system analysis. It provides insight into the

approaches taken in this modeling effort.



CHAPTER 1

INTRODUCTION

1.1. The Need For System Modeling

The better part of a quarter century of research and development in

the computer industry has brought us from the days of the original stored

program computer to complex, time-shared, multiprogramned, multiprocessor,

demand-paged, virtual storage, emulated computers. Yet, when a group of

interested computer bodies were probed by Dr. Phister of Xerox Data Systems

on the industry as a phenomenon (Pl), no one was willing to deny that the

industry is in it's infancy. This means that the multipurpose systems

we have now are in the very process of evolving, being dynamically

reconfigured to meet new needs.

A variety of observations have been made about systems of this nature

with regard to performance evaluation and modeling. Calingaert (Cl),

Lucus (L1), and Estrin (El) have extensively surveyed and appaised the
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current and relevent issues of this disoipline. One general point that

is made in these papers is that both des!ign and maintainence of these

complex systems is usually inadequate inless modeling and analysis com-

plements the efforts. More fundamentaJly, it has been found that the

cost of developing and maintaining efficient systems of this kind be-

comes prohibitive if care is not taken to understand the capabilities

and limits of the utility. It is modeling then, that serves as the

vehicle for system design and analysis by predicting behavior in an en-

vironment likened to the real system.

In some cases these models have provided detailed descriptions of

systems by there self-documenting nature. Generally, they have provided

valuable insight into system bottlenecks, demonstrated complex inter-

dependancies, led to more intelligent measurements, and been the catalyst

for improved system performance.

1.2. Aproaches To System Analysis: Analytical.And Simulation Models

The. general approach taken in computer modeling and performance

analysis involves isolating key parameters of system behavior; then,

through their interaction in a system model, varying the parameters to

determine subtle interrelationships among software and hardware resources.

This approach can be part of a feasibility study as well as an evaluation

of an ex: sting system.

It is the actual modeling tools to which we now direct our attention.

The modeling methodology relevent to work in this thesis can be classified

into two categories: analytical modeling and simulation modeling. These

techniques will be reviewed here as an introduction to the approaches that



will be 1.ed to study multiprogramming in a demand-paged computer system.

Both of these modeling techniques will be discussed in greater detaji

when the literature review is presented in Chapter 2, when actual models

are applied to problem solving in Chapters 4 and 5, and when the tech-

niques are compared in Chapter 7.

1.2.1. Analytical Models

Analytical models are mathematical conceptions of a system as op-

posed to the digital computer stochastic representation discussed in

the next section. These models utilize a variety of underlying approach-

es to formulate solutions for theprorpsed system and can be classified on

this basis.

Continuous time Markov models form one group. They are character-

ized by their explicit representation of all possible states in the system,

with the values of the states defined in a manner that permits insight

into system operation. Representation of the system is based on the

Markov property. Balance equations are usually written for the steady

.state and have been solved by a variety of techniques; sometimes ap-

proximation methods must be used and in some cases closed form solu-

tions are available. These models have been applied to the study of a

wide variety of waiting line situations, i.e. queing networks.

In so-me situations the system to _e modeled is not really Markov

in nature. In order to make the Markovian assumption, it is neces-

sary to study what is known as the embedded chain. This approach per-

mits analysis of the above nature to be performed and yields results

about the original system. Examples of the use of this technique are
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found in the study of the M/G/l queing system and the study of priority

queing networks.

Math programming models have also been applied in operating sys-

tems optimization problems as well as more ccnventional models based on

the fundamental principles of probabilaty theory. The former models

represent the computer system in terms of a cost minimization or max-

imization problem and usually require resourceful manipulation of the

system variables to ensure feasibility, The latter models break system

operation down into simple operations that can be probabilistically

represented and have provided valuable predictive information.

In general, more expertise is needed in this area than in simula-

tion modeling in terms of model preparation. Also, it is often very

difficult to determine the appropriate analytical model for a given sys-

tem, since real world constraints often lead to situations where equa-

tions that are written are infeasible. Yet, inspite of these draw-

backs, this approach has the advantage of lower cost.

1.2.2. Simulation Models

The alternative approach to analysis mentioned was simulation;

in this approach, programs are written to execute the interations of

a proposed system, characterized as an associated set of decision rules

and related probability distributions. The classification of simult-

tions into categories depends on both the programming language utilized

as well as the system under study. The uniqueness of the model depends

on the techniques used to integrate all of the inputs for analysis.

A categorization of simulation language has recently been made
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by Kay (K2). His contention is that the principal of virtual time trac-

ed event execution complemented by a variety of statisical barometers

is basic to each approach in implementation. His "photographs" of the

family t':ec of languages specify the higher-level language family with

simulations writtten in a "host" scientific language, the GPSS-family,

with simulations based on transaction flow through blocks which activate

routines maintaining timing by updating discrete event chains, and the

SIMSCRIPP-family, with simulations written in a prietary syntax, run-

ning time shortened by a system state approach that advances time to

the next value when a change of state is imminent, and necessary com-

niler facilities to handle the most flexible simulation requirements.

This language classification has been quite general. In fact,

when a specific type of system is selected for study, another category

must be added to our simulation repertoire. This is the class of sim-

ulations that describe their system with a parameterized set of inputs.

Motivation for this approach to modeling will be provided by brief

mention of a problem encountered in the field of communication sys-

tems. There it was found that the hybrid nature of the system (neither

purely c6ntinuous nor purely discrete) posed problems in terms of mod-

eling with the available simulation languages. General purpose, higher-

level languages had been employed; however, simulations were prohibit-

ively difficu; for the communication. engineer, not well versed in

programming t-echniques. Consequently, a special purpose language was

designed to permit the engineer more programming ease, while at the

same time providing functional blocks to handle the special purpose
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features required in the field (GT).

This example serves to demonstrate the feasibility of taylored

simulation languages. Now, although the discrete, stochastic nature

of computer behavior permits modeling by the whole gamut of available

languages, the nature of the system is specialized enough to warrant

a language that permits easier, more accurate descriptions. The bene-

fits gained are a top down approach to modeling by computer people

that are not as familiar with simulation techniques, flexible and v.l-

id building blocks, and less chance of errors by the analyist. Lang-

uages such as this were at one time felt to be prohibitive because of

rapid changes in computer technology and the broad range of objectives

ofthe simulation analyist (H3). However, current research and devel-

opment in this area has proven to be quite profitable (D5,W3).

Whichever language is selected for use in analysis, the techni-

que of simulation is the most well known and widely used tool. There

are various reasons for this; for instance, simulation permits model-

ing various levels of detail depending on the goal of the analyist.

And, it also lends itself to understanding by management, usually less

versed in the actual implementation methods; this results in wider ac-

ceptance of results. Generally it has been said that simulation raises

expectations about predictions more than any other modeling technique.

1.3 Thesis Objective

The topic of computer modeling has received wide spread attention

in the literature during the past decade, with a variety of analysis

techniques having been expoused that provide a means to an end. These
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ends have taken on many shapes and forms such as selection evaluation,

performance projection,and performance monitoring (Li). The means to

achieve these ends have been as diversified as the analysists that have

performed the studies.

It is the intention of this thesis to intergrate and further the

work in this field to date. The goal of the modeling effort is to study

the operation of sample programs in a CP-67 like multiprogramming environ-

ment and to project system performance under a variety of load conditions.

Then, for the selected computer system configuration, both analytical

and simulation techniques will be applied to gain insight into the prob-

lem of performance degredation in such a multiprogrammed, demand-paged,

virtual memory system. Novel definitions for determiningifihe system is

operating in what is known as the thrashing region are defined. This reg-

ion of degraded performance is identifiable by the less than optimum

utilization of system resources. Investigation of system performance

under full load conditions is carried out, and both scheduling of de-

vice activities and improvements in device technology are shown to be

key techniques for improving system performance.

The main intention in selecting this subject material is to lend

insight into both the interdependencies that can arise in complex com-

puter systems and the problems they can cause.

The approach taken in analyzing tqe problem can be termed a multi-

pronged modeling effort: a representative group of modeling tools se-

lected from a survey of the current literature is resourcefully applied

to study performance of a multiprogramming system. This approach was
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selected in order to permit a comparative analysis of current model-

ing techniques. It yields a variety o' observations about their ap-

plicability and value.



CHAPTER 2

WHO'S WHO IN COMPUTCR MODELING

2.1. Overview of the Target System

The introduction to modeling-methodology in section (1.2 )

serves as a forerunner to the literature review which follows. It

is here where the mathematicians and computer analysists that have

effected the evolution within the modeling field will be discussed.

In addition, the work of those authors that have done work relevent

to this thesis will be presented in greater depth.

To facilitate this review let's begin with an overview of a con-

temporary computer. One simplified view of such a system is shown

in figure 2-1. Here the standard complement of hardware components is

displayed. The central processor is the traditional instruction in-

terpreter responsible for job execution. The memory hierarchy can

be viewed as consisting of main (content addressable) memory and
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secondary storage (Drum, Disk), the I/O hierarchy as I/O buffers in

main meiory, channel control units, d :vice control units, and the

actual devices themselves. The cooridinator of all of these facili-

CPU

MEMORY HIERARCHY I/O HIERARCHY

Fig. 2-1 Resource Partitioning in Operating System Overview

ties is the operating system; this key software resource is an open-

ended set of programs that manages the system via its scheduling al-

gorithms and system-wide data bases. This executive or monitor can be

described as coorinating the following minimum set of functions (M2):

Memory Management
This function is in charge of keeping a running account of
memory, allocating blocks of the resource on the basis of
user need via a proprietary algorithm, and reclaiming it
when appropiate. This function is also responsible for
supporting exotic virtual s'.orage mechanisms when implemcnted.

Processor Management
This function keeps track of the status of the central proces-
sor(s), assigning the resource to users ready to execute.
It determines the time quantum, if multiprogramming, and
reclaims the resource when control is relinquished or the
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time slice is exceeded.

Device Management
This function keeps track c.2 the resoue paths in use, End
determines efficient handling of devices for users requeiting
service. It specifies the device driver routines.

Information Management
This funtion keeps track of the information resource known
as the file system. It provides protection and primitive
functions for flexible use of the facility. It handles the
logical aspect of information transfers.

This scenario can be most accurately described by the state

transition diagram displayed in figure 2-2. Not only does this figure

demonstrate job flow through the system, but it also provides insight

into the interaction of the above mentioned operating system functions.

P.M.
.M. -

rod 0M PLE1f
P.M. .M.e s

g.T.C ee
vl .S

eg-call.IM

stat s of UNNING o -ea itiateI/ O
proc ,PM9M.

crea e I/ O.
LOCKED nr cess

Fig. 2-2 Overview of Operating System Operations

|K-EY:|I
I.M.=INFO. MGMT.
D.M.=DEV. MGMT.
M.M.=MEM. MGMT.
P.M.=PROCESS MGMT.
T.C.=TRAFFIC CONT.

P.S.=PROCESSOR

SCHEDULER

T. S. =TIME-SHARING
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Figure 2-3 shows the same basic diagram, now blocked off into

modelinr; sectors. Thus, the state diraph will be the means for pr !-

senting current modeling efforts, classifying the work of the ana-

lysists on the basis of the computer structures they have studied.

MULTIPROGRAMM4ING MODELS * TIME-SHARING MODELS

r -- --

IROCESSOR
SCHEDULINhG
MODELS

BEHA
MOD

PROGRAM
BEHAVIOR
MODELS

RUNNU

L am - - WoM a

VIOR 6 -
ELS

o SUBMIT
(LOG-IN)

I

0. .- j I
I

AND
* JOB SCHEDULING MODELS g

LS i S

,EIE\T

)CKEDg

Fig. 2-3 Operating System Over.view Partitioned By
Models Used for Analysis

Im. OEM
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2.2. Analytical Modeling

In terms of analytical models, computer behavior has been view-

ed with a queuing theoretic eye. The development of queuing techni-

ques to deal with waiting lines dates back to 1902 when Erlang

used congestion theory to analyze the telephine traffic problems

in Copenhagen (K3). Since that time the development of queuing theory

has often been characterized as stemming from "solutions looking for

a problem" (Nl), as mathematicians such as Kolmogorov (Fl), Feller (Fl),

Kendall (K3,K4), Takacs (Tl), and Gorcon and Newell (G5) approached

the theoretical issues of queues and their underlying stochastic processes.

Other mathematicians such as Jackson (Jl,J2) were no less theoreti-

cal, but were motivated by practical problems. Special techniques have

often been employed in analyzing queues because of the complexity of

their stochastic processes. Consequently, when possible, analyists

have made use of the theory of Markov chains developed by A. A. Markov

(1856-1922) to simplify their work (Fl,K3). In addition, arguments from

renewal.theory have also been found to be of value in faciliting

mathmatical analysis (Fl,Dy).

Applications of the theory have been wide spread, with new horizons

broadening with the increasing complexity of the world around us.

In this context, the advent of practical digital computers [ von

Neuman 7947 (S-8)] created a very rich area v-hich lay ready to be olened

to the application of queuing models. Interestingly enough, both areas

of study remained fairly independent in the literature, maturing at

their own pace for many years. - Then, in the early 1950's Kendal (K4)
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published his work on the use of imbedded Markov chains to analyze the

stochastic problems of the theory of cneues, This work did not im-

mediately stimulate computer analyists to apply queing models in their

analysis; however, it can be pointed to as a key break through which

permitted significant work to be done in a variety of computer areas (C2,

S3, T2). Similarly, the later work of Jackson, who began studying

open networks of queues with poisson arrivals and exponential serve'rs,

and Gorden snd Newell, who expanded his work to closed networks, made

advances which would be used quite extensively by computer men such

as Buzen (B3), Moore (MT), and Rice (R2).

Summarizing, the analytical modeling approaches that have met

with success in the analysis of computer systems utilize theory in

the areas of continuous time Markov models, embedded Markov chain

analysis, busy period arguments of renewal theory, math programming,

and fundamental probability theory.

Specific work done in these areas is now characterized accord-

ing to module of concentration, based on figure 2-3:

Time-Sharing:
Scherr,A.L.(1965)-S2
CoffmanE.G.(1966)-C6
SmithJ.L.(1966)-S9
Kleinrock,L.(1967)-KT,K8
ChangW.(1968)-Ch
MooreC.G.(1971)-MY
Sekino,A.(1972)-SY

Processor Scheduling(waiting J.ine management problems):
Graver,D.P. (1962)-Gl
Chang,W.(1965)-C2
Schrag,L.E.(1967)-S3

Multiprogramming:
SmithJ.L.(1965)-S10
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Wallace and Mason(1969)-W1
Buzen,J.P.(1971)-B3
BeladyL.A.(1966)-B2

Megiory Manag~ement:
Belady,L.A.(1966)-B2
Denning,P.J.(1968)-D3
Corbato,F.J.(1969)-Cll
WeizerN.(1969)-W2
Denning,P.J.(1970)-D4

Dep vice Management:
Chang,W.(1965)-C3
Denning,P.J.(1967)-Dl
Coffman,E.G.(1969)-C7
AbateJ.(1969)-Al
Frank,W. (1969)-F2

Prcgram Behavior:
Denning,P.J.(1968)-D2
HatfieldD.J.(1972)-Hl
Madnick , S. E. (1972)43, M4
SekinoA.(1972)-ST
Saltzer,J.(1972)-Sl

User Behavior:
ScherrA.L.(1965)-S2
(usually approximated with a poisson process)

In retrospect, we see.a trend that has resulted in a better under-

standing of computer design and behavior, as analytical modeling has

be become a specialized field in its own right.

2.3 Simulation Modeling

The other school of thou&Aitr also expended a great deal of ener-

gy-to model and analyze computer systems is that of simulation. Sim-

ulation as a modeling tool has as intricate a history as analytical mod-

eling, but is richer in development and broader in terms of accomplish-

ments boasting applications in a wide spectrum of activities.
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Since our primary concern is to look at computer modeling of cm-

puters, -. detailed history of the post World War II development of the

general techniques of this science will be sacrificed. A detailed des-

cription is presented by Martin (M6). Let it suffice to say that 4t was

the advances made in computer technology that not only made simulation

analysis feasible, but also made it necessary for the introspective

aspect of this modeling. For, it is the complexity of our computers that

has resulted in the intense study of computers with simulation.

The interesting nature of this subject, not to mention the prEdictive

value of well implemented models of this sort has resulted in the devel-

opment of a simulation folklore(C12).The approach to presenting some of

the more current work in this field will be different than the one

employed to discuss analytical modeiling. First, the role of simulation

in computer analysis will be reviewed by discussing one paper from a

group of selected articles on this subject. Then some representative

efforts will be categorized by language, and again, one paper from each

group will be discussed in order to give a flavor for the type of work

done.

To open the discussion, Seaman(S5), Huesman and Goldberg(H3),

Humphrey(H4), and Maguire(M5) address digital simulation in general terms

and attempt to determine the role of simulation modeling in the computer

field. Issues such as the advantages of the technique, the need for

higher-level special purpose languages, and the desire to design "self-

monitoring and self-adjusting systems" are brought to light. To expand

in depth the most recent of these presentations, Maguire, in a very read-
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able presentation, developed the rational and methodology of simulation.

He explained the reasons for the widc spread use of this tool and caution-

ed against the ill equipped, over-zealtis analysist as one of the only

deterrents to even more wide spread ur.e in modeling. He expanded upon

each of his reasons with an eye toward the decade upon us; the dis-

cussion included recognition of simulation's advantages, advancements

in the techniques for producing model, increased availability of

generalized models, increased application of experimental design tech-

niques, and increased availability of relevent model data.

Continuing with the review, the intention is to now present the

categroization of modeling by language; a sampling of the activities in

each group is included with each categcy.

The classification of simulation languages has already been given in

section (1.2). The work done in modeling has drawn on all of these,

with selection based on factors such as programmer language background,

languages supported within reach, complexity of the system (detail to

be modeled), and the time constraints on producing a finished product.

In the area of algebraic languages, the work of Scherr(S2), Nielsen

(N2), Macdougal(Ml), and Lum et al (L2) are worthy of mention. The

approach taken in these efforts was to develop special purpose routines

in the host language that facilitate a top dowm modeling approach. The

work of iTielsen in the development of a general purpose time-sharing

systems simulator is representative of this group.

In order to develop an efficient and widel y usable model, he program-

med his system in a common subset of Fortran. In order to make the model
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flexible and general, paiis taking effort was taken to survey character-

istics of existing systems and predicted future developments. He then

chose a level of detail that adequately reflected system performance.

He managed to keep coding down as well as execution time short. The

model was run for a proposed single processor IBM 360/67 TSS.

The next category includes studies implemented in GPSS, the General

Purpose Systems Simulator (G4,G6,sl4). Examples of the application of

this language are the work of Seaman(;5) and Holland and Merikallio(H2).

Seaman used this language to stuy the design issues of teleprocess-

ing systems. His effort concentrated on predicting quantatively, the

delays resulting from requests queuing for time-shared facilities. This

resulted in the ability to determine the amount of storage needed to hold

the queues for the processes. Demonstrating the modularity of GPSS models

viz a vi itb block structure, he presented the logical design of a

simulation for a 360 model 30 information processing utility.

Models programmed in Simscript(D6) form the next category. It is

noted that this language has permitted the most detailed analysis yet

available in a special purpose language. Examples are work by Katz(Kl)

and work done at TRW systems(T4).

Katz's simscript program involved the study of a direct-coupled,

multiprocessor operating system. The model represented the optimal

level o detail that permitted accura e descriptions, an important charac-

teristic of a good simulation. The language was demonstrated as capable

of handling complex, adaptive scheduling algrorithms and able to show the

changes in system throughut as a function of priority schema in the
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The last area is special purpose parameterized languages. Ex-

amples of such languages are CSS, which was developed as a result of

lack of success in implementing complex computer models i2 GPSS(S6),

Lomus II was developed as a Simscript based, generalized simulation

system as well (H3). OSSL is a more recent example of such a language.

This Fortran based computer simulation language deserves further mention

(D5,W3).

Programs model computer systems of varying complexity, permitting

macroscopic, yet detailed, description of state of the art features

such as exotic memory management algorithms and complex job mixes. Con-

figuration of the system is facilitated by hardware block descriptions and

programming is eased by writing taylored procedures. This language

is currently being used to teach a course in computer engineering at

Harvard (W3) and provides an excellent top down approach to system analysis.

