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ABSTRACY

The System Process Model (SPM) is used to represent behavior of
the multiprogramming module of a compiver system operating under a demand
paging strategy. It models the syster as a network of states and assoc-
iated queues. The level of multiprogromming is varied by chanpging the
average rumber of pages that users are permitted in main memory. De-
vices are explicitly characterized by parameters representative of their

@thJOr, and sample programs run undes CP-67 are parameterized in terms
of I/O ard paging dCtLVltV for use in representing jobs in the systen.

With the intention of using this model for performance ﬁr010CuLuﬂ,

a potential problem characteristic of such virtual memory systems is
cussed. The thrasing vroblem is defined as the less than optimal
svstem resources resulting from excessive comPetition for primury
jemory. Novel definitions for pinpointing this degredation are provosed.

SPM is then used as a vehicle to analyze the operations of a CP—GT
like system. Performance is predlcted under full lecad for varinus levels
of multigrogramming auu optimal perferiance as well as thrasnjng degreda-
tion are guantified. g&cheduling is shown to be a key tecinigue for improv-
ing sycstem pO"formunco as well as improvements in device technology. An
interesting characteristic of the system, the law of diminishing returns
to scale, is uncovered as a result ol the investigations.

Analysis is performed with both anelytical and simulation models.
This perrits comparative analysis of the methods based on some interest-
ing and revealing criteria. The techniques, which are of both theoret-
ical and practical value in the area of performance evaluation, are rat-
ed on their approach to modeling SPM. '
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SYNOPSIS AND ORGANIZATIONAL REMARKS

The abstracf is provided as an overview of the contents of this
thesis. The following outline gives a more indepth loock into the chap-
ters. This will facilitate selection of the most appropilate
for the reader.

CHAPTER 1: motivation for computer modeling is provided as well
as a brief introduction to current techniques being
used in the field. The thesis objectives are stated.

CHAPTER 2: a review of the literature is given and the specific
‘work of researchers that is relevent to this thesis
is discussed in more detail,both in analytical and sim~
ulation modeling.

CHAPTER 3: an example multiprogrammed, demand-paged, virtual mem-
ory system is presented. A conceptual view of the com-
puter called the System Process Model is proposed to
represent the system i . a manner conducive to perforui-
ance -evaluation.

CHAPTER U: analytical models are designed and solved in an attempt-
to provide useful information about the system under
study. This includes analysis of continuous time
Markov-state models and a. queuing network model which
is another continuous time Markov modéel .
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CHAPTER 5: a simulation model is developed and implemented to
study the same system. Characteristics and problems
of simulation are outlined, and then tackled in the

| GPSS model designed. wxtenr.ons of simulation anal /-
sis are discussed.

CHAPTEB_Q: the performance projection results are obtained and
discussed at length. Thrashing is pinpointed, the cp-
timal level of multiprogramming is found, and schedul-
ing of critical devices is shown to improve system per-
formance. The device technology of the paging channecl
is upgraded with encouraging performance results. The
system as a whole is observed to obey the law of dimin-
ishing returns.

CHAPTER 7: the modeling techniques are compared on the basis of the
level of detail describable, the number of parameters
needed to describe the model, the ease of implementathion,
the ease and exactness of the solution, and the overall
cost of the approach. In addition, areas of future re-
search are suggested.

APPENIIX A: a PL/1l program,used to solve the continuous time Markov-
state models, is displayed with an extended program list-
ing and sample output.

APPENDIX B: a PL/1 program , used to solve the queuing network mod-
el, is displayed with an extended program listing and
sample outputb.

APPENDIX C: the extended program listing of the GPSS model is pre-
’ sented.

Chapters 1 and 2 are review for anyone familiar with computer modeling.
They are suggested for the reader interested in an introduction to this
field.

Chapter 3 lays the ground work for the rest of ihe thesis and should
be read in its entirety. The proposed computer system module is presented
in detail so that the conceptual model, SPM, can be completely specified.

Chapters L4 and 5 are basically independent, presenting the analytical

and simulation models used in analysis of SFM. However, the parameter-
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ization of the GPSS simulation in Chacer 5 is based on the underlying
path selcction formulation of the quewuing rnetwork model in Chapter %o
So, in fact, sections (L.h.1 and 4.L,?) which introduce the sy;tem
representation for the network of quees are recommended prerequisites
to Chapter 5.