This list of languages and models was not meant to be exhaustive.

It is hoped that qualification of work done in this area and the pre-

sentation of sophisticated studies in perspective has generated an im-

plicit belief in the value of the simulation methodology.

2. 1 Work Relevent to this Thesis

A.: has been demonstrated above, the range of research done in the

area of modeling has been extensive. In this thesis, a selection will

be made of those approaches that can be used to evaluate the performance

of virtual memory computers viewed as the System Process Model.

The analytical work done in this area draws on established techniques
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models proposed. The specific models that are used derive from

continuous time Markov models. The authors credited with work in this

area are mentioned below in terms of the work done here, and they

are discussed at length in the following sections.

Smith (S10) and Sekino (S7) are well known for their use of

continuous time Markov processes in research on demand paging systems.

In this thesis these processes are also proposed as feasible models.

The technique used to develop equations for their solution is attributed

to the work of Feller (Fl). An approximate method for their solution in

the steady state can be found in Drake (D7).

Buzen (B3), Rice (R2), and Moore (M7) have recently completed

doctoral work on the use of queuing network models for studying computer

behavior. The work to be done here uses the analysis performed by

Buzen on closed queuing networks to solve the proposed model. The result

of this work is a closed form solution that yields a wealth of performance

information.

In the area of simulation, work of a more general nature has been

found to be of value to the author. Schreiber (S3) has presented a

thorough discussion of IBM's General Purpose System Simulator. The

techniques he presents for system modeling are useful in analyzing SPM.

2. 4.1 The Work of J.Smith

Smith studied multiprogramming under a page on demand strategy.

He modeled a subsystem of a tie-shared, multiprogranmied computer
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included a representation of a drum-T/0 channel. Both of these

system components were modeled. with continuous time Markov processes.

Within the multiprogramming module, three programs, maximum, were

permitted. In addition, execution intervals were exponentially distrib-

uted and a priority system was implemented which determined selection

between two job classes. A utilization factor, /0, was defined for the

drum-I/0 channel in terms of program and hardware characteristics. It

was found to adequately reflect system performance and worked well as

a gauge for multiprogramming. The model was solved with RQA-1 (Wl) and

statistics were used from SDC. No definite conclusions were drawn,but

insight was provided into multiprogramming operation.

2.4.2. The Work of A. Sekino

This doctoral presentation is likely to be viewed as one of the

most complete analytical analyses of an existing multipurpose computer

system. With an eye toward validating his model on the MULTICS system,

Sekino developed a general model for a time-shared, multiprogrammed,

multiprocessor, demand-paged, virtual storage computer.

He viewed the overall system as a hierarchical set of models,

each of which contributed a key parameter to his final analysis. Specific-

ly, Mar.ov moCels were used to study progran behavior, memory effeuts on

paging behavior, and multiprogramming in a multiprocessor environment..

The result was an analysis of the systems "percentile throughput" (a

barometer found t'o be as valuable as system -throughput) as well as a

determination of the user's response timc distribution.
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The analysis delved into many phases of computer operation, taking

into ccnsideration issues such as data-base lockout for shared writable

information, memory cycle interference resulting from multi-processor

operation, program paging behavior as a function of memory size, and

overhead times resulting from page faulting.in a demand paging environ-

mont.

2.4.3 The Work of J.P.Buzen, D.Rice, and C.Moore

Bu:,en developed a conceptual model of multiprogramming called the

Central Server Model which, in fact, is the same as the System Process

Model expoused here. The mathematical model selected for analysis

was a continuous time Markov model which studied the proposed system as

a network of queues. He derived basic properties of program behavior

in his systemsuch as the distribution of the number of processing

requests per program and the total processing time per program. These

were found useful when applying the model to specific performance eval-

uation problems. Independent of Gordon andUewell, he formulated and

solved in closed form, balance equations for the equilibrium probabilities.

A most notable result was his discovery of an efficient computational

algorithm that made evaluation of the steady state probabilities and a

variety of interesting marginal distributions very easy. Analysis of

specif5c computer system problems pr ceeded with the hypothesis of

the meaning of system bottleneck. Defined in terms of a sensitivity

analysis, it was suggested that if a small increase in the performance of

the component in-question produced a large increase in overall system
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performance, that component was responsible for degrading operations.

Equipped with this methodology, he analyzed problems such as buffe:- size

4etermination, peripheral processor utilization, and page traffic

balancing. Each analysis was facilitated by a mathematical formultion

of optimization equations based on a moasure defined for system processing

capacity.

The work of Rice also delved into an analysis of a queuing net iork

model of multiprogramming. His basic model differed slightly from that

studied by Buzen. The nature of job exit and entry permitted a variable

level of multiprogramming with a maximum bound of N. Steady state solu-

tions were provided by applying an approximation technique and were

found to yield accurab results. A variety of system performance measures

were derived for the overall model. In addition, an approach to modeling

an I/O hierarchy as a subsystem composed of queue dependent servers was

found to be useful for representing a disk system.

Moore's work is yet another example of research into queuing

network models of computer behavior. His analysis was dedicated to time-

sharing system structure and resulted in a more intricate net of queues

than that studied by Buzen and Rice. The reason for this was his effort

to represent more complex task routing that occurs in such systems.

Observing as did Rice, that queue dependent servers could be used to

model F disk subsystem, he included %his feature in his model to m04e

it more realistic. He was also able to represent other more realistic

service distributions by matching exponentials. Validation of his model

for MTS was effected with real system measurements.



2.4.4 The Work of T.Schrciter

In the area of simulation analy.is, the work of Schreiber will be

discussed. His work is in the implenentation issues and modeling

capabilities of GPSS. The presentatjn is available as a very comprehen-

sive and readable manuscript which he uses to teach a course in simulation

at the Michigan business school. The case study approach was effectively

applied to build up modeling techniques, and quite complex situations

were studied. This work deserves crEdit in light of all o' the material

available to learn GPSS, for included are very realistic examples and

an affectionate concern for all the details and subtle shortcomings of

the language.



CHAPTER 3

MULTIPROGRAMING IN A PAGE ON DEMAND COMPUTER SYSTEM
AN] A CONCEPTUAL MODEL FOR PERFOPIAANCE EVALUATION

3.1 Page On Demand Virtual Memory Syst ms

Virtual memory systems have been developed to satisfy basic needs

of multiprogramming and time-sharing systems. Their value in these

applications expounded on by Denning (D4), includes such advantages as

the ability to load programs into spaces of arbitrary size, the ability

to run such partially loaded programs, and the ability to vary the space

allotted these loaded programs. Of course, the benefits to the user

include the illusion of a nearly unlimited address space.

Alchough advances in memory sto_-age tezhniques may one day obriate

the need for the complex operating systems needed to manage such virtual

memory computers, it is not clear that this will occur even in the distant

future. Thus, we can say with, assurity that virtual systems are evolv-
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ing as the new state of the art, and feel confident that analyzing such

systems is a valuable way to spend encrgy. It is hoped that such

analysis will lead to Insight into o-..ating characteristics and will

result in improved system performance.

An appropriate point of view to take from the outset which will

facilitate analysis, is to think of -he operating system as a manager of

resources. This points up the important question of resource allocation

in virtual memory systems. What key resources must be available for the

system to operate efficiently and how are they utilized?

To begin to answer these questions, the behavior of programs in the

system must be characterized; for, it is to their service that the system

is dedicated. To better understand how a system manages resources for

this important task, let us look at the underlying aspects of a real

virtual memory system that operates under Control Program-67. This

discussion is based on a recent paper by Bard (Bl).

The system is multiprogranmed and operates under a demand paging

strategy. User jobs execute until one of the following events transpires:

(1) A page fault occurs: A program requests execution of a location
in its address space that is not currently in executable memory.

(2) An input/output request is issued to a peripheral device.

(3) The executing program exceeds its allotted time quantum.

(4) A wait PSW is loaded.

Upoui occurrence of one of these lnterruptions, program executlan is

terminated, and execution is initiated in the next users address space.

A program encountering either (1) or (2) is said to be blocked and cannot
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receive CPU service until the occurrence of an associated external event

denotirg service completion. Reschdeiling for CPU service the occ(urs in

the same manner as for programs interrupted by timer runnout or by the

loading of a wait PSW. Thus, it is evident from this discussion, that

important resources are "real" memory for program execution and peripheral

devices that can be used for servicing paging and I/O requests.

Further explanation of the operation of this system in the event of

a page fault is of value. It is this aspect of the systems operation that

reveals the memory management algorithm, an important function essential

to the understanding of program characterization: the paging behavior

of a program in a demand paging environment.

The system operates under a single bit LRU removal algorithm. This

function , called upon whenever a program needs a new page, maintains a

pointer to a cyclical list of all main memory pages. Each page has an

associated usage (reference) bit which is turned on when the page is re-

ferenced by a user program. The algorithm moves the pointer around this

list of pages and inspects the reference bit of the page selected for

examination. If the bit is off it removes it, otherwise it turns the

bit off and moves on to check the next page. The reference bits of a

users pages are also turned off when the user is removed from in-queue

status. Thus, a global removal algorithm is implemented by the cycling

pointei.

One can invision, then, a user program that has a time dynamic

allotment of main memory based on his demand for pages and the removal

of pages by the system algorithm. Bard calls this allotment of memory the
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users resident set. Changes in its size can occur when a user acquires a

new page due to a fault or when page2 are removed while the program is

in the interrupted state. Thus, we tan see that based on executable

memory available and system activity, system paging can vary greatly.

This may give rise to an interesting phenomenon that will be investigated

in this thesis: Thrashing. For, when the system is paging rapidly due,

say, to a high level of multigo ramming, it is quite possible to have

system performance deteriorate (the v.sers average resident set size

decreases as the level of N increases resulting in an increase in the num-

ber of page faults suffered per user).

Given this system description, there are a variety of open questions

to which we might address ourselves. For instance, it would be of

value to specify a quantative definition of when thrashing is in progress

from the point of view of performance projection. Also, determination

of the optimal level of multiprogramming for a given job mix as well as

expected system throughput for the load is of interest. Then, from a

resource management point of view, it would be of interest to identify

utilization of system components in the hopes of finding any potential

system bottlenecks.

The logical approach to answering these questions is to develop an

operable,conceptual model of the system that will yield statistical

data &.a performance information. B.sfore Coing this, a more deta-led

discussion of Thrashing follows in order to further motivate the need for

a quantative model for analysis.
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The analysis of multiproramming in a page on demand environment

has received much attention (SlOD3,Wl). A potent problem that de-

signers of systems of this nature face is called thrashing: excessive

competition for primary memory resultinig in degredation of system

performance. Denning (D3) describes the less than optimum use of resources

in this situation as follows,"Thrashing inevitably turns a shortage of

memory space into a surplus of processor time."

The basic reasons why thrashing occurs have been isolated. Tbey are

(1) the large times required to access pages stored in auxilliary memory

and (2) the availability of limited real memory coupled with address space

acquisitions that are uninsulated because of a global removal algorithm.

It is intended to show how these two factors do, in fact, result

in this severe performance dcgrcdation in the demand paged system studied

here. However, it is necessary to define the term "degredation" more

explicitly before we can hope to quantify an actual thrashing point

for the system. Two views for pinpointing this operation are now

presented (12).

3.2.1 The Multiprogramming Cost of job Execution

The first view revolves around associating a cost factor with a job

executig in & multiprogramming envicnment. The cost function is

determined for a job under given load conditions by charging him for the

amount of non-overlapped processor time that is spent during his execu-

tion, i.c, this accounting system charges the user for any time that the
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CPU cannot be shared. The factor has three components that can be

described as follows:

(1) Each program requires CPU processing time to complete. There
is no overlapoTing of CPU time while the job performs its
computations. Call this time 'TCIPU-

(2) Each program issues a number of 1/0 commands. When such a
request is issued by a progran, charge him for the idle CPU
time that results because there are no other programs available
to utilize the CPU. Call this time TI/0 '

(3) Each program suffers page faults depending on the level of N.
Charge him for idle CPU time that results when he issues a page
request and there are no other programs available to utilize
the CPU. Call this TPAGE.

Then, for a program whose paging and I/O activity are viewed as

occuring essentially in separate syste:.ns, the entire cost for running in

a multiprogramming environment can be determined:

TTOTAL= TCPU + TI/O + TPAGE

Based on this cost approach, it is clear that such a program should

experience a decrease in TTOTAL as the level of multiprogramming increases,

since the possibility of overlapping the execution time of one of the jobs

with the waiting time of another increases. However, can one get too much

of a good thing? Yes! And this is where the threshold definition for

Thrashing arises. In a monoprogrammed environment, TTOTAL for the

sample programcan be determined. Granted, this program doesn't make

efficient use of system resources. However, we can definitely say that

we woulu not w-ant an increased level of multiprogramming (N) to result

in as poor use of the resources, i.e. we would not want increased N to

result in associating a cost factor as large as the monoprogrammed case

with a user job under that system load. It is clear that at this point the
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system is loosing. Define this as the Thrashing point. This approach

to determing the bounds on multiproramming is of pedgagocial value

because each factor causing the thrashing phenomenon can be observed

individually.

3.'2.2 Average CPU Utilization

Alternatively, view two uses the steady state fraction of CPU

busy tine as a direct measure of Thrashing point. Here, one can determine

this CPU utilization for the monoprograming environment. Then, with an

increase in the degree of multiprogramning, it is possible to determine

the point when the utilization of this key resource degrades to the value

found for the monoprogrammed case. This point is where Thrashing will

be said to begin. This point of view is intuitively obvious for our

system model, since we would lik e to optimize the use of our central

resource for processing jcbs. Eowever, in general, one might question the

motive for using this CPU utilization criteria as a system barometer.

For, in a real system, the CPU might be 954 utilized and yet performing

no useful work ( 80 % of the time is being spent as overhead in the

supervisor). In such a situation, one would definitely be advised to

campaign for an analysis that produced results regarding system throughput

or turn around time. It will be shown for the conceptual model that is

proposc-i in the next section, that s. stem throughput is directly pJ'Opor-

tional to average CPU utilization, and so use of CPU utilization as a sys-

tem barometer is justified.
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3.3 The System Process Model: A Conceptual Model of Comter Behavir

The System Process model (SP) is a means to describe the operations

of a multiprogrammed computer utility, characterizing the activity of the

processes in terms of program behavior parameters and the interaction of

the collection of processes in terms of occupancy of state positions in

a directed graph of the system.

I observe with Denning (D2), Kimbleton (K5,K6), and Sekino (S7) that

the time trace of these processes finds them circulating among the

following three states:

i. active: receiving CPU service

ii. waiting: queued for or receiving service from a
peripheral device, i.e. blocked waitirg
for the completion of an associated
external event.

iii. ready: queued for CPU service

In the work of the above authors, the system under study was a

virtual memory system operating under a demand paging algorith, and

consequently, processes were characterized solely by their paging behavior.

In this model, a process will be characterized not only by its paging

behavior but by its I/O behavior as well. The inclusion of I/O activity

makes the analysis consistent with the description of the CP-67

multiprograming module. The wait P3W event will not be included in

this analysis, and it will be assumed that a job in execution issues an

I/0 request or suffers a page fault before a timer interrupt occurs. This

assumption makes it possible to use the analytical modeling techniques

that will follow. It is not overly restrictive for operation of CP-67

like systems which actually demonstrate this behavior.
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Consideration of the activity of program behavior in this slightly

simplified multiprogramning environment is now appropriate. View a

memory rartition with a uscr's pages as an executable address space that

presents the CPU with processing requests, I/O requests, and page

rdquests for new executable memory space. Let a partition be loaded

from the peripheral paging device and assume that the initial processing

activit-r required to partially page in a.user for execution is part of the

general paging activity of that program. Observe, that the degree of

multiprogramming is determined by the number of pages allotted to each

users memory partition. Varying the level of N implies that that a userls

allotment of "real" core has been altered by the system.

It can be seen that a request for service from one of the shared

resources (CPU, drumdisk) mlght not be satisfied if the server is busy.

Consequently, the executing process stands to suffer queuing delays while

in the system. His life cycle then consists of alternating sequences

of active,blocked, and ready intervals, with possible queuing delays. This

is the basic nature of the Systcm Process Model.

Now it will serve us well to explicitly describe the progran behavior

so that the appropriate parameters can be evaluated for model analysis.

Sample Program Characteristics:
(this program is an assembler run under CP-67 (M2))

(1) Page size is 4K-Bytes

(2) 160K-Bytes of virtual memory is required by the entire
job
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(3) The program runs for 2,000,000 instructions, i.e. it
requires 2 sec. of CPJ time to complete execution.

(4) The total amount of I time experienced by the job
when run in a stand-a 'one environment is 3 sec, (This
job is a class C job as specified in 03-9-10: Jb
parameter statem1ents) In other words, if a request is
serviced in 50 msec, his job issues a total of 60 I/O's.

(5) The paging behavior of the program will be a function
of the amount of' "rea L' core memory available for it's

executable pages. A static parachor curve for the sample

program is shown in fi gure 3-1.

The static parachor curve predic-.s the number of instructions that

are executed between page faults when -, job rum in a fixed partition in

cae paging against itself. Figure 3-" then shows the functional

relationship between the number of page faults and the degree of multipro-

granning; the level of I was determined as described above for 256K-Bytes

of total core available to the users.

From our previous discussion, it might appear that what one really

wants is a measure of the dynamic behavior of programs in the multipro-

gramming environment, i.e. a dynamic parachor that predicts page faults

as a function of average resident set size. Certainly, this data would

ncre accurately represent the dynamic character of the resident set (Bl).

However, for the following two reasons, the static parachor will be quite

appropriate for our use:

(1) Our ultimate goal is to predict a bounds on the level
of multiprogramming and to determine system performance
for that load. Sincr the static parachor tends to
over-page for a give.n memry size, it is certain Ihiat
the slac: in the actual values is on the side that we
can afford to live with.

(2) The queuing models that will be utilized in analyzing
SPM-. view the ouratincg system as managing multiprograming
among fixed m.mory partitions.
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3.3.2 The Input/Output Subsystems

It yet remains to characterize the peripheral devices that se::vice

the page faults and I/O requests described above. The intention in

to specify the device characteristics in a manner that will provide

realistic values for device services; the use of available models for

these components is taken advantage of where appropriate.

3.3.2.1 The Paging Drum

The page handler will consist of a high speed magnetic drum. Models

for such systems have been analyzed in detail in the literature (Dl, C7,

F2, Al); For the purposes of this discussion, Denning's FCFS model with

no request scheduling will be used to initially represent the device

service mechanism. An exponential distribution will be assumed with me-an:

E(service 1 request)= N-1 .T + T
2N N

where U is the number of sectors
T is the time for one revolution

note: the first term can be thought of as the
latency time and the latter, the constant
transfer time.

The service is for single page requests in the demand paged system.

It is assumed that requests for transfer are uniformly distributed among

the N sectors on the drum. It is also assumed that a useful model need

only treat the transfer of pages from the drum to the high speed memory

(page output from core to drum creates no delay in the input of pages from

drum to core) (S10).

Selection of drum rotation rates is based on current and advanced

technology. The following values will be used in the analysis:
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Drum Rotation (usec) Expected Service Time (msec)

(Slow) 40.00 .................... 25.00

(Medium)l6.70 .................... 10.94

(Fast) 8.00 .................... . 5.00

3.3.2.2 The I/O Disk

The I/0 handler is a disk device. Using characteristic values for

a 2314 anit (GI-21 Rev.2), service will be assumed to be exponentially

distributed with mean 50 msec. This figure includes seek, rotational

delay, znd transfer time for a standard I/O from the sample program.

3.3.2.3 Scheduling the I/0 Subsystems

The FCFS expected service times above involve long queuing delays

and do not reflectvery effectively, the performance of the devices

under queued loads. At best, they provide a means for determining a

lower bound for system performance by operating in the slowest manner

expected for the particular device. In order to demonstrate the effect

of scheduling as well as to indicate a manner for determining the upper

bound of performance for the given system configuration, the following

two views will also be taken of the subsystem hierarchies:

(1) Service by the device is dependent on the load of requests in
the device queue, i.e. the mean service time for a request
depends on the length of the queue. This view of the servir

is equivalent to including z.;heduling into the channel.
Included in this view is the effect of saturating the server.
For example, as requests queue for service in the drum, the
sector queues might receive individual requests which could

be effectively serviced at the same time. However, as more
requests filled the queues, it would1 be likely that a re-
quest i8 already in ,a subque. A-typical distribution for
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this sort of activity is as follows:

let Ms = the mean time to service a request

R = the service rate of that device

where R defines the negative exponential distribution:

prob. service interval t = 1 - e-R.t

then Ms = l/ k R k= 1 to j
1lij N

Ms = 1/ j.R k j

This disciplino is referred to in later analyses as scheduling.
(2) Each request receives instantaneous service with the expected

service rates selected in sections (3.3.2.1 and 3.3.2.2).
There is no queuing for a sector or a track, and each mem-ory
partition thinks it has its own service device. This view
results in better than realistic service and yields an upper
bound for multiprogramming performance. This service distribu-
tion is as follows

Ms l/ k-R k = 1 to N

and is referred to in later analyses as No Queuing or Optimal(Opt).

3.3.3 Basic Modeling Assumptions

Based on the above discussion the following collective observations

will be made:

i. The N jobs existing in the system are uniformly characterized
as described and are statistically identical

ii. The service disciplines are each characterized by an exponen-
tial distribution.

iii. The processor and peripheual devices are switched instanta-
neously among the jobs in the ready queues.

iiii. The system is assumed to be fully loaded at all times.

Assumption 'i' corresponds to the test situation in which measure-

ments were made for a job in it's own fixed partition, but it is re-



strictive in terms of real job mixes. Uith regard to 'ii', the re

sourceful use of exponential holding times has succeeded in model"'ng

general physical systems many of which don't strictly conform to this

behavior (S2,M7). This assumption also makes possible the analytIcal

analysis performed. Assumption 'iii' can be relaxed quite naturally

with simulation as can all of the above restrictions. It is also

necessary to permit the analytical modeling that follows. Lastly,

assumption 'iiii' permits consideration of job completions. It implies

that there is always a new job waiting to begin processing, keeping the

level of multiprogramming constant.

3.3.4 A Derivation of System Throughput for SPM

In section (3.2.2) it was ascerted that the average CPU utilization

was an adequate monitor of system performance. In order to demonstrate

that this is really true, the following derivation finds CPU utilization

to be directly proportional to system throughput. A similar derivation

was performed by Sekino (S7) when he analyzed the "percentile throughput"

of his system model.

Define the following parameters for a single processor system:

hs: the headway made by the CPU in processing user jobs
between service requests.

mtbs: the mean time between service requests

utiliz: the utilization factor of the CPU

also, define the following overhead terms one might associate with

such a demand paging system:

tp: paging overhead time including supervisory functions
required to hDandle a page fl-ult



ti: I/O overhead time including supervisory functions required
to handle an I/0 request

tm: -misc. overhead time correspon-0ng to all the other sup~crviso:y
functions.

In a system with overhead, we have:

mtbs= hs + tm + f(ti + tp)

However, in the system under study, observe that:

mtbs= hs

because of the assumptions of no overhead.

Now, the "percentile throughput(0)" of such a systemi.e. "te

percentage of the systems computational capacity spent as the user's

useful work"), can be expressed as:

= utiliz * S = utiliz

Then for an arbitrary length of time, T(sec), the time that the

single processor facility spends doing useful work for the user isO-T.

Each user's execution time (2000msec) is represented as Tei i=l to K,

for K user jobs completed in this time. Then, under full load, the

system throughput, Th-Pt, can be calculated as follows:

Th-Pt= Lim K
T+oO T

= Lim K. ., ,'
T +o Tel + Te 2 +...TeK

= Lim 0
Too TTe



CHAPTER 4

ANALYTICAL MODELS FOR PERFORMANCE ANALYSIS

4.1 Mathematical Model Selection

The issue to which we will now'address ourselves is that of find-

ing a resotrceful approach to solving the System Process Model. Solving

this multiprogramming model involves mapping a class of input functions

into a relevent set of output functions. The input functions, as specified

in section (3.3), were found to be process request rates for the system

resources and expected device service times. The important output functions

were presented in section (3.2) when the discussion of thrashing resulted

in the selection of two factors that could be used to quantify system

degredation: the cost of multiprogramming in non-overlapped processor time

and/or the % CPU utilization (or, equivalently, the system throughput).

Three analytical models have becn chosen as suitable to perform the

analysis. Each model approaches the mathematical description of the



system differently, lending insight into it's appropriateness for detailed

system analysis. It is observed that a nice feature of this multi-p-onged

modeling effort is the ability to validate the predictive capacity o:" the

models.

The formulation of the analytical models will include the design of

three continuous time Markov models. In each application, the system

representation will be presented, the mathematical analysis will be d3-

veloped, and the technique for solution demonstrated. The results oltained

for performance prediction of the CP-67 like multiprogramming modu -will

be presented in a separate chapter.

4 .2 Independent-. Continuous Time Markov Models

It has been stated that the total cost of running a job in the multi-

programming environment consists of the non-overlapped processor time

resulting from CPU execution, paging activity, and I/0 activity. Thus,

our modeling approach must isolate these three characteristics so that

their individual effect on the cost function can be observed.

4.2.1 System Representation

In order to effect the isolation of activities, it will be assumed

that the I/0 behavior and the paging behavior can be separated. This can

be visua ized in figures 4-1 and 4-2 wIere tie programs are run on

separate computers that monitor the above two activities. Consequently,

for a given level of multiprogramming, one can think of a job executing

and requesting input/output service or suffering page faults. As ex-
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plained in section (3.3), the quantum exceeded nath will not be traversed

since it is assumed that a job issues a service request before such a

time limit is reached. The block representing the wait state is intended

to include any possible queuing for service as well as the actual

time spEnt serving the request. When a serv'ice is complete, the associated

process returns to the CPU ready queue for its next processing interval.

Upon job completion, another job is asumed to be ready to take its place,

maintaining the full load level of multiprogramming, N. Treating the

activity independently is an abstraction one might prefer to live without;

however, this restriction will be lifted in a subsequent analysis and

it will be shown that the results obtained are accurate. It should also

be mentioned that this approach does have pedgogical value in that the

individual components of the composite function can be observed under

varying conditions.

4.2.2 Snecification of the Composite Cost Function

Calculation of the components of the TTotal cost function for a

job in the multiprogramming envirorment will now be explained. The need

will arise for continuous time Markov models to determine information

about the system important to the final evaluation of these components.

TCPU is constant for the job as one would expect. This is true

because 1;o sh.ring of the processor ±: allowed when it is dedicateu to

a jobs execution. Thus, TCPU is 2 sec., since this is the amount of

CPU time needed by each program to complete its computations.

T I/ is the 'expected cost' in non-overlapped processor time that re-

sults from a jobs i, 0 ac-vity. It is cas iest to cxnlain this calculation



by first observing the mono-porammed environment. In this regard, an

important factor that must be evaluated in both of these remaining 2ost

analyses is the time that the job expects to spend in the system without

the benefits of multiprogramming. For the class C job explained iI sect.

(3.3.1), there are 2 sec. of CPU time and 3 sec of I/O wait time fror a

total of 5 sec. to quit the system. Note, the I/O wait time can bc thought

of as being generated by multiplying the 60 I/O's the job issues by .05 sec

per service for a total of 3 sec. This interpretation will be of aid in

the TPAGE calculation that follows. The need for this factor is now evi-

dent. Given the steady state fraction of system idle time that re.ults in

the I/O environment, then TI/0 for the job is simply:

T /= 5 sec. * fthe steady state tact. of CPU idle timewhich
Iis the -robability of non-overlaoed CPU time P

For the mono-programcd case, if PN.o. is .6, then TI/0 is 3 sec.

Now, the cost of running a job in this environment decreases as the degree

of multiprogramming increases, since there is a greater chance of over-

lapping the execution of a job in the CPU ready queue with one that has

just gone blocked for I/O service. For example, we might find Pij.0=-4 when N=2,

with a corresponding TI/O of 2 sec. This means that 1 sec. of the time

previously spent entirely in I/O wait has now been spent executing another

job; this time is therefore, not charged to the users cost function.

It is also apparent from this discussion that when I/O requests meet

execssive queuing delays in the I/O channel, the decrease in the cost fur-,

tion f. r the job will begin to level o-ff as the benefits of multir.ogram-

ming are lost. In a real system where overhead for I/0 set-ups is a time

factor that plays a role in the cost of a job, one would certainly expect

the cost function to begin to rise again as the devices were saturated and

the steady state fraction of idle time for the srstemi, incrasc inor-



dinately. 60

In summary, the cost in non-overlapped processor time for a job

in an environment where the only wait is for I/0 service is:

TI/0= 5 * (PI.O.

where P, O i5 the steady state fraction of
tin'ie'that the CPU is idle in the
multiprogrammed system of degree N.

TPAGE involves a slightly more complicated calculation. The reason

for this is that the expected time that a program would spend in the system

to complete its operations is a functio-ni of the degree of multiprogramming;

for, as the level of N increases, the number of page faults suffered increases,

andso the time spent in the system for each job increases. Consequently,

the time factor needed'for the paging analysis that is analogous to the

5 sec. used in the I/O analysis (remember, in that situation, a job

expected to spend 3 sec. of I/O time independent of 1N) must be re-evaluated

for each level of multiprogramming.

In order to calculate this value, it is necessary to determine the

number of page faults at the particular value of N from the static parachor.

This number must then be multiplied by the time for each request to be

serviced. The result is the time the user job would expect to spend for

page waiting. Finally, adding 2000 msec to this gives the total time

that the user will spend in the system to complete without the benefits of

multiprogramming. This factor, when multiplied by P for the paging

environme-'. yields the paging cost val'uz for the user when run in te

system.

Sumarizing this calculation for the stand alone environment is now

done by example. Assume that a page service takes 25 msec and that for

N=l, the static parachor has yielded 40 page faults for the job. So,



the total paging time is then:

paging time= 140 * 25 = 1000 msec.

and, the multiplicative factor which is the total time spent in the

system for that level of N,without the benefit of multiprogramming is:

total time in systern= 2000
+ 1000

3000 msec.

then
TPAGE= 3000 * P

If PN.O. is found to be 1/3 then TPAGE vill be 1000 msec. In other words,

the job would need 3 sec to clear the paging environment, 1 sec. of which

would be time that the processor was not able to overlap its activities

due to page faulting.

In this system, as the degree of multiprogramming increases, for a time

there will be a greater chance to overlap execution of ready jobs with those

of waiting jobs; however, it is also apparent that the load on the paging

device increases as the jobs begin to compete for primary memory (the

system will be paging at a higher rate as the level of N increases). Con-

sequently, it will be possible to observe an increase in the paging cost

function for a job as less and less CPU time can be spent executing in

a useful mode. Thus, the benefits of multiprogramming are lost as the

jobs are more likely to be found waiting for page service, and system

degredation sets in.

The key value needed to evaluate the T components has been found to

be the steady state probability of CPU idle time. The next logical step

is to model these systems n order to dctermine thi s vaIriable.



4.2.3 The "ontinuous Time Mnrkov Models

It now remains to show how to calculate the fraction of CPU idle time

that occurs in each multiprogramming environment. This will be done by

modeling the behavior of the separate systems as continuous time Markov

processes. Figures 4-3 and 4-4 show the state' descriptions that are

appropriate for the analysis. The value of the state is the number of

processes queued for service at the peripheral device. Each state can be

completely described by a two tuple (W,E), where W is the number of process-

es waiting to complete service on the device, and E is the number of pro-

cesses executing. Tor this single CPU system, this number is either 1 or 0.

The parameters displayed in the figures that are essential to the

analysis that follows have already been partially specified. It has been

stated that the service disciplines will be characterized by exponential

distributions. Thus, we have the average arrival rate of service comple-

tions:

let E(tc)= the expected interarrival time for a service
completion

then,

U 1E~tc)

for the drum or the disk. This permits us to specify the transition prob-

abilities for the return paths in the model. Adopting the point of view

that arrivals occur at points on a continuous line, for suitably smal3

values of 6t,

let c= a service completion arrival

then,
c /at)= U- t

N!ow it rema ,4ins to chrceiethe I/0 and pag,- ing behavior of the jobs
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as transition probabilities of the Mar1v models. For the purposes of

this discuission, it will be assumed that a programs requests for pag' or

I/O service are also exponentially dis--ributed. We have enougb Infor-

mation about the programs to determine the expected interarrival times

for requests. So it is then an easy mater to specify the foward transition

probabilities.

let E(t r)= the expected interarrival time for a service
request E(tj /0)=2000 msec./#I.O. 's=2000/60

then E(tPAGE )=2000 msec .//Page Faults=2000/f(N)

1 AI.o.= 60/2000
E(tr XPage=f(N)/2000

for a page or I/O request. In the same manner as above, this permits

us to specify the one-step transition probabilities for the foward paths.

For suitably small values of it,

let r= a service request

then,

Now, the description of the models is complete.

4.2.4 The Steady State Solution

The behavior of such closed-commuting chains are known to possess a

steady state (Fl,D7,C.,T3). Let Ti (i=0,l,2,...,N) be the probability of

finding the system in state i after operation for a long time. These

values cani be found by one of the well .mown techniques for solving M1arI-ov

models of this class. Birth-Death ecuations can be used (Fl,D7,(iO,T3),

transform analysis can be performed (T3), or differential difference equa-

tions can be solved (FlD7).

The closed form solut:on available from the first two suggested
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techniquep is known as the Erlang loss formula (C7):

=1 1 Eqn.4-l

Ti! U
i=0

The third technique will be used here to solve for the steady state

probabilities. The value of using this method is that it affords the

benefit o,' demonstrating the technique that will be applied to solving the

dual faciLity continuous time Markov model in the next section (4.3),

where no known closed form solutions exist. It also helps preserve the

equality of the two studies.

Equations 4-2,4-3,and 4-4 show the equations used to solve this model.

Eqn. 4-2 is the set of differential difference equations for the CTMP

described above. Equation 4-'3 represents the system of equations in the

steady state. The derivatives that represent the change of the probability

of being in a state with respect to time have been set to zero, an implicit

condition of equilibrium. Eqn.4-4 is the matrix representation of 4-3 for

the case N=5.

This set of equations lends itself to solution on a digital computer.

The CPU idle time analyzer is a computer program that was written to

solve the set of simultaneous equations generated for the general case

of such nodels. A description of the -,-ogriam, an extended program 1'sting,

and sample output are available in Appendix A.

4.2.5 Applying: the 2olutions

Now that thc steady state solutions are available, the evaluation of



dP(0t).= U ' P(1,t) - X - P(0,t)
dt

n = 0

dP (n,t) = -P(n-1,t) + (n+l)U ' P(n+.,t) -- (X+nU) P(n,t) 0<N< N
d t

dP (Nt) = X - P(N-1,t) - N ' U ' P(Nt) n = N
dt

Eqn. 4-2 Differential Difference Equations for Single Facility
Continuous Time Markov Process (immediate service/reqOptimal)

0= U -r 1- X7T n= 0
0

0 X 7n- + (n+) U *7~ -(X +nU) Tr 0< n <N

0*= X -- l + N * U n n = Nn-1 n

Eqn. L-3 Equilibrium Equations for the Single Facility CTIP

SIT 72 T3  774 T5

-A U =0

X -(u+X) 2U =0

-(2 U+X) 3U

-(3 U+A)

A

4U

-(4U+A) 5U

-5U

=0

=0

=0

=0

s.t.
i=0

Eqn. 4-4 Example Matrix Description of CTMP : N=5, 1 CPU
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the TTOTAL cost function is possible. This can be done by utilizing

the value ofN , in fact, rep7esents the steady state CPU m'lti-

programing idle time, PN.O. .A point on the cost function i! generated

by "running" the model for a particu33.r value of N, calculating TCPU'

TI/0, and TPAGE as explained above, and summing the three values. The

total cost function is generated by"rrunninf the model for various levels

of N.

The results obtained from the apelication of this set of models

to the analysis of the CP-67 like multiprogramming module are presented

in chapter 6.

4.3 The Dual Facility Continuous Time Myarkov Model

As pointed out, the treatment of the paging and I/O activities

as occuring in two separate computer environments is a reasonable differ-

entiation to make in a pedgagocial setting; however, it is desirable

to take a more reasiltic view of program activities in order to obtain

more accurate performance projections.

4.3.1 System Representation

A conceptual view of the proposed system is shown in figure 4-5.

Similar assumptions about the path selections and blocking functions

hold f&' this dual facility model. Le only difference in this apjroach

is that the activities are assumed to occur within tlie same computer.

So, it can be assumed that a job executing on the processor can suffer a

page fault or request I/O service during his burst of processor time.

The sname rates of request and service apply that were used in the independ-
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dent study(sect. 4.2.3). Thus, the onl-step transition probabilities for the

Markov digraph agree. The continuou- time Markov model that represents

this extended environment is shown i, figure 4-6 . Here, a states

value is the number of processs wai.ing for I/O service and page

service. A three-tuple is required to describe a state completely.

This vector is (WIWpE) where WI is the number in the I/O wait state,

Wp is the number in the paging wait state, and E is the number of

processes executing.

4.3.2 The Steady State Solutijon

Determining the differential difference equations for this model

is slightly more involved. There are seven conditions which must be

included to specify the model. These include 3 end points, 3 boundaries,

and 1 central condition. The specific equations are shown in Eqn.4-5.

Their steady state representation is displayed in Eqn.-6. The

program written to solve the single channel models has been designed to

include the general case of this double barreled Markov digraph as

well. The same PL/l subroutine, MLSQ, is used to solve the set of

N simultaneous equations. Appendix A displays sample output obtained

from application of the solution technique outlined above.

4.3.3 apling the Solutions

Obtaining the steady state solutions for each system state is

the first step of the analysis. A variety of marginal distributions

can then be determined that are useful for the study of the multi-

programming system. For example summing the probabilitics over all
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dP (0,0,.t) = U P(1,0,t) +UpP(o,1,t) - ( +A ) P(0,0,t)dt I'p

dP (N,0t) = XP(N-1,0,t) -NU P(N,0,t)

dP (0,N,t) = A P(0,N-1,t) -NUpP(0,Nt)
dt, p

dP (0,n2,t) = P (o,n2-1,t) + (n 2+1) U P(0,n2+1,t)
+ p + 2 p P

+U IP (1,n ,t) - (n 2U p+ XA1 4 A p) P(0,n n2,t)

n =n20

n 1 =N, ri2=0

n =0,n,=N

n1=

...n =0

0<n2<N

dP (n1,0,t) = A n-1,0,t) + UpP(n1,1,t) + UIP(n +1,0,t) ... O<n 1<N
dt

- (n UI+xp+AI) P(n,0,t) n2=0

dP (n1,n2 ,t) = A1 P(n 1-1,n2,t) + A P(n,n 2-1,t)
dt

... n =N-n 2

dP (n1 ,n2,t)

(n U + n2Up ) P(nl,n 2,t)

= I P(n 1-1,n2,t) + ApP(n,n 2-1,t)

+ (n 1+1)UIP(n 1+1,n2 t) + (n2+1)UP (n 1 ,n2+1,t)

- (n 1U + n2Up + A+p) P(n,n 2,t)

Eqn. 4-5 Differential Difference Equations for Combined I/O
and Page Model (immediate service / request)

0<n 2<N

,,, ni,n2
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0 = UI 7T1 ,0 + U P1 ,1 ~ + } 7-,0

0 = X, 1N- 1 , 0 -NU7 1Tj,0

0 = Xp O,\N-l~NpO,N 

0 = X Tr0 n2-1 +(n2+1)UP70 n2 1 +UI lT

- {(n 2 ) U +X + X } Tr
2 p I p ,+n2

0 = Ay ni-1,0 + Up nl,l + (n1+1) U1 Trl10

- -=0,n 2=0

n -=N, n 2=

- -- n , n2 =N

n =0,O<n <N

O<n <N,n 2 0

- {(n 1) U + + X } Tr ,0
1 Ip I nl'

0 = A1 7Tn..-1,n 2 + p 7Tn 1 ,n 2 -1 - {(n1)UI + (n2) U 7n1n2

0 = Trn1 n 2 + Ap7rnin2-1 + {n1+1)} UA n1+,n 2

n1=N-n 2 ,0<n2<N

- nl,n
2

+ {(n2+1)} U 7n,,n 2+1 -{(n1 ) UI + (p2 p + X + Xp} 7nT,n2

The Equilibrium Equations for the Combined ModelEgn . 41-6
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the states where the CPU is active,

sa at. ni+npr f

yields the steady state fraction of tt Ae that the CPU is active: the

CPU utilization factor proposed as a ')a'romreter for measuring system

performance. It is also possible to determine the expected queue lengths

that form for the shared resources by performing sums of the following

nature,

Let Pli = probability that the queue length is=Ni
N

for the CPU: E(queue CPTJ)= Ni' PNi(CPU)
i=O
N

for the drum: E(queue drum)= Ni- PNi (Drum)
l=Q

N
for the disk: E(queue dik)= Ni - Pi (Disk)

A further discussion of the relevence of these performance measures

as well as results obtained from the application of this model to the

analysis of the multiprograning module are presented in Chapter 6. Let

it be noted here that although determination of a cost function is

possible for this combined module, it will not be necessary for the analy-

sis. Pinpointing system degredation will be a simple matter by dint of

CPU utilization.