Chapter 6 presents the results ottained forvthe performance projection
performed and is essential to the understanding of the flavor of the
models. |

Chaptér 7 is of interest to the reader that is about to select a
modeling technique for system analysis. It provides insight into the

approaches taken in this modeling effort.



CHAPTER 1

INTRODUCTICN

1.1. The Need For System Modeling -

The better paft of a quarter century of research and development in
the computer industry has brought us from the days of the original stored
program computer to complex, time-sharec, multiprogrammed, multiprocessor,
demand—paged, virtual storage, emulated computers. Yet, wheq_a group of
interested compﬁter bodies were probed by Dr. Phister of Xerox Data Sﬁstems
on the industry as a phenomenon (Pl), no one was willing to deny that the
industry is in it's infancy. This means that the multipurpose systems
we have now are in the very process of evolving, being dynamically
reconfigured to meet new needs.

A variety of observations have been made about systems of this nature
with regard to performance evaluation and modeling. Célingaert (c1),

Lucus (Ll1), and Estrin (Fl) have extensively surveyed and appaised the



14

current and relevent issues of this discipline. One general point that
is made in these papers is that both derigrn and maintainence of these
complex systems is usually inadequate "inless modeling and analysis com-

[
plements the efforts. More fundamentally, it has been found that the
cost of developing and maintaining efficient systems of this kind be-
comes prohibitive if care is not taken to understand the capabilities
and limits pf the utility. It is ﬁodeling then, that serves as the
vehicle for system design and analysis Ly predicting behavior in an en-
vironment likened to the real systenm.

In some cases these models have provided detalled descriptions of
systems by there self-docunenting nature. Genérally, they have provided
valuable insight into system bottlenecks, demonstrated complex inter-
dependancies, led to more intelligept measurenents, and heen the catalyst

for improved system performance.

1.2, Approaches To Systen Anaiysis: Analytical And Simulation Models

The. general approach taken in computer modeling and performance
analysis involves isolating key parameters of system behavior; then,
through their interaction in a system model, Varyingvthe parameters to
determine subtle interrelationships among software and hardware resources.
This approach can be part of a feasibility study as well as an evaluation
of an ex’sting system.

It is the actual modeling tools to which we now direct our attention.
The modeling methodology relevent to work in this thesis can be classified

into two categories: analytical modeling and simulation modeling. These

techniques will be reviewed here as an introduction to the approaches that
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wi;l be vsed to study multiprogramming in a demand-paged computer system.
Both of these modeling techniques will be discussed in greater detajl
when the literature review is presented in Chapter 2, when actual models
are appled to problem solving in Chapters L and 5;'and when the tech-

niques are compared in Chapter 7.

1.2.1. Analytical Models

Ana.vytical models are mathematical conceptions of a system as op-
posed to thé digital computer stochastic representation discussed in
the next section. These models utilize a variety of underlying approach-
es to formulate solutions for teprowsed system and can be classified on
this basis.

Continuous time Markov models. form one group. They are character-
ized by their explicit représentation of all possible states in the system,
with the values of the states defined in a manner that permits insight
into system operation. Representation of the system is based on the
Markov property. Balance equations are usually written for the steady
state and have been solved by a variety of techniques; somet;mes ap~
proximation methods must be used and in some cases closgd form solu-
tions are available. These models have been applied to the study of a
wide variety of waiting line situations, i.e. queing networks.

In s-me situations the system to .e modeled is not really Markov
in nature. In order to make the Markovian assumption, it is neces-
sary to study what is known as the embedqed chain., This approach per-
mits analysis of the above nature to be performed and yields results

about the original system. Examples of the use of this technique are
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found in the study of the M/G/1 queing system and the stuay of priority
queing networks.

Math programming models have alsc been applied in operating sys-
tems optimization problems as well as more ccnventional models é;sed on
the fundamental principles of probabiliaty theory. The former models
represent the computer system in terms of a cost minimization or max;
imization problem and usually require resourceful manipulation of the
system variables to ensure feasibility. The latter models break system
operation down into simple operations that can be probabilisticélly
represented and have provided valuable predictive information.

In general, more ‘expertise is needed in this area than in simula-
tion modeling in terms of model preparation. Also, it is often very
difficult to éztermine the appropriate analytical model for a given sys-
tem, since real world constraints 5ften lead to situations where equa-
tions that are written are infeasiﬁle. Yet, inspite of these draw-

backs, this approach has the édvantage of lower cost.