4.4 The Queuinrg Network Model

In a further effort to qualify the analysis of the System Process

Model of multiprogrmming behavior, one final analytical model will be

proposed that is of both practi cal and theoreti cal interest in the field
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of computer performance analysis. This model represents SPM as a network

of queues and asso iated servers. Presentation of this other viable

technique for analyzing our multiprogrammed, virtual memory compute-

lends insight into the current approaches in systems analysis.

1
4.4.1 System Representation

The reader is referred back to chapter 4 for a review Ste computer and

programs to be modeled. Some additional comments about particulars of this

system relevent to the representation of the system as a network of queues

will now follow.

The view of process activity will be augumented by adding one addition-

al interruption type. So, in addition to the I/O requests scattered

throughout execution and page faults suffered in the"squeezed core" en-

vironment, jobs will be assumed to contain a symbolic stop as their last

statement. Execution of this statement within a memory partition causes

processing there to be discontinued. A new program is loaded and execut-

ed in its place at the instant when the processor returns to processing

in that partition. This view is entirely consistent with our assumption

of full load. Also, because of the assumptions that instantaneous switch-

ing of the processor occurs and that initial page loading is a part of the

new programs general activity, this explicit characterization of job

complet-ons do:s not make this model 'iffercnt from the continuous time

Markov representation. Remember, in that analysis, program completion

was an implicit characteristic of the state space representation.

The conceptual view of this system is shown in figure 4-7. It is
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noted that the new program path always maintains a constant level of

multiprogramming, since this path retuiras jobs to the ready queue for

loading and execution as a new job.

NEW PROGRAM PATH
4, 4 DRUM'

DRUM QUEUE

-- 4 CPU-

READY QUEUE
4 4 DISK

DISK QUEUE

Fig.4-7 The Queuing Network Model of ultiprogramming

4.4. .Parameterization of the Network

Adopting the notion that each memory partition represents a tok'en

that flows in the system competing for the shared resources, the need to

specify a mechanism for path selection arises. Thus, upon completion of

a CPU processing interval. determination of the next activity for the

process is made in statistical selection mode. To motivate this choise

of path determination, consider the relative frequency interpretation of

probability. Observing with Buzen.(B3), if the system being studied was

observeu for a long time under full 1-,d, cne might find the folloving

distribution of device requests upon completion of a CPU processing

interval:
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Path Destination Relative Frequency

path to disk(I/0) - --- 300/1000

path to drum(page) - - - - - - - 6600/1000

new program path - - - - - - - 100/1000

It can then be said that, when a process leaves the CPU, it has a

probability of 3/10 of selecting the Cisk path, a probability of 6/10

of selecting the drum path, and a probability of 1/10 of selecting the

new program path. The selection mode is then specified by the probabilities

p0, pl, and p2, where p0 represents the disk path, pl the drum, and p2

the new program path. This is shown below in figure 4-8. One can think

pl s Ul

DRUM4

Ui= service rates CP 2eaU2

DISK

Fig. 4-8 Probabilistic Path Selection In the Queuing Network

of the device selection probabilities as representing the manner in which

the sysenm utilizes its resources. AU.hough the actual program beavior

is not individually depicted, the statistical behavior of the system is

consistent with the previous model representation of a continuous time

Markov process. Devide servicc ratcs shcwn arc ag-ain assmed to bc expo.dist.
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In order to quantify these probabilities for our system, reference is

made to the discussion of elementary 1-ograi properties in the Buzen thesis.

There one finds specification of the istribution of the number of

processing requests per program, the total processing time per program, and

the number of service requests for the CPU as functions of the path

selection probabilities and mean service rates of the devices. The

following is a summary of these result;(-3,6A'

(1) Expected number of service requests in a program for the
jth peripheral processor=pj/po

(2) Expected total service time par program on the CPU =1/UO*pO

(3) Expected number of service recuests in a program for the
CPU=l/p0

Now, referring to the program behavior parameters of the example

program as specified in section (3.3.1), observe that the following is

true:

let Ki= the # of requests to a peripheral processor

Kl= the # of requests to the drum

K2= the number of requests to the disk

then,

Kl= f(N)

K2= 60

and,

I1 + K2= the total numbe- of I/O's of both types in t! e

program

K1 + K2 +1= the total number of CPU requests / program

Utilizing these observations, specification of the key parameters

UC, pO, pl, and p2 (Ul and U2 are already specified) is possible:

remember, the programs execute for 2000 msec.
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2000 = (60 + K1 + 1)/UO

/U0~T (60+ K1 + 1)/2000

1/pO = 60 + K1 + 1

/_p 0 1/(60 + K1 + 1)

pl = Kl*pO

Kl/(60 + K1 + 1)

p2 = 60*pQ

L2 60/(60 + K1 + 1)

The dependence of the CPU processing interval allotted to each program

on the page faults predicted by the static parachor is evidenced in the

expression for UO. It is clear from the equation that the mean service

time per interval decreases as the number of page faults increases.

4.4.3 The Steady State Solution

Now that the basic model has been specified, the next step is to

determine the steady state probability distribution for the system. This

well known result was initially established by Gordon and Newell (G5)

and later applied to computer modeling by Buzen, Moore and Rice (see

section (2.4)).

In order to explain this solution method, the following mathematical

description of the computer system is adopted:

L+: = the number of servers in tpe network

Uj = the processing rate of the jth server

pij = the probability that a process leaving the ith server will
proceed to the jth server. N",ote that
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~pij =1 i=0,1,2,...,Lj=0

N - the number of customers in the system, i.e. the degree of
multiprogramming

For the queuing network, a customer leaving the ith server will

proceed co the jth server according to the following transition matrix:

p0 pl p2

P= 1 0 0

1 0 0

For this system, let P(nO,nl,n2) be the steady state probability of
L

finding nj customers present at the jth server, where nj=N O<nj<N

Now define the state indicator random variable,

0 if nj=0
e(nj) =

1 if nj 0

Then, viewing the systems one step transition probabilities as in fig.4-9,

K +1,Ki-1, 2

U -AtL U+A

KO0 1,K 1_ KO, KI ,K2 KO +1,K, 2~1

U 0At C U( t

U 2At O'at

K -1,K ,K +1

Fig.4-9 One Step Transitions for the Queuing -Network

it can be ascertained that the rate of transition out of state (nO,nl,n2)

at equilibrium is:



81
2

I e(nj)- uj P(nO,nl,n2)
j=0

and that the rate of flow into state u0,nL,n2) is

22± Ze(nj)-ui-pij-P(...ni+1,nj-1
i=0 j=0

Therefore, the balance equations for the continuous time Markov process are

2 2
e (nj) uj - P (n 0, nI, n2) = -)e (nj) - ui- p ij - P (. .ni+1 ,nj - 1,...)

j) i=0 j=()
rexit from state (n0,nln2) r entrance into the jth server

through the jth server from state (...ni+l,nj-l,...)

Solution of this set of equations in the steady state is possible

with a separation of variables technique. The details are available in

the references (G5,B3). It follows that,

P(nQ,nl,n2) = 1 (pj.UO / Uj)nj s.t. ZP(nO,nl,n2)=l

G(N) j= nO+nl+n2=N

Thus, G(N) is the normalizing constant selected such that the sum of

the steady state protabilities equals one.

G(N)= L ,(pj.UO/Uj)nj

L I

njN
j=1

A very efficient computational algorithm for calculating G(N) exists as

a result of the doctoral work of Buzen It is used to facilitate t1-e

evaluation of the above steady state probabilities.

4.4.4 Ap1ng the S.olution

The use of the coputational algorithm yields G(N) and as by-
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productG(N-k), k0,l,. . .,N. The value of these results lies in the fact

that they are useful in calculating a variety of marginal distributions

that are directly applicable to performance analysis. For example, Buzen
G(N-1)

has showvi that the utilization of the CPU is G(N) and that the ex-

pected queue length for the CPU in the steady state is,

QO= j(N--k)
k=

In addition, the expected queue length for the jth server is

Uk G(N-k)
Qj= (pjUO/Uj) k -

A 1L/1 program has been written to evaluate the systems steady

state probabilities and key marginal distributions. The results of this

effort can be found in Appendix B whera an extended program listing is

shown along with output from sample runs of the model.



CHAPTER 5

SIMULATION: AN APPROACH TO SYSTEM PERFORMAUCE ANALYSIS

5.1 Introduction

Simulation analysis has been' established as a technique that lends

itself to computer modeling, and analysists have produced valuable pre-

dictive information about system performance using this analysis techni-

que.(sections (1.2,2.3)).

Often, a computer model demands representation of a level of detail

that precludes using analytical models. In such cases, a system simula-

tion is developed as the sole model; thdn,if an actual system is being

studied (as opposed to a feasibility study of a hypothetical system), the

model can be validated on the basis of performance data provided by a real

time environment. In the situation when the system isn't available,

validation of the model is much more difficult. In these cases, it is

possible to study the step by step operation of the simulation model in the
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hopes of ascertaining its correctness. This, needless to say, may be

prohibitively difficult. Another approach might be to macroscopically

model system performance with an analytical model, and then perform a

statistical analysis comparing results from the simulation with the mathe-

matical results. Thus, trends that might transcend intuition could be

verified and some confidence in the model as a performance analysi: tool

could be achieved.

In the previous chapter, analytical models were formulated to

analyze a CP-67 like demand-paged computer system. Since three diferent

techniques were available to provide results for comparison, it was

possible to determine the predictive capacity and accuracy of the methods.

In this chapter it will be demonstrated how a performance model of the

system can be developed with simulation. Then confidence in the simulation

will be gained by validating the data on the basis of the analytical

models. It will then be shown how the simulation approach can be extend-

ed to model a greater level of detail and to overcome some of the short-

comings inherent in the System Process Model.

5.2 The Characteristics and Problems of Simulation Models

Developing a simulation model requires insight into a variety of

issues. These will be discussed prior to the actual modeling effort. To

begin, ets center on the technical 3:sues found in model developmra.t. The

first topic of importance is flexibility. It is desirable to produce

a general program which permits analysis of a wide range of parameters

with as little reprogramming as possible. Given this objective, the type
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of simulation system to be used must be chosen. One then finds that

the problems encountered in model development are very different if

the system is being implemented in a general purpose, higher-level

language than if it is being implemented in an available system simnilator.

If starting from scratch, for example, the problem of equipmen:

requirements is an open question. How much memory space is needed, how

long will programs be, and how fast can they run? The synchronization of

events that are being modeled in "real time" must be handled, as well as

the maintainence of variable length lists in which entries are usuaily

removed in different order than placed. Distribution sampling must be

implemented and statistics gathering applied. Granted, organizing a

simulation from inside out lends a much better understanding of system

operation and can provide much more efficient operation than general

systems that provide these facilities; however, since solutions to these

problems are provided by simulation systems programmable in their own

proprietary language, the convenience of their approach is widely taken

advantage of. Let it be noted here that the models implemented in the

following section are written in GPSS, a general purpose systems sim-

ulator.

Now, it is of interest to discuss those characteristics and prob-

lems common to both modeling approaches. To begin, observe that a salient

feature uf simulation modeling involves including components of thr. real

system that make the modeling useful as a tool for analysis and prediction.

Including componedts to make the model sufficiently real often involves

highly subjective reasoning. Often, the trade off in this area is between

producing simplistic, economical models and realistic, complex ones. A
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conscientious effort must be made to pinpoint and modularize the essentials

of the system, for all too often, thc model with additional features can

obscure the real value to be gaincd , let alone make it prohibitively

expensive to run.

Another common problem revolves rround the fundamental nature of

systems simulation. That is to say, their discrete event reprensentation

of a continuous physical procecs resu ts in inherent approximations and

results in the problem of simultaneity of events.

In order to appreciate the next )roblem inherent in simulation

modeling, it is necessary to consider the nature of the behavior of individ-

ual components in the system. In a simulation model, it is the modular

mathematical formulation of individual components, which when manipulated

and monitored, produce the dynamic interactions of the real system. Now,

component specification in computer modeling can be deterministic or

stochastic. For the obvious reason that decisions and operations are

executed in an inherently unpredictable environment, it is appropriate to

select- the probabilistic descriptions. Yet, such a choise points up the

problem alluded to. Probabilistic specification leads to variability in

the results; so how can one justify predictions about an environment that

can only be approximately modeled?

Last but not least, it must be realized that the system simulator

does nct prodice the answer to any qi.estion that is posed to it. In fact,

it doesn't pretend to solve anything. It merely yields results descriptive

of system operation in an environment specified by the programmer. The

best one can hope for is to gain insight and display expected results by
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"running" the simulator with a variety of parameters. This results in

our final problem of simulation. How does one specify starting conditions

and dettermine when the results have reached equilibrium?

These problems will be handled in the implementation to follow. The

reader is referred to the references for more detailed discussions and

sdlutions to these intrigueing problems (C8,C9,Rl).

5.3 Simtulation of the System Process Model

As indicated in the introduction, the System Process Model will

be simulated in order to demonstrate the application of this technique

to computer system analysis. Extensions of the model will be shown

to overcome some of the weaknesses inherent in SPM.

5.3.1 Statement of the Problem

The problem to be tackled here is similar to the one studied with

analytical models in Chapter 5. A GPSS model is proposed to provide

information on multiprogramming operation in a page on demand virtual

memory computer system. It is intended to demonstrate how simulation

modeling can lend insight into system operation by obtaining a measure

of system throughput, turn around time, device utilizations, and queue

length statistics.

Th- simulation development phast can b2 viewed as an effort to prodice

another valid model of SPM using a different modeling tool. A point of

departure in the modeling effort that permits demonstration of the more

flexible nature of simulation -is established when the resul.ts of the basic
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simulation model are shown to agree with the analyUical results obtain-

ed for SPM. Additional features that one might add to the model such

as the inclusion of more detailed subsystems, system overhead, the use

of non-exponential service disciplines, and scheduling of CPU requests

are discussed. It is intended to show how the inclusion of such detail

makes the SPM representation of multiprogramming more realistic.

Before discussing the actual model development, a brief revie of

the basic system that is initially modeled is of value. The natur of

the system is depicted in figure 5-1. Note that the movement of tokens

described in the analytical models is physically modeled in the simulation

approach. Thes can be seen as the circles that represent user processes:

I EW PROGRAM PATH

JOB RECEIVING Q QTI
SERVICE

DRUM

QQQ00 0

Fig. 5-1 Simulation Characterization of SPM DISK

Service times are all exponentially distributed. Processes requesting

use of the I/O disk queue in a FIFO -.nner, with mean servicc time of

50 msec. Processes receiving drum service are assumed to be requesting

single pages on demand and also queue in a FIFO manner with mean ser-

vice time depending on the drum (25,.9 - , or 5.00 msec). Processes
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requesting use of the CPU also queue for service in a FIFO manner,

with mean service time dependent on +he degree of multiprogramming;

(remember, the mean time between requests for peripheral devices is

dependent on the mean page fault time which is an explicit functicn of

N).

5.3.2 Approach Taken In Building the Model

This discussion is intended to explain the block diagram that is

presented in the next section. Those problems inherent in simulation

modeling that were discussed in section (5.2) will be addressed in the

development.

The selection of important system parameters was based on the desire

to make the modeling effort both economical and comparable to the

analytical work reported. The simulation parameters for path selection

and service distributions are the same as those derived in the queuing

network model (section (4.4)). This is acceptable since the simulation

explicitly represents those tokens described in that analytical network.

In order to represent the activity of multiprogramming among the

fixed memory partitions, the tokens can now be viewed as GPSS transac-

tions. The model that they flow through is constructed as a tree of

blocks (the blocks represent executable subroutines that perform the

specif. function described by the block name). These transaction3

enter the system through a generate block that is designed to establish

the degree of multiprogramming, N. They then compete for CPU execution

which is simulated by a QUEUE-SEIZE-DEPART-A\DVAICE-RELEASE sequence.
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This -permits waiting line statistics to be gathered, representation of

the capture of the central resource, and execution of CPU cycles by the

capturing process.

A new path for the process is then determined on the basis of a

statistical selection. The probabilities p0, pl, and p2 represent

selection of the new program path, the drum path, and the disk pach.

The I/O facility and the paging facility are also represented by QUEUE-

SEIZE-DEPART-ADVANCE-RELEASE blocks for the same purpose. Jobs that

terminate are marked for total system residence time and are retuxned to

the CPU ready queue as new jobs to compete for new central processing.

As in the queuing network, the return path keeps the level of multiprogram-

ming constant.

In building this model, it was not necessary to externally resolve

any conflicts arising from the simultaneity of events. To understand

how the GPSS processor was able to handle this situation, an explanation

of simultaneity and how it is approached in GPSS is necessary.

Basically two chains are maintained by the processor for scheduling

activities, the current events chain (CEC) and the future events chain

(FEC). The CEC has placed on it those events that are to occur at the

most recently updated value of the GPSS clock. The FEC has placed on it

those events that are to occur at some future value of the clock.

The GPS3 clock maintains virt'l time for the simulation an,-, is

referenced and modified during the processors clock update phase, at which

time events that expect to occur at that clock value are moved from the

FEC to the CEC. Vhen the clock update phase is completed, the processor's
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scan phase begins. The first transaction that is found on the CEC is

moved through as many blocks in it's current path as possible. Somle

sensitive blocks can restart the scan of the CEC.

Now, if two events are scheduled to occur at the same simulatd

'time, they are both placed on the CEC for event execution. Howeve.,

it is evident that the two events really occur sequentially in an order

that depends on their position on the CEC. The problem that can arise is

that events might occur in the wrong sequence, causing unexpected results.

Consider the arrival departure conflict in a teleprocessing sistem

modeled in GPSS. Assume that a teleprocessor request needs a main memory

buffer and that it renegs if the buffer isn't available. Assume also,

that dispatched messages free a memory buffer. Now, picture the system

at simulated time 88 with the entire memory full. If at this time a

dispatch event happens to be moved onto the CEC following a request for

buffer space, the request would be turned away and then the buffer would

be freed. In such a situation, one might prefer to adopt a policy that

caused all dispatches to occur before all arrivals in the event of

simultaneity.

In the system to be studied here, such a problem does not occur with

arrival-departure events (this is the only simultaneous event that might

be expected to cause problems). To see this, consider this system at

simulaAd time 88. Assume that a di.. I/O processing interval is -chedul-

ed to complete (note, this will cause an arrival for CPU scheduling) as

well as a CPU processing interval. Also assume that the CPU queue is

empty. If the disk completion event is placed ahead of the CPU event on
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the CEC, the processor effects termination of the event by moving it

through the RELEASE-TRANSFER-ASSIGN-CPU QUEUE blocks. Finding the CPU

occupiec, it stops movement of that transaction. Since a release block

was executed, the processor restarts its scan of the CEC to find the CPU

termination event ready to move. Consequently, it moves that transaction

through the RELEASE-TEST- and the next appropriate blocks until move-

ment is no longer possible, i.e. a block is found that cannot be entered.

Since a release block was executed again, the processor picks up on the

disk traqsaction now in the CPU ready queue. It moves itthrough the

SEIZE-DEPART-ADVANCE sequence at which point it is scheduled as a CPU

processing completion for some future clock value. The scan phase is

then completed and the next clock update phase is entered.

Thus, it can be seen that a zero CPU queue passage occurred (the disk

I/O transaction experienced no waiting time for the CPU) as expected for

this situation. -Independent of the order in which the events occurred on

the CEC, the statistics would not be biased in any way. The GPSS process-

or is designed to resolve such conflicts without any external intervention.

To return-now to the discussion of model development, the problem of

attaining equilibrium will be discussed. It has been implied that a model

should be run for a long enough time to let statistics reach a steady

state. One problem with this approach is that such runs become prohibitive-

ly expeisive. It is also an open que'tion z.s to how long a model 1Lst be

run to swanp out biasing initial conditions.

Included in the repertoire of GPSS instructions is the reset card

which facilitates achieving the goal of equilibrium. It has been used in
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conjunction with the start card as can be seen in the extended program

listing of Appendix C. The effect of this pair of statements is as

follows. After the input phase and initial start up of the model, the

simulation runs until a timer interrupt occurs (the implicit time unit

is .01 msec, runs are for 20 min). Upon occurrence of this event, the

processor reads the reset card. The effect of this card is to set all

statistics back to zero, yet leaving all chains in tact, i.e. the state

of the system is unaffected. Then the processor reads the next card

which is a start card, and the model in run until another timer incrrupt

occurs.

The results of successive applications of these commands clearly

demonstrates that equilibrium is attained after two twenty minute

runs with resetting and one final twenty minute run. The statistic

used as a barometer was CPU utilization as shown in figure 5-2.

RUI TIE CPU UTILIZ.

20 min. 36.3
reset

20 min. 36.8
reset

40 min. 36.9

Fig. 5-2 CPU Utilization and Steady State Behavior

One cause of the extended length of time needed to achieve equilibrium

is the bias of statistics incurred w±,en the CPU queue is loaded wi+.h

the N customers that initially establish the degree of multiprogramming.

In addition to the above considerations, the time each job is in

the system is marked and tabulated to determine the distribution of turn
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around time. The maximum contents of the respective queues can be used

to specify required memory space for buffering the queues. At the end

of each simulation run, the block cotnt at the termination block can be

used to determine system throughput, since this count gives the total

number of jobs that have completed the2 system in the given simulated

time. Also, execution of three independent program segments in includ-

ed to determine the distribution of queue lengths. The basic idea being

to use the tabulate blocks in weighted mode, entering line lengths weight-

ed by the duration of clock time that they were that length. This re-

sults in a specification of the % relative frequency that the line vas

a specific length.

5.3.3 Table Definitions

GPSS ENTITY INTERPRETATION
Transactions

Segment 1 Computer processes
Segment 2 A timer
Segment 3-5 A line line length tabulator

Facilities
CPU execute computer processes
IOCH I/O service unit
BKST page fault service unit

Queues
CPUQ CPU waiting line
IOQ I/O waiting line
BKSTQ page waiting line

Tables
CPULN CPU queue line length distribution
IOQLN I/O queue line length distribution
BKQi page queue line length distribution

Functic "s
XPDIS service time distribution
1-N path selection probability distrib.

5.3.4 Block Diagram

Figures 5-3 and 5-4 show the flow diagrams for the program segments.

Symbolic notation is based on IBM conventions. The extended program list-
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Fig.5-3 Block Diagram for GPSS Simulation
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time arrives at
end of period run

calculate system
throughput

decrement termination
counter

schedule 1 transaction
with 2 fullword parameters

(KEEP 3)

Fig. 5 -4 Block Diagraras of Line-LengIth DistributionTabulators
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ing for this program is included in Appendix C.

5.4 Extensions

The analysis performed thus far has mirrored the analytical wo;k

reported. In this section the flexibility inherent in the nature o.:

simulation modeling will be discussed by example in order to demonstrate

the reason why this technique is used so widely for computer system

analysis.

The issue of the level of detail that the SPM represents will oe

addressed by looking at a more realistic I/O hierarchy and explaining

an approach for modeling it with GPSS. Then, it will be shown how a

variety of service disciplines can be implemented very easily. Also,

introduction of priorities into the model will be demonstrated with a

simple example. The concepts of preemption and synchronization of

transactions are explained as further examples of techniques available

for extending model depth.

5.4.1 Detailed I/0 Subsystemi

The view of the I/O subsystem taken in this thesis was simplified

compared to the actual hierarchies one finds in real systems. In fact,

I/O subsystems are so complex that the first attention to scheduling

peripheral operating system operatio1s was dedicated to this funct.-onal

area (W3). A view of a typical module of this sort is shown in figure 5-5.

It shows a typical I/0 resource structure. The issue of satisfying a

particular request becomes a more involved task that -requires the aid
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I L

Fig. 5-5 Typical Input/Output Resource Structure

of the device management and information management functions of the

operating system. The main system overhead is involved in setting up

a path to the lowest level, the actual device. At each level of the

hierarchy it is necessary to determine if the next level is available

for acquistion. If it is, it can be reserved and the path extended. If

it isn't, a decision must be made whether to reserve the path or free

it and begin again requesting from the top. This process is demonstrated

in figur- 5-6.

Once a device has been assigned through execution of component

management algorithms above, the information transfer process must be

initiated. An example input process is depicted as the array of logical

steps in figure 5-7 (W3).
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I/O PATH REQUEST

LOWEST HIERARCHY LEVEL

Request

COMPONENT

Reserve

COMPONENT.

Add COMPONENT to
.1

Tnterrupt Link Li.s

Update i to Next Leve.
In COMPONENT Hierarchy
required for I/0 Patt

No
i: Highest Lev 1

Yes

Reserved Queue Request
e For Access to

COMPONENT

WAIT

Clear Appropriate
Components to
AVAILABLE State

or

I/O PATH READY

Fig. 5-6 Typical Component Scheduling

I
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"INPUT" CALL

RETURN

(INPUT ACTIVE)
UPDATE OF
STATISTICAL
PARAMETERS error

CALL DEVICE MANAGER

RELEASE COMPONENt
RESERVED IN PATH

RETURN
(INPUT COMPLETE)

Fig. 5-7 An I/O Hierarchy, General Input Algorithm
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If it is felt necessary to include such detail in a system model,

simulation provides the facility for this. The computer system simulation

language OSSL (W3) has these features included within the structure of

the Fortran supported language. In GPSS it would be possible to des-

cribe such systems with Boolean Variables which are capable of represent-

ing complex logical conditions. In addition, the synchronizing property

available from manipulations of the processors special purpose Matching

chain and the interrupt facility provided by a similar chain, the Inter-

rupt chain, could be gainfully employed in the modeling effort. The main

point is that simulation is the only answer to the explicit representation

of such a special purpose subsystem.

5.4.2 Arbitrary Service Disciplines

In the modeling performed, exponential distributions were assumed for

all of the service facilities. Inclusion of other non-uniform distributions

makes possible modeling of systems under considerably more realistic condi-

tions.. So, in GPSS the Function facility is provided to make this all

possible. The basic steps involved are defining the non-uniform dis-

tribution with appropriate function cards, and providing operand references

to these functions in the blocks in which they are needed. There are

eight.distinct sources of uniform random numbers provided by the GPSS

process-r that facilitate the sampling of the distributions. Thest

stochastic generators introduce the variability into the modules as des-

cribed in section (5.2). It is evident, however, that one who is using

this modeling technique would certainy be willing to live with this margin

of error if the model was sufficiently real to provide useful information
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5.4.3 Priority Scheduling

LL last area to be discussed is priority scheduling. One easy waly

!to demonstrate this flexibility is with an example. The following block

diagram shows a single queuing discipline that serves two process classes

identifiable by priority distinction (figure 5-8). SPM is easily extended

to this more interesting situation:

,?taoiuvcl 2

Fig. 5-8 Block Diagram For Priority Process Scheduling, N=L+K



CHAPTER (

PERFORMANCE PROJEC'.ION: THE RESULTS

6.1 Load and Performance Measures

A model for a CP-67 like multiprogramming module has been developed

and analyzed with a variety of modeling techniques. The model is an

absolute one in that its intended use is to predict actual performance

of the system under study. It's ultimate purpose is to provide informa-

tion about system operation that can be used in deciding the optimal

performance region for a system, given it's characteristics.

In order to perform meaningful analysis with the system model, it

is necessary to review the load and performance measures alluded to as

valuabLcItr reflecting system behaviet.

The first aspect of this discussion is identification of a load

measure. Of course, this is none other than the independent variable
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of the previous modeling discussions: N, the degree of multiprogramming.

This indicator adequately represents the collective demand of processes

on the system resources. Often, such a load measure does not represent

what the system is really doing, and hence does not reflect the

demands placed on the system. Since our job set is a group of statistic-

ly identical processes with similar Jemand needs, this often used

indicator is valid for this application.

Performance indicators that meri t review and discussion now follow.

For example, in section (3.2.1) the composite multiprogramming cost

function derived was based on the probability of non-overlapped processor

time. Also, in section (3.3.4) it was shown that the -average CPU

utilization provided information on the effective processing capacity

of the system.

One additional indicator, expected queue lengths for shared re-

sources, was pointed out in the applications sections of the

models solved. To explain the of this quantity, use is made of

Buzen's derivation of server utilization and his definition of system

bottleneck (B3,B5). He has shown that the most highly utilized server

has the largest expected queue length. He has also defined a bottle-

necked resource as one which is seriously degrading system performance.

Intuitively, the expected queue length provides a means for recognizing

a potertially critical resource (one chat is a bottleneck). The 1onger

the steady state queue length, the more utilized the resource, and the

greater the possibility that it isn't adequate to permit optimal per-

formance. Doing a sensitivity analysis on this service component by
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improving its service rate and determining its effect on system process-

ing capability is a sensible measurement to make. Thus, queue lenIgth

will be measured in the hopes that it will be effective in monitoring

the use of the shared resources.

This latter concept and related measurement points up one of

several possible approaches for improving system performance. In fact,

for the system under study, it will be shown that the most effective and

appropriate technique for effecting improved resource utilization of

the CPU is to increase secondary memory speed. This is done through both

scheduling memory activities and upgrading the device to one with a

faster service rate.

Sumarizing, the information available from the model analysis that

will be of value in determining optimal multiprogramming performance and

pinpointing system degredation is:

(1) The multiprogramming idle time

(2) The average CPU utilization

(3) Expected queue lengths that form for the shared resources

6.2 Performance Prediction For the Multiprogramming Module

Solving the multiprogramming model has resulted in mapping a class

of input functions into a relevent set of output functions. The

input functions have been specified in the discussion of the systnM

model in section (3.3). They were found to be process request rates

for the system resources (or equivalently, path selection probabilities)

and expected device service times. The output functions useful for
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analysis have been presented above in section (6.1).

This section will present the results of performance projection

for the multiprogramming system. First, the multiprogramming cosi;

accounting technique will be applied to specifing the range of deFired

'operation of the system when it is configured with the medium speed drum.

The purpose of the presentation is pedgagocial in nature, the intention

being to explicitly identify the individual behavior characteristics

as a function of the level of multiprogramming. It is found that the

abstract view of the system taken in this analysis does in fact provide

results that agree very closely with the dual model that follows.

In the dual model, performance is predicted under a variety of

loads with all three drums. The reason for the sensitivity analysis

using the drum is that it is this device that is found to be potentially

critical with respect to system performance. It is shown how increasing

the speed of this device's-service mechanism through scheduling and

improved device technology can greatly improve system performance. As

a result of this projection, a very interesting characteristic of this

system is discovered. The law of diminishing returns to scale is found

to be in effect for the optimal degree of multiprogramming possible

with the configuration under study. Both improvements in the system

throughput as achieved by increased device speed,adihe optimal degree of

N approach a constant.

It is quite reasonable at this point to view the analysis performed

by the continuous time Markov state approach, the queuing network approach

and the GPSS approach, on the dual conceptual model of SPM1 as equivalent.
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The rational behind this is provided by a demonstration of the results

obtained by these three techniques f.or the same model configuration and

loads. The results agree within .4% with the simulation solutions caus-

ing the largest margin of error.

Reviewing the general approach taken in the following sections:

A level of multiprogramming is selecLed by determining the number of

pages that are to be permitted in real core/user. The paging behavior

that reflects the effect of memory on program activity is determined by

picking the number of page faults for the given level of N. The number

of I/O's per program is constant. These values determine the appropriate

transition probabilities for the models. Performance information is

gathered for the level of N selected, and then the procedure is repeated

again if desired. It has been found that a maximum level of eight

jobs is sufficient to demonstrate system performance.

6.2.1 Multiprogramming Idle Time Analysis

In order to determine the optimal region of multiprogramming opera-

tion a lower and upper bound of expected performance wae established by

selecting two extreme views of secondary memory. For the given job mix

and the same CPU processing speed, the input/output hierarchies were

assumed to behave according to the two views presented in section (3.3.2).

First, requests were assumed to quev. in a FCFS manner for dhdisk and

drum. The medium drum (mean service time 10.94 msec) was chosen as

representative of channel behavior for these model runs. Then, each

request for a peripheral device was assumed to receive instantaneous
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service. In this situation, there were no queuing delays, the only

delay per request was in access and transfer. The same device service

rates were maintained. Tables 6-2,2tabulate the results obtained. These

data are then plotted in figures 6-1 and 6-2. Remember, each type of

request is assumed to occur independently of the other in its own

operating environment, hence the determination of individual costs

for each activity. Sumarizing these results below in table 6-3, .,e have:

Table 6-3 Summary of Result From Cost Accounting Analysis

No attempt was made to obtain any other performance information

with this model. Such analysis is left to the more realistic dual

channel view of SPM which follows shortly. Let it suffice to observe that

as the level of multiprogramming increases, we do in. fact experience a

decrease in the cost function as the benefits of multiprogramming are

enjoyed. Then, there is a sharp increase based primarily on the cost

of paging user jobs, as we get too much of a good thing! The exc-essive

competition for primary memory resulted in system paging levels that

could not be supported by the available hardware. It is also noted that

scheduling the bottlenecked resource, the paging drum,would result in

Service Discipline NOPT NTHRASHING

FCFS Queuing 2 3

No Queuing 3 5
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N T T T T
CPU 1/0 PAGE TOTAL

1 2.00 3.00 .44 5.44

2 2.00 2.37 .38 4.75

3 2.00 2.08 2.15 6.23

4 2.00 1.92 4.77 8.69

5 2.00 1.83 11.14 14.97

6 2.00 1.77 23.90 27.67

7 2.00 1.73 39.28 43.01

8 2.00 1.71 54.63 58.34

Table 6-1 Single Facility Markov Model Results For the Cost
of Multiprogramming (FCFS Queuing-Medium Drum)

N TCPU TI/O TPAGE TOTAL

1 2.00 3.00 .44 5.44

2 2.00 1.55 .22 3.75

3 2.00 .67 .71 3.48

4 2.00 .24 1.32 3.56

5 2.00 .07 4.61 6.68

6 2.00 .02 14.52 16.54

7 2.00 .00 27.63 29.63

2.00 .00 42.87

Table 6-2 Single Facility Markov Model Results For the Cost
of Multiprogramming (No Queuing-Medium Drum)
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performance close to N OPT* This claim will be justified in subsequent

analyEes. A guesstimate of CPU utilization for such operation is

made as follows:

CPU Utilization (N OPT)= TCPU = 2.00.* 100=57%

~CPU + T 10+T PAE 3.48
CU I/O PAGE 34

It is at this point when throughput will be greatest by dint of having

as many user jobs in the system as possible benefiting from CPU

service. A side effect expected is a stretch out in execution time

resulting in longer turn around time per job entry.

6.2.2 Average CPU Utilization Analysis

Our performance projection now proceeds with analysis of SPM in

its entirety. That is to say, analysis is performed on a single module

with both I/O and paging activities occuring naturally within. For the

given system configuration, similar views of secondary memory are

taken in order to establish a bounds on the degree of multiprogramming.

The tabulated results that follow demonstrate system performance

for a variety of situations. The first (table 6-4, fig.6-3) are for the

slow drum. The FCFS data shows extremely poor performance with maximum

CPU utilization of 41.74 % obtained at N=2. Since the paging drum was

clearl; limiting system performance, scheduling this device was carried

out in the hopes of improving performance. However, even for the optimal

case, the benefits of multiprogramming were not being taken well ad-

vantage of. No increate in the optimal level of N was achievedthrough
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FCFS
N % UTILIZ THRPT QUEUES

min. C I P

1 33,33 0o .33 .5o .17

2 41.T4 12. 2 .5h .89 .58

3 26,21 7.86 -.33 .57 2.10

4 15.91 4.77 .19 .31 3.50

5 7.62 2.29 .o8 .13 4.79

6 3.64 1.99. ,04 ,06 5,90

7 2.22 .67 .02 .04 6.94

8 1.60 .48 .02 .03 7.96

SCHEDULING PAGE CHANNEL

N % UTILIZ THRPT QUEUES
Jobs/min. C I P

1 33.33 10.00 .33 .50 .17

2 44.70 13.40 .57 .95 .48

3 41.57 12.47 .56 .98 1.46

4 39.54 11.86 .55 .98 2.47

5 30.00 9.00 .39 .67 3.94

6 17.61 5.28 .21 .34 5.45

7 11.09 3.33 .12 .20 6.68

8 8,00 2,4o ,09 ,14 7.78

NO QUEUING-OPT

N % UTILIZ THRPT QUEUES

Jobs/min. C I P

1 333. 10.00 ,33 ,50 ,17

2 52.04 15.61 .67 .78 .55

3 47.03 14.11 .65 .71 1.65

4 43.63 13.09 .62 .66 2.73

5 31.38 9.41 .41 .47 4.12

6 19.87 5.96 .24 .30 5.50

7 14.69 4.41 .17 .22 6.61

8 12.29 3.69 .14 .19 17.68

Table 6-4 Dual Facility SPM Results (Slow Drum)
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scheduling the page cahnnel. It was found that this technique yielded

only a 2.96 increase in CPU utilization over the FCFS case. In

addition, the performance curve for the slow drum is quite sharp,

indicating that thrashing occurs at a level of 4 jobs. The peaked

nature of the curve and the small range of reasonable system performance,

(2-3) jobs, is clearly undesirable in an environment where the level of

N might fluctuate around the optimal point.

Moving to a better dxm was the next step taken in an effort to

improve CPU processing capacity as well as achieve a higher level of

multiprogramming. These results are tabulated in table 6-5 and are

plotted in figure 6-4. More encouraging results were obtained as

the upgraded device (medium speed drum, T=16.1O msec) not only reduced

effective page queue lengths but also improved the level of multiprogram-

ming to 4. Scheduling resulted in an increase of 4.52% in CPU utilization

for the same drum, and it resulted in an increase of over 8% in CPU

utilization compared to the slow drum in the same situation. This latter

increase resulted in an increase of 20% in overall system throughput.

The smoothing out of the performance curve is also a desirable feature

gained by moving to the medium speed drum. In this case of scheduling

the paging drum, it is evidenced by the thrashing point being moved out

to N=6.

Tbc. next logical question is whether or not upgrading the harrare

further can afford sufficient gains to make such an investment of in-

terest. Results obtained for this situation are based on the use of

the fast drum discussed in section (3.2.1). These data are tabulated in



116
FCFS

N % UTILIZ. THRPT QUEUES

J_bs/i ______C I P

1 36.78 11.03 3 ., .08
2 48.38 14.51 .6541.09 .26

3 43.95 13.19 .641.16 1.20

4 33.86 10.16 .48 .88 2.64

5 17.38 5.21 .21 .35 4.44

6 8.31 2.49 .09 .14 5.77

7 5.08 1.52 .05 .08 6.86

8 3.66 1.10 .o4 .6 7.90

SCHEDULING PAGE CHANNEL

N % UTILIZ. THRPT QUEUES
_ _C I P

1 36.78 11.03 .37 .55 .08

2 49.23 14.77 .66 1.11 .23

3 51.51 15.45 .78 1.43 .79

4 52.90 15.87 .87 1.69 1.45

5 48.08 14.42 .76 1.49 2.76

6 35.62 10.67 .50 .93 4.57

7 24.77 7.43 .33 .56 6.11

8 18.23 5.47 .22 .37 7.40

NO QUEUING-OPT

N % UTILIZ. THRPT QUEUES
_ _ _ _ _ _ __ __ C I P

1 36.78 11.03 .37 .55 .08

2 60.57 18.17 .81 .91 .28

3 65.00 19.50 1.03 .98 1.00

4 66.71 20.01 1.78 1.00 1.83

5 56.12 16.84 .,94 .84 3.22

6 4o.05 12.01 .58 .60 4.12

7 31.07 9.32 .42 .47 6.12

8 26.55 7.96 .34 .4o 7.26

Table 6-5 Dual Facility SPM Results (Medium Drum)
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table 6-6 and plotted in figure 6-5. It is noticed that even for 0'T,

the best level of N is still 4. For the scheduling situation, the

maximum gain in CPU utilization over the same situation for the medium

speed drum was 5.52% and the increase in throughput from 15.87(job5/min)

to 17.53(jobs/min) yielded only a 10% increase in CPU processing poder.