1,2.2. Simulation Models

The alternative approach to analysis mentioned was simulation;
in this approach, programs are written to execute tﬁe interations of
a proposed system, characterized as an associated set of decision rules
and related probability distributioﬁs. The classification of simula-
tions into categories depends on both the programming language utilized
as well as the system under study. The uniqueness of the model depends
on the techniques used to integrate all of the inputs fof analysis.

A categorization of simulation language has recently been made



17

by Kay (K2). His contention is that the priﬁcipal of virtual time trac-
ed'event execution complemented by a variety of statisical barometers
is basic to each approach in implementation. His "photographs" of the
family t-ee of languages specify the higher-level ianguage family with
simulations writtten in a "host" scientific language, the GPSS-family,
with simulations based on transaction flow through blocks which activate
routines maintaining timing by updating discrete event chains, and the
SIMSCRIPI-family, with simulations written in a prietary syntax, run-
ning time shortened by a system state aspproach that advances ti@e to
the next value when a change of state is immiﬁent, and necessary comn-
piler facilities to handle the most flexible simulation requirements.

 This language classification has been quite general. In fact,
vhen a specific type of system is selected for study, another category
must be added to our simulation repertoire, This is the class of sim-
ulations that describe their system with a parameterized set of inputs.
Motivation for-this approach-to modeling will be provided by brief
mention of a problem encountered in the field of communication sys-
‘tems. There it was found that the hybrid nature of the systh (neither
purely continuous nor purely discrete) posed problems in terms of mod-
eling with the available simulation languages. General‘purpose, higher-
level languages had been employed; however, simulations were prohibit-
ively difficul’ for the communication. engineer, not well versed in
programming techniques. Consequently, a special purpose language was
designed to permit the engineer more programming ease, while at the

same time providing functional blocks to handle the special purpose
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features required in the field (GT7).

This example serves to demonstrate the feasibility of taylored
simulation languages. Now, although the discrete, stochastic nature
o% computer behavior permits modeling by the whole gamut of available
languages, the nature of the system is specialized enough to warrant
a language that permits easier, more accurate descriptions. The bene-
fits gained are a top down approach to modeling by computer people
that are not as familiar with simulation techniques, flexible and vel-
id building blocks, and less chance of errors by the analyist. Lang-
uages such as this were at one time felt to be prohibitive because of
rapid changes in computer technology and the broad range of objectives
of the simulation analyist (H3). However, current research and devel-
opment in this area has proven to be quite profitable (D5,W3).

Whichever langusge is éelected for use in analysis, the techni-
que of simulation is the most well known and widely used tool. There
are various reasons for this; for instance, simulation permits model-
ing various levels of detail depending on the goal of the analyist.
And, it also lends itself to understanding by management, usually less
versed in the actual implementation methods; this results in wider ac-
ceptance of results. Generally it has been said that simulation raises

expectations about predictions more than any other modeling technigue.

1.3 Thesis Objective

The topic of computer modeling has received wide spread attention
in the literature during the past decade, with a variety of analysis

techniques having been cxpoused that provide a means to an end. These



19

ends have taken on many shapes and forms such as selection evaluation,
performance projection,and performance monitoring (L1). The means to
achieve these ends have been as diversified as the analysists that have

,
performed the studies.

It is the intention of this thesits to intergrate and further the
work in this field to date. The goal of the modeling effort is to study
the operation of sample programs ih a (P-67 like multiprogramming environ-
ment and to project system performance under a variety of load conditions.
Then, for the selected computer system configuration, both anal&tical
and simulation techniques will be applied to gain insight into the prob-
lem of pérformance degredation in such a multiﬁrogrammed, demand-paged,
virtual memory syétem. Novel definitions for determiningifthe system is
operating in what is known as the thrashing region are defined. This reg-
ion of degraded performance‘is ideptifiable by the less than optimum
utilization of system resources. Investigation of system performance
under full load conditions is-carried out, and both scheduling of de-
vice activities and improvements in device technology are shown to be
key techniques for improving system performance.

The main intention in selecting this subject material is to lend
insight into both the interdependencies that can arise in complex com-
puter systems and the problems they can cause.

The spproach taken in analyzing tne problem can be termed a muiti-
pronged modeling effort: a representative group of modeling tools se-
lected from a survey of the current literature is resourcefully applied

to study performance of a multiprogramming system. This approach was



no

0

selected in order to permit a compafative analysis of current model-
ing techniques, It yields a variety of observations about their ap-

plicability and value.



CHAPTER 2

WHO'S WHO IN COMPUTrR MODELING

2.1. Overview of the Target System

The introduction to modeling methodology in section (1.2 )
serves as a forerunner to the literature review which follows. It
is here where the mathematicians and cohputer analysists that have
effected the evolution within the modeling field will be discussed.
In addition, the work of those authors that have done work relevent
to this thesis will be presented in greater depth.

To facilitate this review let's begin with an overview of a con-
temporary computer. One simplified view of such a system is shown
in figure‘2-l. Here the standard complement of hardware components is
displayed. The central processor is the traditional instruction in-
tefpreter responsible for job execution., The memory hierarchy can

be viewed as consisting of main (content addressable) memory and



secondary storage (Drum, Disk), the I/0 hierarchy as I/0 buffers in
main meuory, channel control units, ¢ svice ~ontrol units, and the

i .
actual devices themselves. The cooridinator of all of these facili-

CPU

\,

MEMORY HIERARCHY I/0 HIERARCHY

Fig. 2-1 Resource Partitioning in Operating System Overview

ties is the operating system; this key software resource is an open-
ended set of programs that manages the system via its scheduling al-
gorithms and system-wide data bases. This executive or monitor can be
described as coorinating the following minimum set of functions (M2):

Memory Management
This function is in charge of keeping a running account of
memory, allocating blocks of the resource on the basis of
user need via a proprietary algorithm, and reclaiming it
vhen appropiate. This function is also responsible for
supporting exotic virtual s.orage mechanisms when implemented.

Processor Management
This function keeps track of the status of the central proces-
sor(s), assigning the resource to users ready to execute.
It determines the time quantum, if multiprogramming, and
reclaims the resource when control is relingquished or the
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time slice is exceeded,
Device Management
This function keeps track ¢f the resouce paths in use, ¢nd

i determines efficient handling of devices for users raquesting
| service, It specifies the device driver routines.

Information Management
This funtion keeps track of the information resource known
as the file system. It provides protection and primitivea
functions for flexible use of the facility. It handles the
logical aspect of information transfers.

This scenario can be most accurately described by the state
‘transition diagram displayed in figure 2-2. Not only does this figure
demonstrate job flow through the system, but it also provides insight

into the interaction of the above mentioned operating system functions.

I.M,=INFO. MGMT.
D.M.=DEV, MGMT.
M.M.=MEM. «GMT.
P.M.=PRCCESS MGMT.
T.C.=TRAFFIC CONT.

P.S.=PROCESSOR
SCHEDULER
T.3.=TIME-SHARING

Fig. 2-2 Overview of Operating System Operations
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Figure 2-3 shows the same basic¢ diagram, now blocked off into
modelins sectors. Thus, the state di-rraph will be the means for pra:-
senting current modeling efforts, classifying the work of the ana-

lysists on the basis of the computer structures théy have studied.
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2.2. Analytical Modeling

In terms of analytical models, computer behavior has been view-

ed with a queuing theoretic eye. The cdevelopment of queuing techni-
,

ques to deal with waiting lines dates vack to 1902 when Erlang
used congestion theory to analyze the telephine traffic problems
in Copenhagen (K3). Since that time the development of queuing theory
has often been characterized as séemming from "solutions looking for
a provlem" (N1), as mathematicians sucl: as Kolmogorov (Fl), Feller (Fl),
Kendall (K3,K4), Takaecs (T1), and Gorcon and Newell (G5) approaéhed
the theoretical issues of queues and their underlying stochastic processes.
Other mathematicians such as Jackson (J1,J2) Qere no less theoreti-
cal, but were motivated by practical problems. Special technigues have
often been employed in analyzing queues because of the couplexity of
their stochastic processes. Consequently, yhen possible, anglyists
have made use of the theory of Markov chains developed by A. A. Markov
(1856-1922) to simplify théif work (F1,K3). In addition, arguments from
reneval theory have also been found to be of value in faciliting
mathmatical analysis (F1,D7).