A benefit gained was the further smoothing of the performance curve with

thrashing occuring at N=7, in this scheduling situation.

The gains achieved for this latter upgrading of support hardwLre were

not as great as those obtained in the former. The system is begining

to operate in the region of diminishing returns to scale, as the benefits

gained from improved page service are leveling off. Since adequate per-

formance characteristics were achieved with the medium speed drum, the

latter investment is not advisable.

To further demonstrate the law of diminishing returns that occur for

the optimal level of N (as well as for system throughput), one further

study was made with a drum of T=4 msec. The overall results, plotted below

in figure 6-6, show that the paging drum has yielded it's share in im-

proving system performance.

5

DRUM KEY
#1 T=40 msec.
#2 T=l6.7 msec.
#3 T=8 .0 maec.

2 #4 T=4.0 msec.

0

0 1 2 3 4 DRUM #
Fig. 6-6 System Performance Under the Law of Diminishing Returns
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FCFS

N % UTILIZ TsIRPTn C QUEUES
___________Jobs/m~n. C I P

1 38.46 11.54 .39 .58 .04

2 50.93 15.28 .70 1.19 .12

3 53.70 16.11 .86 1.62 .52

4 52.30 15.69 .9 1.80 1.30

5 36.20 lo.89 .55 1.05 3.40

6 18.17 5.45 .22 .37 5.40

7 11.11 3.33 .13 .20 6.67

8 8.00 2.40 .09 .14 7.78

SCHEDULING PAGE CHANNEL

N % UTILIZ THRPT QUEUES
__ _ C I P

1 38.46 11.54 .39 .58 .04

2 51.14 15.34 .70 1.19 .11

3 55.65 16.70 .90 .70 .39

4 58.42 17.53 1.06 2.20 .73

5 58.24 17.47 1.10 2.38 1.53

6 53.70 16.11 .96 2.o4 3.00

7 46.23 13.87 .77 1.58 4.65

8 38.052 11.42 .59 1.17 6.24

NO QUEUING-OPT

N % UTILIZ THRPT QUEUES
C I P

1 38.46 11.54 .39 .58 .04

2 64.91 19.47 .89 .97 .14

3 76.00 22.80 1.33 1.14 .53

4 82.13 24.66 1.74 1.23 1.03

5 78.98 23.69 1.74 1.19 2.07

6 66.87 20.06 1.32 1.00 3.68

7 56.93 17.08 1.02 .85 5.12

8 50.95 15.29 .87 .77 6.37

Table 6-6 Dual Facility SPM Results (Fast Drum)
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6.3 Discussion of Results

The following table summarizes tlhe results obtained from the above

analysi3 (table 6-7):

APPROACH TAKEN DRUM QUEUING N(OPT.) N(THRASH) CPU UTIL.

IF'T MODEL DEVICE M,ECHANITSM ._ OPT. N

- 1 DEPENDENT MEDIUM FCFS 2 3 32.1
CTMPs SPEED

IDEP. CTMP. TMEDIUM OPFT. -- 357.

DUAL SPM SLOW FCFS 2 3 41.74IDJAL SPM SLOW SCHEDULE 2 5 . 44.70
DUAL SPM SLOW OPTIMTAL 2 5 47-03

DI DAL SPM MEDIUIM FCFS *2 4 48.38

DTUAL SPM - MEDIUM SCHEDULE 4 6 52.90

DUL SPN MEDIUM OPTIMAL - 6 66.71

-DUAL SP4 FAST FCFS 3 5 53.70

DUAL SPM FAST SCHEDULE 4 8 58.42

DUAL SPM FAST OPT IAL 4 10 82.13

Table 6-7 Summary of Results of Performance Projection

One observation is that the cost function analysis was able to

provide a useful indication of the expected bounds of multiprogramming

performance.li-- This justifies i4t use in a pedgagocial setting, where

demonstration of the effect of the different components of the composite

function would be instructive.

The difference in the predicted M-ounds and the lower d CPU utilization

(57% vs 67.7% ,T=10.94,OPT.) can be explained most readily by considering

the multiprogramming idle time in the systems. When the activities of

paging and I/O were incorporated into the same operating system, it was
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possible to overlap the operations of the processor for these activities,

where as in the separate facilities, it was not. This is the mair reason

for the observed discrepencies.

Concerning the degredation of system performance, it is important

to remcmber the type of page removal algorithm that the data represents.

The static parachor curve was obtained as an approximation to the

paging behavior in a system with a global LRU page removal policy. For

this data, it was found that multiprogramming was limited to 4 jobs

even with the fast drum, because competition for primary memory caused

system paging to increase at a rate beyond system capabilities. The

most severe bottleneck was shown to occur in the paging channel where

processes encountered excessive queuing delays for service. Hence, the

loss of the benefits of multiprogramming and the quantification of the

thrashing point.

System changes such as.implementation of a working set policy for

page removal have been employed to decrease excessive system paging as

the level of multiprogramming increases, i.e. as programs operate with

smaller real core allotments. Also, as has been demonstrated above,

an increase in the relative speed of drum access time to main memory

operations has proved successful in implementing efficient demand paging

virtual memory systems.

Thus, it has been shown how a model for a multiprogramming operation

can be used to study performance for given load conditions in both a

teaching environment as well as a real decision making situation.
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Determination of the optimal level of multiprogramming and specification

of the thrashing region of system performance were based on sample

program. parameters characteristic of an assembler run under CP-67, in a

"squeezed core" environment. The analysis was facilitated by such system

indicators as multiprogramming idle time, average CPU utilization, and

queue lengths forming for shared resources.

Other areas where application of such techniques can-be used to

provide performance information are based on the means for determining

the parachor curve from which input function data was generated. For

example:

(1) Using Bards model for average resident set size(Bl), one can
determine a dynamic parachor curve. Using this paging
characteristic as an input function would yield more true to
life performance projections for the actual system.

(2) System performance might be projected for programs run with var-
ious page sizes. The queuing model can then be used to isolate
optimal performance for-this new varying parameter.

(3) In addition, quantative statements can be advanced on the behavior
of systems under different page removal algorithms. Parachor
curve measurements must be performed to generate the necessary
inputs here as well.

6.4 Comparison of the Results for the Alternative Modeling Techniques

In this section it will be shown that the analytical and simulation

models chosen for analysis were all adequate for performing the above

analysis. The reason for studying th-e system with three different tech-

niques was to lend insight into the dppropriateness of each approach for

computer modeling. This aspect of the effort will be discussed more fully

in the next chapter when the techniques are compared on a number of
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interesting, revealing points.

The three models compared in the following table are:

(1) the dual facility continuous time Markov model

(2) the queuing network model

(3) the GPSS simulation

These results are based on varying the level of N as done in the

preceeding analysis. The data selected for display is from the FCS

queuing discipline and the medium speed drum (T=16.97). Table 6-8

is shown below:

N Markov-state Que. Ntwk GPSS Sim.

1 36.781 36.792 36.9

2 48.379 48.380 48.5

3 43.950 43.956 43.8

4 38.855 33.860 33.9

5 17.376 17.376 17.4

6 8.310 8.310 8.2

7 5.079 5.078 5.1

8 3.657 3.656 3.5

Table 6-8 Summary of Results of the Alternative Modeling Techniques

Thus application of any one of the methods to the solution of SPM

would have provided us with similar predictive information. It is safe to

say that we have validated the predictive accuracy of the models.

As indicated above, the next chapter provides a comparison of the

modeling approaches. It is hoped that this will aid the modeler in

selecting the most appropriate modeling tool for his given application.



CHAPTER 7

CONCLUSIONS

7.1 A Comparison of the Modeling Techniques

The analysis of SPM with both analytical and simulation models

has resulted in similar performance projections for the CP-67 like

mulitprogramming module (sect. (6-3)). Yet, the means to achieve these

ends were quite different. It would be of value, now, to assess these

means in order to determine the technique that was best suited for the

problem posed in this thesis. In addition, an effort will be made to

shed light on the application of these models to problems further

reaching in nature than those studied here.

The comparison will be based on Lhe following criteria considered

important in the development and implementation of system models:

(1) the level of detail describable

(2) the number of parameters needed to describe the model
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(3) the ease of development of the model for implementation

(4) the ease of solution and the exactness of the solution

(5) the overall cost of the approach

Lets begin then, with the level of detail describable. In terms of

the models studied here, all of the modeling approaches were capable of

represeoting the input functions and mapping them into the output functions

essential for the analysis performed. However, on the basis of the ex-

tensions discussed for GPSS, simulation is clearly the most flexible of

the three approaches. Selection between the continuous time Markov

model state approach and the queuing network continuous time Markov model

is difficult. The level of detail that they can be used to describe is

tied into the view of the system that they choose to take. For example,

Sekino(S7) modeled a general purpose time sharing system with the intention

of including all factors that contribute to oVerall system performance.

He was able to represent multiple processors, data base lockout, and various

system overheads by building on a hierarchical set of models much like the

single facility continuous time Markov state models used here. Moore(M7),

on the other hand, modeled a general purpose time sharing system paying

more attention to intricate job routing in such systems. His approach

was to model the system as a network of queues similar to the queuing

network model used here. Clearly, both analysists set out to study

similar systems, both men arrived at valid models of their systems opera-

tion, yet both described different details of the systems behavior. One

can see that both methods havemet with notable success.

Concerning the number of parameters needed to specify the model, the
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queuing network model was most reasonable. Since the GPSS simulation

was based on the network interpretation of multiprogramming, deriving

its parameters from that analysis, it certainly fits into the same cate-

gory. Not only were fewer parameters required in these implementations,

but they were more readily understandable as well. The obvious reason

for this was the manner in which the closed form solution used explicit

probabilities to describe movement among queues that represented physical

characteristics of the real system. The single and dual continuous time

Markov processes,instead,chose to explicitly represent all system Etates,

and transitions in the system consequently, require multiple use of

the program and device behavior parameters. Note, the closed form solution

of the queuing network model obviated this view of the system.

In terms of ease of model development for implementation, the net-

work approach was again superior. This is not only based on its parameter-

ization but also on the closed form solution developed by Buzen and the

associated computational algorithm he derived. The simulation model was

facilitated by the General Purpose System Simulator and implementation

was supported by the debugging facilities in the language. The most in-

volved technique was the Markov state approach. Reprecentation of the

differential difference equations as a general NxN matrix for solution

by MLSQ was tedious.

The next to last category involres a discussion of the exactress of

the solutions. Both of the analytical models were solved with available

algorithms. The closed form solution proposed by Buzen resulted in an

exact solution; however, a numerical analysis technique used to solve the
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equations economically resulted in introducing marginal errors into the

results. The approximate solution for the differential difference eq-

uations agreed within .005% . Both of these approaches were clearly

superior to the simulation analysis with its stochastic generators and

running approach to achieving equilibrium. These results agreed within

.4%

In the last category, cost, Simulation exceeded the other two methods

by a factor of 10. The network of queues solution was less costly than the

solution of the N simultaneous equaticns because of the neat computational

algorithm. In general, simulation is Che most expensive of the modeling

approaches. When more complex systems are under study, such analysis

can become prohibitively expensive very quickly if extreme care is not

taken in the model development phase. The trade off is that mentioned in

section (5.1) of economy versus detail.

So, in conclusion, the queuing network continuous time Markov model

was superior and was the most appropriate for the study undertaken here.

This is not surprising, for the conceptual framework of the Central Server

Model on which its development is based is much like SPM (B3). It is

suggested, as a final comment on these models, that reasoning out the

issues above is an important first step before any model selection is

made. An important factor in this regard, as pointed out by the look

at the -iork of Sekino and Moore, is tie ultimate view to be taken Af the

system.

7.2 The Scope of SPM. Future Work

The system process model has been gainfully employed in analyzing
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the performance of a virtual memory system that multiprograms under a

demand paging strategy. The advantage gained in applying this mcdel

was to transcend the use of human intuition in a problem characterized

by complex interdependencies. Yet, in studying the multiprogramming

module, certain limitations in the use of the analytical models to

solve SPM became more apparent. These are now presented in the hope

that future work in this area is addressed to some of these issuet:

(1) The composite activity of N real processes in the system were
represented by N virtual, statistically identical jobs. It
is clear that more work must be done in the area of including
job classes in the model of the system.

(2) Priorities are not associated with any of the jobs that were
represented in SPM. It certainly-wculd be desirable to model
this relevent system characteristic.

(3) System overload was assumed. This aspect of the model has
been overcome in the literature (R2,B3) but was not included
in this model. Practical application of this model feature
to realistic system behavior should be studied further.

(4) Model parameters cannot vary with time. This limitation is
one that is basic to the representation.

(5) Operating system overhead is not included in the processing
activities of the CPU. The behavior parameters of the model
should be studied further to gain more insight into this
important factor.

(6) Peripheral queues represent devices that cannot be dedicated,
i.e. a process cannot occupy two marker positions at one time.
This limitation is cited as basic to the nature of the
representation.

(7) Effort should be made to include more realistic distributions
for the server mechanisms as done in Moore's work (M7).

Further effort in resolving these limitations will result in more

resourceful applications of such models in computer analysis. To date,

the work done in the area of SPM has yielded valuable predictive results
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in a number of situations and has contributed to insight into the

operations not only of multiprogramming modules, but of the more com-

plex time-sharing systems in use today.

7.3 Final Comments

It has been the intention of this thesis to present a model that

is useful for performance projection of computers managing multiprogram-

ming under a page on demand virtual memory strategy. The limitations

of the model that have been cited are receiving attention. The ex-

clusion of system overhead from this analysis represents a restriction

that has yielded performance results that are slightly better than

might really be expected.

Furthermore, it was intended to show how parameterization and

analysis of a complex computer system can provide insight into the

potential problems and interdependencies of such systems.

In addition, the result of the multi-pronged modeling effort per-

formed was a comparative analysis of the techniques currently in use

in the area of performance evaluation. This review is of value to

anyone who is thinking about selecting one of these tools for system

studies. Another result of this approach was to demonstrate the

predictive capacity of these models.

The final comment will be addressed to the general nature of

computer system models. All to often, models have been developed that

are too specific to be of value in answering questions about new or

different systems. Rather than having to develop a new model for each
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system studied, stress should be placed on developing classes of

genera. purpose models capable of representing a variety of important

behavior characteristics and system configurations. In the light of

the rapidly changing technology attention should also be paid to future

systems being developed. The emphasis on developing new systems rhould

go hand in hand with research on modeling techniques capable of accurate

representation of these systems.
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APPEMDIX A: The Continuous Time Markov-State Analysis Program

The following extended program listing performs the solution of

the differential difference equations,in the steady state, for both

the single and combined Markov interrretations of SPM.

The input parameters and output parameters are defined on the

sample outputs that follow the listing.

For reasons based on the lettering available for symbol definition,

the following choises were necessary:

P for
L for



PRUCEDUfKL OPTIONS(MAIN);
DECLARE (NO_ RHSIM) FIXED

(DISP ,CNI ,Nl N2p
STGOPNP. ,NU

UtLLARE (Nf PtN , C tl-1(C uti
DEL.LARL (NDP1AbLjNu 110

hi_ ILSNUj-f-) FL
UEUL~kL(LPLIvUP9U-IrL,U)
L)LLLARL 1TIliEvTHUfi _PU
DEtCLARE (EQiOHEjCPUEw'PA
OLLLARE ( MLP i VL ItpINP,1UOI
ULCLARL (T1u,l0Auc*j F-LUA
DiLLAkE (EPFpEPFT) FLUAT

BINARY INITIAL(I1),
K)FIXLU) 6INARY INITIALCO),
FIXED bINAR~Y;

NL_ PAkALtNIDUM,? N20UM,
XEL) bINARY(15,O);

1,VLIXL _filh)FLOAT L!JNARY;
,E) f[LLM bliNAKY;
,ML,ft i -LUAT BINAkY;
1 BINAkY;
BIN~kY INIT IAL(2u);

ULtCLARL
DELLAKE
UELA RE

DELLAN~E

(CPU_ IDLE_ IMi~E,SQM_ P1) FLOAT floiARY INITI
Cpu-bUSY FLOAT tb1NAk :Y;
(PI(K,i'JRHS(Kql)) tbiv ARY FLOAT (., ,3) CTL;
(,SUN1 I0(N>) QSiJf;-_ PA,L N)p , SUMCPU(N ))

FLOAT BINARY LIL;

AL (u);

UN CuNLITlON (Euk-) GU 10 LUNE;
GET LIST(N9NP, MUIP tMLUIslU NPFt UNF IGCUDL, TYPE,

K=U;
IF LJNEIGCfjDE=2 THEN DO;f

DO I=N+i TO 1. BY -1;
K= I-K;

M L I =vLANEXAE C _I ME /NO_1 lOS
MLP=tANEXEC_ TIME/Nd_-PF;
LP=1/fPLP; UP=i'/MOP;
LI=1/!!LI; 01=1/MUL;

GL TO ALLUL6;

IF FYPL=1 THEN\ tL=MEAN_ EXttuTIE/D1\0$J;

ANALYZEi:

LGETL)AT:



ELSE ML=MEANEXLC_TIME/ND_PF;
L=1/ML; U=1/ML;
ALLOCATE PI,RFS;
IF CONFIGCUDE=2 THEN DO;

CALL INITIAL;
CALL DUAL;
END;

ELSE, DC;
CALL INITIAL;
CALL SINGLE;

/* ENTER CUNSTRAINT RELATICNSHIP. INTU
DO J=1 TO K;
PI ( K, J)=1;
END;

/* S T UP KIHTif HAND SIDE MATRIX(RHS)
O 1=1 TO K-1;
RHS(I ,1)=0;
END;
RHS(K , 1=1;

FOR MLSQ SUbROUTINE

PRINT OUT SYSTEM VARIABLES
PAUL;
SKIP(6);
SKIP EDI T('SYSILM CONFIGURATION IS I

(COLUMN(46), A(23), F(2,0));
IF TYPE=I THEN DO;

PUT SKIP E

,CONF ItCODE)

DIT( I/O
A(9) ;

MODEL') (COLUMN(56),

GU TO OUTPT;
END;

ALLUC:

/*
PUT
PUT
PU T



IF TYPE=2 THEN DO;
PUT SKIP - EDIT("PAGE MODEL') (COLUMN(56),

A(10));
GO TO OUTPT;
END;

PUT SKIP EDIT ('CUMBiNED PAGE AND I/O MODEL'
,A (27)) ;

OUTP T:
IF NQ=0
PUT SKIP

IF NQ=1
PUT .SK IP

THEN DU;
EDIT('NU QUEUING$ )1(

A(10);
Gu TO CONT8;
END;

THEN UU;
EDI T ('F LF S UEUING'

,A(12)) ;
Gu Tu CONT8;

) (COLUMN(47)

COLUMN(56)

) (COLUMN (55)

PUT SKIP EDITI'SLHEDULING PAGE
(CULUMNf51 , A23)

CHANNEL')

MATRIX SUBROUTINE MLSQ TO SOLVE PI*X=kHS
CALL MLSQ(PI,RHS,K,K,N PHS);

/* CALCULATE THE CONSTRAINT RELATION AS A
SUM_P1I=0 ;
00 1=1 TO K;
SUMPI=SUM_P1 RHSS( I,1);
END;

CHLCK=>SUM_PI

/* CALCULATE FRACTIGN OF CPU IDLE TIME IN THE STEADY STATE
CPUIDLETIME=0;
Ni=0; N2=0;
Du1 I=1 TO K;

CON6:
/* USt



IF N4-N2=N THEN DO;
CPU_ IDLE_ TItE=CPU_ IDLETIML.-RHS(fII;

N2=N24-l;
GU TU CUNT5;
fr ND;

41= NI + 1;
CONT 5:

,PULWSY=I-CPU_ I DLE_T IME.;

1* CALCULATE THE SYSTEM TH1-,CUGHPUT IN JOi3S/MIN
ThikoUGH-PUT=LPUBUSY*6 O'*IUO/MLAN-EXLC-TLME;

PUT ")KIP(2) tUIT(INUt~bEk OF PROCESSGRS=, NP)
( COLUMN (16) , 21) ,F(4v0t, o;

PU1 SKIsP iWJI('DLUREE GF MU)LTIPkUGRAMINGu(N)=',pN)

PUT SKIP LEDU'(NUN5Ek UF SYSTEM EQUATIONS(K)=19K)

IF LuNFIGCu
PUT SKiPt2)

uc2THLi 00;
-0l1 'tXPELTF-D T IME t3ETN'd±N PAGE FAULTS(MSEC)=lMLP)

PUT )Ki P LULT ('PAU 1L FAULT KATE (LPtMSEL)= I LP)
(CULUNNi(I16) ,A(

P~f SK(1P(2) EUIl-( 1LAPELTLL)
2 6)vF 17,v5 J) 't
T IME BLIwEELN 1/6 REQUESTS (MSLC) =9 tMLl

PUT SKIP Euil(I/U RLQUESTf<ATE(ii,4 -SC)=',Li)

PUT SKIP(2) LUIT('tXPECILD TIME TO SERVICE A PF(M.SLC)=,MUP)
(ULUWNN{i 16) ,A(37) ,F( 80~ ) ) *

PUT SKIJP EDII ('PAuE St:RVICE RATE(UP,MSEC)=',UP)



PUT SKIP(2) EUIT('EXPECTED
(ULUl N(16)

PUr SKIP EDIT(I/U SLkVICE
(COLUMN( 16) ,A(

END;

TIME TO SERVICL AN I/O(MSEC)J=,MUlJ
,A(38),F(8,5) );
RATE(UI ,MSEC)=' ,UI)
27),F(7,5));

ELSL UU;
PU[ SKIP(2) EDIT('EAPELCTED T

(CuLUMN( 16)
PUT SKIP LDI('QtUEST RATE(

(CuLUMN(16),A(2
PUT >KIP(2) EDIT('LAPLCTtu T

(CLLUMN(1C)
PUT SKIP EDITL'StRVILE RAT[(

(GLU MNji-4( 16),1A (2
END;

PUT SKIP(2) EDIT('CONSTRAINT
(CULUMN(16),

PUT SKIP EUIT('STEADY STATE
(CuLU1MN(16),A(3

PUT SKIP EUIT('STEADY STATE
(CULUMN(16),A(3

1MEh BETWEEN 1/U'
,A (38), F (6,5));
L,MSEC)=',L)
1),F(7,5));
IME BETEEN SERV
,A(40),F( 69,5));
U,MSLC)=',U)
1) ,F(T,5)7);

RELATION SUMPI
A(43),F(7,5));
FRACTION OF CPU
9),F(7,5));
FRACTION UF CPU
9),F(7,5));

'S(f4L,MSEC)=',ML)

ICES(MUMSEC)=',MU)

YIELDS SUM_PI=',SUMPI)

IULE TIME=',CPUILE_TIME)

BUSY TIME=',CPU_BUSY)

IF TYPt=i THEN DO;
TIG=5*kHS(K, 1);

PUT SKIP(2) EDIT('TI(M1SEC)='
(CULUMN(16),A

,TIU)
(Lu) ,F(6,5) );

END;
IF TYPE=2 THEN DO;

TIME=NOPF*MU+2uuu;
TPAGE=TIME*RHS(K,l);

PUT SKIP(2) EDIT(IPAGE(MSEC)',iTPAGE)



(CULUMN( lo) tA( L) ,F( 12,95)J;

IF CUNFIG_COUL=l1 THEN~ (,C To FCOLLU)W;
1* INITIAL ILL 3UPIS i-Uk COM~PUT ING EXPECTEL) QUEUE LENGTHS

ALLUCAlL: QSUM_ LU;
ALLULATE QSUM.-PAGE;
ALLOCATE QSUM-CPU;
Di ' I=0 hi N;

W.-Ui4-uPU( I) =O0

(QsUmIAL()=;

END U

/ k~ALCULATE Sun, F-UR ESlABLISHING EXPE CTED Q3UEUE LENGTHS /

edl=u; N2=0;
DUi 1=1 10 K; C

N'UL.1'-U\1+N2);
~~u_ I(N1-=QSUM_ 1U(NI)+RHS( I l;

QSU1LiPA{.E(N2)=QSUMPAUE(N2)+kHS(LLJ;
QSUM-_CPU(N0C) =WSUMCPU(l,4C) +kiHS (1,1);
IF- Nji-pN2.=N THEN DJ;

N1=009
N2= N 2+1;
GU TO CONT6;
END;

N I=Nl1+ 1;
(5EN 1)

1* CALLULATE ANO PkINT EXPECTED QUEUE LENGfHS *

EQCPU=U; EQPAGE=O; fr(LC=O;

DU i,41=0 TO N;
r14U=E~IU+N1*QCSUM_ IU(Nl);



END;

D N2=0 TO N;
EQPAGE=EQPAGE+N2*QSUMPAGE(N2);
END;

DO NUC=0 TU N;
EWCPU=EWCPU+NGC*wSUMCPU(NU);
END;

PUT SKIP(2) EIl I('xPECT
(CULUM1N

PUT 'KIP lDIT('EXPECTED
(CULUMAN (16)

PUT S)KIP EDif ('EXPELEG
(UOLUMN (16)

FULL Uw:

ED CPU QUEUE LENGTH=',EQCPU)
16), A(26 ,F( 5,3));
10 QUEUE LENGlH=', EQIU)
,A(25) ,F(5,3));
PAGE QUEUE. LENGTH=',EQPAGE)
,A(27),F(5,3f);

PUT SKIP(2) EuIT('STEADY STATE SYSTEM THROUGHPUT(JObS/MIN)=',
THR(UUGHPUT ) (CuLUMN( 16) , A( 41) ,F( ,5) ) -*

/4 PRINT OUT RESULTS OF SOLUT
PUT SKIP(2) EDII

N1=j; N2=0;
00 1=1 TO K;
PUT SKIP EDIT('

(CULUMN(1
IF NI+N2=N THEN

ION OF SYSTEM OF EQUATIONS
T( 'ST EADY STATE PhUBA3ILI' IES' )

(-COLUMN( 16) ,A(27) ) ;

STEADY STATE
6) ,A( 14) ,F(2

DO;

(',Ni,N2, )= ,RHS (1,1))
,u) ,F (2,OhTA(2) ,F(7,5) );

N2=N 2 + 1;
GO TO CONT7;
END;

NI=Ni+1;
END ;
FREE PIRHS;

CONT 7:



FREE QSUMIO;
FREE QSUMPAGE;
FREE #SUM_CPU;
GU TO GE TOAT ;
PI MATRIX FOR MLSQ SUBROUTINE
PROLEDURE;
DU 1=1 T K;

Du J=i TO K;
PI( I ,J)=O;
END;

LND;
END INITIAL;

/* NW MAKE THE APPRUPRIATE ENTRIES IN THE STRUCTURED PI MATRIX

/* CALCULATE
DOUAL:

ALL OF THE DIAGONAL ENTRIES FJR THE
PkOULDURE;
NI=0; N2=0;
N P l=NP;
Du 1=1 TO K-1;
N100M=N1; N20UM=N2;
IF N1>=NO_10 THEN NIDUM=N-QIO;
IF N2>=NU_PAGE THEN N2DUM=NO_PAGE;
If- Ni+N2=N THEN DO;

DUAL SYSTEM

P1(1, I )=-(( NIDUM)*U I+(N2UM)*UP)
NI=O;
N2-=N2+1;
NP1=NP;
GO TO CONTI;
END;

ELSE DU KNP=i TO NP;
IF Ni+N2=N-NP+KNP THEN DO;

NPI=NP-KNP;
GO TO ENTI;

/INITIALI E
IN IT IAL: 0

*/



END;
PI(I,1)=-((NIDUM)*UI+(N2DUM)*UP+(NP
NI=N1+ 1;
END;
ANU ENTER UPPER AND LUWER DIAGUNAL
N1=0; N2=0; NPL=NP;
STLP=N+1;
Uu 1=2 TO K-1;
N11=N11+1;
NIUuM=NI;
If- NI>N0_ID THEN NLOUM=NOIu;
IF N1=STJUP +THEN DO;'

NPL=NP;
N1=O;
N2=N2+ 1;
STOP=STUP-1;
Gu TO CONT2;

P1(1, 1
P(1-i I

A

END;
ELSE IF NP=1 T

IF Ni+N2=1+N

END;

T( LI+LP ))

ENTRIES

HEN GO TU ENT2;
ELSE DU KNP=1 TO
-NP+KNP THEN tW;

NP;

NP1=NP-KNP;
GO TO ENT2;
END;

END;
)=NPI*Ll;
)=NIDUM*UI;

NO ENTER UPPER -UPPER AND LOWER-LOWER DIAGONAL ENTR
Ni=U; N2=1; NPI=NP; DISP=O;
STuP=N+1;
Di I=N+2 TO K;
N1=Ni +1 ;
N2bUi"=N2;
IF 42>=NU_PAGE THEN N2DUM=NO_PAGE;

ENT1:

/*~ LALLULATE

ENT 2:

LUNT2:
/*;. CALLULATE */



SINGL E:

/* ENTLR THE

THEN DO
STDP=STDP-1;
UISP=DISP+1;
NPl=NP;
IF NP+N2=N+1 THEN N

N2=N2+1;
N2DUM=N2;
IF N2>=NU_PAGE THEN
60 Tu ENT3;
END;

ELSE DO KNP=1 TO NP;
IF N+N2=2+N-NP+KNP

END;
PI(I,I-(N+1)+DISP)=NPl*LP;
PI(I-(N+I)+DISP,I)=N2DUA*UP;

LND DUAL;

P 1=NPI-i;

N2DUM=NUPAGE;

THEN 00;
NPL=NP-KNP;
GU TO ENT3;
END;

PRULEDURE;
DIAGONAL ENTRIES FUR THE SINGLE SYSTEM

N1=0; NPI=NP;
DU i=1 TU K-1;

NIDUM=NI.;
IF NU>=NUPARAL THEN NIDUM=NQPARAL;
IF NP=i THEN GO TO ENT4;
DO KNP=I TC NP;
IF Ni=N-NP+KNP THEN DC;

NPl=NP-KNP;
Gu TO ENT4;
t ND;

IF N1=STOP

ENT3:

CUNT 3:



P I( It 1I)=-( (N1IDCUM)*U+(INP I)*L );
NI=Ni+1;
eND;

LNTER UPPLR AND LDWER DIAGONAL ENTRIES FOR T.HE SINGLE SYSTEM */
iii=O; NPI=NP;
Du 1=2 TO K;

IF Nl>=NDPARAL THEN NIUUM=NuPARAL;
ELSE NlDUM=I-i;

DU KNP=L TC NP;
IF N1=N-NP+KNP THEN DU;

NPl=NP-KNP;
GO TO EN15;
END;

END;
PI(1, 1-1)
Pi (1-1, 1)
Ni=Nl+i;

=NPI*L;
=NiDLM*U;

END;
END SINGLE;

ENu ANALYZE;

ENT4:

ENT5:

DONE :



SYSTEM CONFIGURATION IS 1
I/O MODEL
NO QUEUING

NUMBER OF PROCeSSORS= 1
DEGREE OF MULTIPROGRAMMTNG(N)=
NUMBER OF SYSTFM EQUATIONS(K)=

EXPECTED TIME BETWEEN I/O'S(MLMSEC)= 33.33333
PEOUEST RATE(L,MSEC)=0.03000

EXPECTED TIME BETWEEN SERVICES(MUMSEC)=50.0000)
SERVICE RATE(UMSEC)=0.02000

CONSTRAINT RELATION SUMPI YIELDS SUM_PI= 1.00000
STEADY STATE FRACTION OF CPU IDLE TIME=.01418
STEADY STATE FRACTION OF CPU BUSY TIME=0.98582

TID(MSEC)= 0.07092

STEADY STATE SYSTEM THROUGHPUT(JOBS/MIN)=29.57449.

STEADY STATE
STFADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE

PROBABILITIES
( f)=0.22413
1 0)=0.33619
2 0)=0.25214
3 0)=0.12607
4 0)=0.04728
( 5 )=0.'1418



SYSTEM CONFIGURATION IS 1
I/O ODFL

FCFS QUEUING

NUMBER OF PROCt.SSORS= 1
DEGREE OF MULTIPROGRAMMING(N)=
NUMBER OF SYSTEM EQUATIONS(K)=

5
6

EXPECTED TIME BETWEEN I/O'S(MLMSEC)= 33.33333
REQUFST RATE(L,MSFC)=0.03000

EXPECTFD TIME BETWEEN SERVICES(MU,MSEC)=5). 00l0
SERVICE RATE(U,MSEC)=0.02000

CONSTRAINT RELATION SUMPI YIELDS SUM-_P= 1.00000
STEADY STATE FRACTION OF CPU IDLE TIME=0.36541
STEADY STATE FRACTION OF CPU BUSY TIME=0.63459

TIO(MSFC)= 1.827'3

STFADY STATE

STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE

SYSTEM THROUGHPUT(JOBS/MIN)=19.03778

PROBABILITIES
( 0 0)=0.04812

1 0)=0.07218
( 2 1)= .13827
3 0)=0.16241

C 4 0)=0.24361
( 5 ')= .36541



SYSTEM CONFIGURATION IS 1
PAGE MODEL
NO QUEUING

NUMBER OF PROC:SSORS= 1
DEGREE OF MULTIPROGRAMMING(N)= 5
NUMBER OF SYSTEM FQIJATIONS(K)= 6

EXPECTED TIME BETWEEN I/O'S(ML,MSEC)= 1.90476
PEQUEST RATE(LMSEC)=0.52500

EXPECTED TIME BETWEEN SERVICES(MUMSEC)=10.94000
SERVICE RATE(U,MSEC)=0.09141

CONSTRAINT RELATION SUMPI YIELDS SUN.PI= 1.003
STEADY STATE FRACTION OF CPU IDLE TIME=0.34211
STEADY STATE FRACTION OF CPU BUSY TIME=0.65789

ON

TPAGE(MSEC)= 4614.09766

STEADY STATE SYSTEM THROUGHPUT(JOBS/MIN)=19.73654

STEADY STATE PROBABILITIES
STEADY STATE ( 0 0)=0.00657
STEADY STATE ( 1 0)=0.03773
STEADY STATE ( 2 0)=0.10834
STEADY STATE ( 3 0)=0.20742
STEADY STATE ( 4 )=0 .29T83
STEADY -STATE ( 5 0)=0.34211



SYSTEM CONFIGURATION IS 1
PAGE MODEL

FCFS QUEUING

NUMBER OF PROCE3SORS= 1
DEGREE OF MULTIPROGRAMMING(N)=
NUMBER OF SYSTEM EQUATIONS(K)=

5
6

EXPECTED TIME RETWEEN I/O'S(MLMSEC)= 1.90476
REQUEST RATE(L,MSEC)=).525.)0

EXPECTED TIME BETWEEN SFRVICES(MUMSEC)=10.94000
SERVICE RATE(U,MSEC)=0.09141

CONSTRAINT RELATION SUMPI YIELDS SUM_PI= 1.00000
STEADY STATE FPACTION OF CPU IDLE TIME=0.82591
STEADY STATE FRACTION OF CPU BUSY TIME=).174J9

TPAGE(MSEC)= J1139.07813

STEADY STATE SYSTEM THROUGHPUT(JOBS/MIN)= 5.22262

STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADlY STATE
STEADY STATE

PROBABILITIES
0 0)=0.00013

( ) )= .3376
( 2 0)=0.00436

3 0)=0.02504
( 4 0)=0.14380
( 5 0)=0.82591



SYSTEM CONFIGURATION IS 2
COMBINED PAGE AND I/O MODEL

FCFS QUEUING

NUMBER. OF PROCESSoRS= 1
DEGREE OF MULTIPROGRAMMING(N)= 2
NUMBER OF SYSTEM EQUATIONS(K)= 6

EXPECTED TIME BETWEEN PAGE FAULTS(MSEC)=23.52940
PAGE FAULT RATE(LPMSEC)= 0.04250

FXPECTED TIME BETWEEN I/O REQUESTS(MSEC)=33.33333
I/O REQUEST RATE(LIMSEC)=.)3?I

EXPECTED TIME TO SERVICE A PF(MSEC)- 10.94000
PAGE SERVICE RATE(UPMSEC)=0.09141

EXPECTED TIME TO SERVICE AN I/O(MSEC)=50.00000
I/O SERVICE RATE(UIMSEC)= 0.02000

CONSTRAINT RELATION SUM_PI YIELDS SUM_PI= 1.) 00
STEADY STATE FRACTION OF CPU IDLE TIME=0.51621
STEADY STATE FRACTION OF CPU BUSY TIME=0.48379

EXPECTED CPU QUEUE LENGTH=0.647
EXPECTED 10 QUEUE LENGTH=1.093
EXPECTED PAGE QUEUE LENGTH=J.26)

STEADY STATE SYSTEM THRJUGHPUT(JOBS/MIN)=14.51377

STEADY STATE PROBABILITIES '
STEADY STATE ( 0 0)=0.16317
STEADY STATE ( 1 0)=0.24476
STEADY STATE i 2 =.36714
STEADY STATE ( 0 1)=0.07586
STEADY STATE I 1 1)=0.11380
STEADY STATE ) 2)=j."3527



SYSTEM CONFIGURATION IS 2
COMBINED PAGE AND I/O MODEL

SCHEDULING PAGE CHANNEL

NUMBER OF PROC':,SORS= 1
DEGREE OF MULTIPROGRAMMING(N)= 2
NUMBER OF SYSTEM EQUATIONS(K)= 6

EXPECTED TIME BETWEEN PAGE FAULTS(MSEC)=23.52940
PAGE FAULT RATE(LPMSEC)= 0.04250

EXPECTED TIME BETWEEN 1/0 REQUESTS(MSEC)=33.33333
I/O REQUEST RATF(LI,MSEC)=0.03000

EXPECTED TIME TO SERVICE A PF(MSEC)=. 1.94c00
PAGE SFRVICE PATE(UP,MSEC)=0.09141

EXPECTED TIME TO SERVICE AN I/0(MSEC)=50'.Ox000
I/O SERVICE RATE(UI,MSEC)= 0.02000

CONSTRAINT RELATION SUM_PI YIELDS SUM_P1= 1.00000
STEADY STATE PRACTION CF CPU IDLE TIME=i.50)752
STEADY STATF FRACTION OF CPU BUSY TIME=0.49248

EXPECTED CPU QUEUE LENGTH=0.659
EXPECTED 10 QUEUE LENGTH=1.t12
FXPFCTED PAGE QUEUE LENGTH=0.229

STEADY STATE SYSTEM THPOUGHPUT(JoBS/MIN)=14.77433

STEADY STATE PROBABILITIES
STEADY STATE ( 0 0)=/.1661'
STEADY STATE ( 1 0)=0.24915
STEADY STATE ( 2 0)=0.37373
STEADY STATE ) 1)=J.07723
STEADY STATE ( 1 1)=0.11584
STEADY STATE ( 0 2)=0.01795



SYSTEM CONFIGURATION IS 2
COMBINED PAGE AND I/O MODEL

NO QUEUING

NUMBEP OF PROCESSORS= 1
DEGREE OF MULTIPROGRAMMING(N)= 2
NUMBER nF SYSTEM EQUATIONS(K)= 6

EXPECTED TIME BETWEEN PAGE FAULTS(MSEC)=23.5294)
PAGE FAULT RATE(LP,MSEC)= 0.04250

EXPECTED TIME BETWEEN I/1O REQUESTS(MSEC)=33.33333
I/O REQUEST RATE(LI,MSEC)=J.03)rj

EXPECTF TIME TO SERVICE A PF(MSEC)=..10.94000
PAGE SERVICE RATE(UP,MSEC)=0.09141

EXPECTED TIME TO SERVICE AN I/O(MSEC)=50.00000
I/O SERVICE PATE(UI,MSEC)= 0.02000

CONSTPAINT RELATION SUMPI YIELDS SUMPI= 1.00000
STEADY STATE FRACTION OF CPU IDLE TIMF=0.39435
STEADY STATE FRACTION OF CPU BUSY TTME=T.60)565

EXPECTED CPU QUEUE LENGTH=0.810
EXPECTED 10 QUEUE LENGTH=0.908
EXPECTED PAGE QUEUE LENGTH=L.282

STEADY STATE SYSTEM THROUGHPUT(JOBSIMIN)=18.16956

STEADY STATE PROBABILITIES
STEADY STATE ( 0 0)=0.20427
STEADY STATE ( 1 0)=0.30641
STEADY STATE f 2 J)=0.22981
STEADY STAT.E ( 0 1)=0.09497
STEADY STATE ( 1 1)=0.14246
STEADY STATE ( 0 2)=0.02208
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APPENDIX B: The Queuing Network Analysis Program

The extended program listing that follows solves the queuing network

model of SPM. The input and output functions are defined on the sample

butputs which follow. The C-N normalizing constants which are by-pr.oducts

of the computational algorithm are output along with the performance

information. They have been used within the program to generate

the key marginal distributions outlined in section (4.4.4).