Applications of the theory have been wide spread, with new horizOns
broadening with the increasing complexity of the world around us.
In this context, the advent of practical digital computers [ von
Neuman 947 (88)] created a very riéh area vhich lay ready to be o, enrned
to the application of gueuing models. Interestingly enough, both areas
of study remained fairly independent in the literature, maturing at

their own pace for many years. - Then, in the early 1950's Kendal (KI)
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publighed his work on the use of imbedded Markov chains to analyze the
stochas'.ic problems of the theory of moues. This work did not im-
ﬁediately stimulate computer analyists to apply queing models in their
;nalysis; however, it can be pointed to as a key break through which
.éermitted significant work to be done in a variety of computer arees (C2,
S3, T2). Similarly, the later work of Jackson, who began studying
open networks of queues with poisson arrivals and exponential servers,
and Gorden snd Newell, who expanded his work to closed networks, maae
advances which would be used quite extensively by computer men such
as Buzen (B3), Moore (MT), and Rice (R2).
Summarizing, the analytical modeling approaches that have met
with success in the analysis of computer systems utilize theory in
the areas of continuous time Markov models, embedded Markov chain
analysis, busy period arguments of renewal theory, math programming,
and fundamental probability theory.
Specific work done in these areas is now characterized accord-
ing to module of concentration, based on figure 2-3:
Time-Sharing:
Scherr ,A.L.(1965)-82
Coffman,E.G.(1966)-C6
Smith,J.L.(1966)-S9
Kleinrock,L.(1967)-KT7,K8
Chang ,W. (1968)-Ck

Moore ,C.G.(1971)-MT
Sekino,A.(1972)-8T

Processor Scheduling(waiting line management problems):
Graver,D.P,(1962)-G1
Chang W, (1965)-C2
Schrag,L.E. (1967)-S3

Multiprogramming:
Smith,J.L.(1965)-S10
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Wallace and Mason(1969)-W1 '
Buzen,J.P,(l97l}—B3
Belady,L.A.(1966)-B2

Menory Management:
Belady,L.A.(1966)-B2
Denning,P.J.(1968)-D3
Corbato,F.J.(1969)-C1x
Weizer,N.(1969)~w2
Denning,P.J.(1970)-Dk

De vice Management:
Chang ,W.(1965)-C3
Denning ,P.J.{1967)-D1
Coffman,E.G.(1969)-CT
Abate,J.(1969)-A1
Frank,W. (1969)-F2
Prcgram Behavior:
“Denning,P.J.{1968)-D2
Hatfield,D.J.(1972)-H1
Madnick,S.E. (1972)-3,M4
" Sekino,A.(1972)-S7
Saltzer,J.(1972)-S1

User Behavior:
Scherr,A.L.(1965)-2
(usually approximated with a poisson process)

In retrospect, we see.a trend that has resulted in a better under-
standing of computer design and behavior, as analytical modeling has

be beéome a specialized field in its own right.

2.3 Simulation Modeling

The other school of thoudititles also expended a great deal of ener-
gyto model and analyze computer systems is that of simulation., Sim-
ulation as a modeling tool has as intricate a history as analytical mod-
eling, but is richer in development and broader in terms of accomplish¥

ments boasting applications in a wide spectrum of activities.
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Since our primary concern is to look at computer modeling of com-
puters, 2 detailed history of the post World War II development of the
éeneral techniques of this science will be sacrificed. A detailed des-
éription is presented by Martin (M6). Let it suffice to say that it was
the advances made in computer technologsy that not only made simulation
analysis feasible, but also made it necessary for the introspective
aspect of this modeling. For, it is the complexity of our computers that
has resulted in the intense study of computers with simulation.

The interesting nature of this subject, not to mention the predictive
value of well implemented models of this sort has resulted in the devel-
opment of a simulation folklore (12 ).The approach to presenting some of
the more current work in this field will be different than the one
employed to discuss analytical modelinz. First, the role of simulation
in computer analysis will be revieved by discussing one paper from a
group of selected articles on this subject. Then some representative
efforts will be categorized by language, and again, one paper from each
group will be discussed in order to give a flavor for the type of work
done.

To open the discussion, Seaman(S85), Huesman and Goldberg(H3),
Humphrey (H4), and Maguire(M5) address digital simulation in general terms
and attempt to determine the role of simulation modeling in the computer
field. Issues such as the advantages of the technique, the need for
higher-level special purpose languages, and the desire to design "self-
monitoring and self-adjusting systems” are brought to light. To expand

in depth the most recent of these presentations, Maguire, in a very read-
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ablé presentation, developed the rational and methodoloéy of simulation.
He explained the reasons for the wide spread use of this tool and caution-
ed against the ill equipped, cver-zesious analysist as one of the only
deterrents to even more wide spread use in modeling. He expanéed upon
each of his reasons with an eye toward the decade uvpon us; the dis-
cussion included recognition of simulation's advantages, advancements
in the technigues for producing ﬁodels, increased availability of
generalized models, increased application of experimental design tech-
niques, and increased availability of relevent model data.