SPM: Pi<L),ELDURE UPTIUNS(MA IN);
LLARE(j IN CLLNTCALNCHAN HNLSU I10 LHAN,

NuPAGECHANdNO-jOS,NU-PAGEFAULlS) F-IXED BIi1ARY(L5,c6);
DEhCLARE (UTILIZTHRQUUGh_ PUTMiUI,MUPMCPUpUIUPUCPU,

Li4MPOPIPPPQSUMtQIC2,C,3) FLUAT '!NAiRY*
DECLARE (tw~i,41J), X(CH-ANCuUN1)) fINAIk Y FLUAT CTL;
ULCLARE (Q_DEV2, _DLV3) 6INARY kLuAT (5_ );

UN LNuF[LEISYSIN) Gb TO DUNE;

GETUAT: GET LIST(NNb_ LU_CHAl\qNU_.PAGECANMU,UPNUJU0S,
NuPA(2,EFAULTS,tiAEANEXECTIMLE);

UP=I/VUP; UI=1/MUI;
/*uLc<AII,E~ PATH SELELTIUiN PkUI3AtILITIE$ PO, P1, PP AND UCPU FOR LS M

D LNU~I= NU_ i US +NU_P AG E_ F AU -L IS+.1
UC;PU ( NUI IUS +N_P AG EFAU LT S + 1/MEA\_ ECT IME;

,M4AU= 1 /ULPU;
PU= 1/ Dt:NuM;

PP~i\'.U_-PALL_- AULTS/DEI\OM;
SUM_PI=Pu+P1i-PP;

*1/?1INIIL7ALILL UNf LALLULATING MATRIX
L HAN-_CuUid=NU_l LC-AN+ NU_PAGE_C;HAN +1;
I=Ni-i; J=GHAt\_COUNT;
ALLUCATE GN;
U 6J= I3 T J 'ANCUOUN T

UU 1=1 13 Ni-1;

ENP4D;

/*CALCULATE TiHE CuLUMN NULTLPLIERS
ALLuCAIL X;
X (2) =UCPLu#PP/ UP;



X(3) =UCA'U*P Il u;

1* INLTIALILL' FUR SUMS

WDt'V 2= 0;
Q-IULV3=U;

/*CALCULATE GiN ENTRIES
UU J=2 13 L-ANCOUNT;
DU 1=2 iu Nt-i;

1l*- J=LhiA ULUNI & L-'=N+ I THEN QSUM=QSUM+GN(1J;
END;

/*CALC.ULAIE Qg SUMs>
DU K=i TJ

u-.iLV2(

'NU;

FUR THE OTh-ER DEVICES
N-i;
X( 2) i*K)*G\( Nt-i-K, CHANCUUNT) +WDLV2;

D0 K-i TJ N-i;
Q_.DtV3=(X(3)'**K)*GN(N4-i-KCHANCLiUN1)i-tDV3;'

END;

/*C;ALLULAIL- SYSTtEN UTILIZATIUN F-UR CSM
UTILLiNi.(NlClANCUNT)/GN(N+iCHANCUNI';

/*LALLULATL ,YSTU-M In RUUGH-PUT
TtRUGIiPUT=UTLIZ*60*iuOU/MEANEXEL-_1IME;

/*CALL ATE EXPECTELJ QUEUE LENGTHS
wi=,\4SUMi,/GN(N,+1,ULHANCOU)NT);

Qj2=-'_D)EV/GiN(N+1,CHIANCUUNT);
w.=-w_ DLV3/u.,~tN1,CHANCjUNT);



/*JUjflUT RESULTS
PUT PAVEt;
PUT aisit(6) F-DITM'ENTfkAL SERV
PUT StiP LuIT('F-CFS WUEUINGt)(

/~k1 O UT of- MATRIX
PUT SKIP(3) ;

bu J=1 Li C HANCOUNT;
Lid 1=1 IN+1;
PUT ,>KIP EDIT('GN(

(LUL Uk4( iL) ,A (3
L IN 1);

ER MODEL I)(COLUMN(53),A (20))
C0LUMNd 57) ,A(12));

tNV;
PUT SKLP(2) LUIT('rNUMbEK~ OF PR0CLSS0~RS',lv)

(OULUMN (I16) , A
PUT SK<IP EDIT('UDERI UF MULTII

(LULUikd £6) ,A(39)

PUT SKIP EUIT('LXPLLTEG SERVICI

PU'I SKIP LUITtL'LXPLCTEI& TiIE Ii

PUT SKIP EUMI(LXPL -lb TIME Ti
lLULUfliN( 16) A(3b)

P UT SK~IP(2) ELIT('CUNSIRAINT k
( CuLUmvIN( 1.6) ,A(

PUI SKiP LuIT('Pu-=,#Pu,' PV-'

PUT srNIP(z) EOIT(l.STLADY STATE

PUT SKIP LUIT('XPLLILU LEN61H
(LULUMiN ( 1 ) 1,A(2 2)

PUT SKIP EDIT( 'EXPECTEU LENGJH

PUT SKIP ED&l ('l:XPLCTL) LENGTH

(2

ET

F-

EL

(4,0));
6LtN CHAI\iN.LL kLQUESfS',jMCPU)
t~,5 )

oRATE uF LPUllViSEC)=',UCPU)
-1,5));
SERVILL A PF(MrSL),MUP)
(61 5));

SLRVILL AfN I/U[NISEC)', MUI)
(0, 5) );-
ATIj\ SUM_ P1 YILLDS SUM_-PI=tSUM-PI)

,pi , PP=',pPP ) .,ULUM4(i16),

[i-AIiuN UP CPU 6JSY TlMt=',UTILIZ)

3c) F(5) );

LF 1/(j tULUE=',Q3J
,F(8v,5)) ;

ulF P AG E ( UllUE Q 2)
(CULUiN ( 16) A 13CG)tf:-(8 ,5 )) ;



PUT >KIP(2) tOIT(*SYSTEM THROUGHPUT( JOBS/MIN)=" ,I HRLUGH_PUT)
(COLUMN(16),A(28),F(7,2);

FREE X;
FKEL GN;
GU 1'J GETDAT;

UNE: END SPM;

ui



CENTRAL SER~VER MUDEL
FCFS QUEUING

1,
2,
3,
I,
2,
3,
1,
2,

ii =

=

3J =

1.ecLcCO
I1. COcuO
2. C(LL(A
1. C(Itio
1. 4t4S4t
1. 61L 110
I .# kc u

2 *3

NUhbLk Lu- PRLLuLSSLAS= 1
LEORc~La- Ue LLT1PiuAMSIIGCN) 2

EXPL~.,ftU TIME tEIhLN LC[ANNEL FECUESTS=i3-6SSOO
EXLt.LCITLO SEAVIL RATE Gi- CPU(P~SEC-1)= 0.013OC

LXPLUILU TIME "IU StR-VICE A PFU SEL)1O.S4(CCC
LXitLTLD Tit-E1 TL ERVILL AN I/C(tYSEC)=_SCi.CCLCO

LGfN$kAINT fkLLATICN SUM -F! YIELUS SLuM_ P=. 1.G0000
Pu=Q.uuod: P10.L.4iu~b p= PP. 10E 2 19

SILADY STATE FRACT
tX4-cGTtU LENGTH LE

LXPtUILU LENGTh CF

LXPELILU LEN6TH LI-

ILN LF CPL ELSY TIME=0.483E0
CPU (CLELE= L.4838U
1/0 (.LELE C.725663
PAGE f.LEUE= 0.22494

SYsIEMf IfLUHPU(JUiS/1N)= 1'i .5 1

C Nt

Ih.N(

UN~ (
(A\

UN ~t



CEN~TFAL SERVER MODEL
IF C F 5 (.UEUI N G

1)= I.C LU 0

I L 0 0 C

eJ 2.53134

J=i. LLitj
J J 4 . U 9

I Lu . s2 i -o5

NUiN6LK UF
ELCRL bi-
EXPLLt) T
EXPELLuL S:

LXPLLILL) T

LLNSTRfiL)iT

P U=- i * -

p R~ L C
V ~LL f
I M L
E 'v I
I PI
IIVL

LSSs= 1
i iPUM1ING (N)= 3

i3LThEEN ChANNEL RECLESTS= 5.E66C9
LL RAIE CF CPUUV'SLEC-i)= C.LIC47
TL SEKVICL A PF (PSEL)=1C.SztLLC
TL SLRVILL AN I/CfV~SC)=5.CCC0C

fLLATICN SUM_-1 YILES SUM_ P1= t.Ut)OU
P1=C.il.5s5 PP=.b8i111

S~TAUY' S
LXPLI LD
LX P tLfLUL
EXPLU~LD

TATE Fr ALT
LEN61H (-
LENGTIH LF
LENGTH UF

ION CU- CPU ELSY TIME=0.AS5t
CPU ( LLUE= C.C0179
1/U (LLUE= I.C2'd3
PAGL LEUE= 1.05355

SYSTEMI THkUU.,'i2&lUJjOS/MIN)= 13.iS

GN(

GN~

G(

UJN(

3'

3'
41,

1 ,

(A\( 4, - J=1, i.b 4



158

APPEIDC C: The General Purpose Systems Simulation Program

The following extended program listing is for the GPSS simulation

1which was used to model SPM. The program is explained by block diagrams

in section (5.3.4). The technique that permits use of the same model

for varying levels of N as well as varying path Selection probabili1ties

is shown of pages1a-1_ . There, the block redefinition statements which

follow the initial start up of the model facilitate the solution o:f the

model for the various loads and parameters.



REALLOCATE STO,0,COM,7000
*LAB OPERATIDN A,B,C,D,E,F

GIVE MORE MEMORY
COMMENTS

TO COMMON POOL

SIMULATE
*

* FUNCTION DEFINITIONS

1 FJNCTIUN
.00990,1/ .40594,
2 FUNCTION
.0685, 1/.58904,
3 FUNCTION

.00293,1/. 82404,
4 FUNCTION

RN3,D3
2/1,3

RN3,D3
2/1,3

RN3, D3
2/1,3

RN3,D3
.00178,1/.893U5,2/1,3

5 FUNCTIUN RN3,D3
.00090. 1/.94509,2/1,3
6 FUNCTION RN3,03

.0u044, 1/.97346,2/1,3
7 FLJNCTION RN3,D3

.00027,1/.983&1 ,2/1,3
8 FUNCTION RN3,D3

.00020,1/.98815,2/1,3
*

XPUIS FUNCTIUN RN2,C24
0.0,V.0/0.1,O.104/0.2,O.222/0.3,0.355/0.4,0.509/0.5,0.69
0.6, u.915/0.7, 1.2/0. 75, 1.38/0.8, 1.6/0. 84,1.83/0.88,2. 12
0.9,2.3/0.92,2.52/0.94,2.81/0.95,2.99/0.96,3.2/0.97,3.5
0.98,3.9/0.99,4.6/0.995,5.3/0.998,6.2/0.999,7.0/0.9997,8.0
*

*

* ELEMENI SAVE VALUES DECLARATIONS/INITIALIZATIONS
INITIAL X5,50000000/X11,1981/X22,5000/X33,1094/X34,120000000

*

* TABLE DEFINiTIONS



CPUL-N TABLE
IOQLI TABLE
BKQLN TABLE
JBTIM TABLE

P1,o,1,W5 TABLE FOR CPU LENGTHS
Pl,0,1,W5 TABLE FOR 10 LENGTHS
PLO,1,W5 TABLE FOR BKST LENGTHS
MP2,0,O00000,100 TABULATE JOB TIMES TIME UNIT MSEC/100

*VARIABLE DEFINITIONS
THRPT VARIABLE X5*N$TERM/X34

*MAIN PRUGRAM SEGMENT
KEY LENERATE ,,,I,1

MARK 2
DETPR ASSIGN 1,1,1
CPUIN QUEUE CPUQ

SEIZE CPU
DEPART CPUQ
ADVANCE X11,FN
RELEASE CPU
TEST NE P1,1,T
TEST NE Pi,2,B
QJEUE I DQ
SEIZE IOCH
DEPART IDQ
ADVANCE X22,FN
RELEASE IOCH
TrANSFER ,DETPR

BKSTD QUEUE BKSTQ
SEIZE BKST.
DEPART BKSTQ
A JVANCE X33,FN
RELEASE BKST
TRANSFER ,DETPR

TERM TABULATE JBTIM
MARK 2
TRANSFER ,DETPR

,2,F

$XPDI S

ERM
KSTO

$XPDIS

$XPDI S

STEADY STATE SYS THPT JOBS/HOUR

ESTABLISH THE DEGREE OF MULTIPROGRAM
ESTABLISH JOB ENTRY TIME FOR NEW JOBS
PARM1 IS PTH SELECT VEH BASED ON RUN
GATHER Q STAT FOR CPU
CPU IS.A FACILITY
LEAVE QUEUE
ADVANCE FOR CPU PROCESSING
FREE CPU FOR OTHER PROGRAM EXECUTION
IF Pl HAS VALUE I GO TO TERM
P1=2 GO TO BACKING STORE
OTHERWISE QUEUE UP IN I/O CHANNEL
GET CHANNEL
EXIT STATISTICS ROUTINE
1/O SERVICE
DONE WITH CHANNEL AND DEVICE
RETURN FOR CPU PROCESSING INTERVAL
PAGE SERVICE INITIATED
GET PAGING DRUM
COMPLETE STAT.
FIXED RATE OF PAGE SERVICE
FREE FOR NEXT FIFO ENTRY
RETURN FOR CPU PROCESSING INTERVAL
DETERMINE JOB EXECUTION TIMES
ESTABLISH NEW ENTRY JOB TIME
BLOCK COUNT HERE IS NUMBER OF TERM



GENERATE
SAVEVALUE
TERMINATE

X34
4,V$THRPT
1

EVALUATE THROUGHPUT
SHUT OFF THE RUN

* LOGIC TO ESTIMATE LINE LENGTH DISTRIBUTION
*

* QUEJE LENGTH DISTRIBUTION - CPU
GENERATE ,,,l,,2,F

KEEP1 ASSIGN lt$CPUQ
MARK 2
TEST NE PlQ$CPUQ
TABULATE CPULNMP2
TRANSFER ,KEEPI.

*

* QUEJE LINE LENGTH DISTRIBUTION -
GENERATE ,,,1,,2,F

KEEP2 ASSIGN 1,Q$OQ
MARK
TEST NE
TAB3ULATE
TR<ANSFER

P1,Q$IOQ
100LN, MP2
,KEEP2

* QUEUE LINE LENGTH DISTRIBUTION -
GENERATE ,,,i,,2,F

KEEP3 ASSIGN 1,Q$BKSTQ
MARK
TEST NE
TABULATE
TRANSFER

2
Pl ,$BKSTQ
BKQLNMP2
,KEEP3

START
RESE T

SEED CPU LNGTH-DISTRIB SEGMENT
Pl=CURRENT LINE LENGTH
P2=ABSOLUTE CLOCK TIME
WAIT FOR A NET CHANGE IN LINE LENGHT
RECORD OLD LING LENGTH, WT BY DURATI
BACK TO WAIT F-R NEXT LINE CHANGE

I/O '
SEED 10 LNGTH-DISTRIB SEGMENT
Pl=CURRENT LINE L'-NCTH
P2=ABSOLUTE CLOCK TIME
WAIT FOR A NET CHANGE .IN LINE LENGHT
RECORD OLD LING LENGTH, WT BY DURATI
BACK TO WAIT FOR NEXT LINE CHANGE

BKST
SEED BKS LNGTH-DISTRIB SEGMENT
PI=CURRENT LINE LENGTH
P2=ABSOLUTE CLOCK TIME
WAIT FOR A NET CHANGE IN LINE LENGHT
RECORD OLD LING LENGTH, WT BY DURATI
BACK TO WAIT FOR NEXT LINE CHANGE

START THE FIRST RUN FOR 20 MIN



ASSUME STEADY STATE IEACHED RUN 2 IN

KEY GCNERATE
DETPR ASSIGN

IITIAL
CLEAR
START
RtSET
START
RESET
START
RESET
START

KEY GENERATE
DETPR ASSIGN

INITIAL
CLEAR
START
RESET
START
RESET
START
RE SET
START

KEY GENERATE
DETPR ASSIGN

INITIAL
CLEAR
START
RESET
START

,,,2,1,2,F N(DEGREE OF MULTIPROGRAMMING)=2
1,1,2 2ND PROB DISTRIBUTION
X11,1370 ADVANCE FOR NEW CPU PROCESSING INTER
X5,XI1,X22,X33,X34
1 START THE SECOND

2 A
,,,3,1,2,F N
1,1,3 3
X11,587 A
X5,XL1,X22,X33,X34

SSUME STEADY STATE
=3
RD PROB DISTRIB
OVANCE FOR NEW CPU

REACHED RUN 2 IN

PROCESSING INTER

START THE THIRD

ASSUME STEADY STATE REACHED RUN 2 IN

, , ,4, 1,2 ,F
1,1,4
Xl1,357
X5,Xl1,X22,X33tX3
I

N=4
4TH PROB DISTRIB
ADVANCE FOR NEW CPU
4
START THE FOURTH

PROCESSING INTER

START
RESET
START
RESET
START



ASSUME STEADY- STATE REACHED RUN 2 IN

KEY GEYNERATE
UETPR ASSIGN

IN IT I AL
CLEAR
START
RESET
START
RESET
START
RE SET
START

KEY GENERATE
DETPR ASSIGN

INITIAL
CLEAR
START
RESET
START
RESET
START
RE SET
START

KEY GENERATE
DETPR ASSIGN

INIT IAL
CLEAR
START
RESET
START

,,,5,1,2, F
1,1,5
X1l, 180
X5 ,X 11,X22,X33,X3
I1

N=5
5TH PROB DISTRIB
ADVANCE FOR NEW CPU PROCESSING INTER

START -THE FIFTH

ASSUME STEADY STATE REACHED RUN

, ,,6,,2 ,F
1,1,6
X11,88
X5,X11,X22,X33,X3

N=6
6TH PROB DISTRIB
ADVANCE FOR NEW
4
START THE SIXTH

ASSUME STEADY STATE

, ,T ,,2,F N
1,1,7 7
XI,55 A
X5,X11,X22,X33,X34

=7
TH PROB DISTRIB
DVANC5 FOR NEW CPU

CPU PROCESSING

2 IN

INTER

REACHED RUN 2 IN

PROCESSING INTER

START THE SEVENTH

RESET
START
RESET
START



RESET
START
RESET
START

*

KEY GENERATE
DETPR ASSIGN

INIT IAL
CLEAR
START
RESET
START
RESET
START
RESET
START

ASSUME STEADY STATE REACHED RUN 2 IN

,,,8,1,2,F N=8
1,1,8 8TH PROB DISTRIB
X11,39 ADVANCE FOR NEW CPU PROCESSING INTER
X5,X11,X22,X33,X34
I START THE EIGHTH

ASSUME STEADY STATE REACHED RUN 2 IN

END
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