Continuing with the review, the intention is to now present the
categroization of modeling by language; a sampling of the activities in
each group is included with each categery.

The classification of simulation languages has already been given in
section (1.2). The work done in modeling has drawn on all of these,
with selection based on factors such as programmer language background,
languages supported withih feach, complexity of the system (detail to
be modeled), and the time constraints on producing a finished product.

In the area of algebraic languages, the work of Scherr(S2), Nielsen
(v2), Macdougal(Ml), and Lum et al (I2) are worthy of mention. The
approach taken in these efforts was to develop special purpose routines
in the host language that facilitate a top down modeling approach. The
‘work of Hlelsen in the development of a general purpose time-sharing |
systems simulator is representative of this group.

In order to develop an efficient and widely usablermodel, he program-~

med his system in a common subsel of Fortran. In order vo make the model
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flexible and general, pains taking effort was taken to survey character-
istics of existing systems and predicited future developments. He then
chose a level of detail that adequately reflected system performance.
.
He managed to keep coding down as well as execution time short. The
model was run for a proposed single pzocessof IBM 360/67 TSS.

The next category includes studies implemented in GPSS, the General
Purpose Systems Simulator (Gh,G6,éM). Examples of the application cf
this language are the work of Seaman(ii5) and Holland and Merikallio(H2).

Seaman used this language to stucy the design issues of téleprocess-
ing systems. His effort concentrated én predicting quantatively, the
delays resulting from requests queuing for tiﬁe-shared'facilities. This
resulted in the ability to determine the amount of storage needed to hold
the queues for the processes. Demonstrating the medularity of GPSS models
viz a vi itk block structure, he ’resented the logical design of a
simulation for a 360 model 30 information processing utility.

Models programmed in Siﬁscript(Dé) form the next category. It is
noted that this language has permitted the most detailed analysis yet
available in a special purpose language. Examples are work by Katz (K1)
and work done at TRW systems(Th).

Katz's simscript program involved the study of a direct-coupled,
multiprocessor operating system. The model represented the optimal
level o detail that permitted accura e desxcriptions, an important charac-
teristic of a good simulation. The language was demonstrated as cepable
of handling complex, adaptive scheduling algorithms and able to show the

changes in systenm throughput as a function of priority schema in the
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various queuing disciplines.

The last area is special purpose parameterized languages. Ex-
émples of such languages are €S53 which was developed as a result of
iack df success in implementing complex computer models in GPSS(S6).
Lomus II was developed as a Simscript based, generalized simulation
system as well (H3). OSSL is a more recent example of such a langusge.
This Fortran based computer simulation language deserves further meantion
(D5,W3).

Programs model computer systems of varying complexity, pefmitfing
macroscoplc, yet detailed, description of state of the art features
such as exotic memory management algorithms and complex job mixes. Con-
figuration of the system is facilitated by hardware block descriptions and
programming is eased by writing taylored procedures. This language
is currently being used to'teachra course in computer engineering at
Harvard (W3) and provides an excellent top down approach to system snalysis.

This list of languagesAand models was not meant to be exhaustive.
It is hoped that qualification of work done in this area and the pre-
sentation of sophisticated studies in perspective has generated an im-

plicit belief in the value of the simulation methodology.

2.4 Work Relevent to this Thesis

A: has bzen demonstrated above, tue runge of research done in the
area of modeling has been extensive. In this thesis, a selection will
be made of those approaches that can be used to evaluate the performance
of virtuval memory computers viewed as the System Process Model,

The analytical work done in this arca draws on established techniques
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of queuing theory, making use of the larkov assumption to solve the
models proposed. The specific models that are used derive from
continuous time Merkov models. The authors credited with work in this
area are mentioned below in terms of the work done here, and they
are discussed at length in the following sections.

Smith (810) and Sekino (S7) are well known for their use of
continucus time Markov processes in research on demand paging systems.
In this thesis these processes are also proposed as feasible models.

The technique used to develop equations for their solution is attributed
to the work of Feller (¥Fl). An approximate method for their solution in
the steady state can be found in Dreke (D7).

Buzen (B3), Rice (R2), and Moore (17) have recently completed
doctoral work on the use of queuing network models for studying computer
behavior. The work to be done here uses the analysis performed by
Buzen on closed queuing networks'to solve the proposed model. The result
of this work is a closed fofm solution that yields a wealth of performance
information.

In the area of simulation, work of a more general nature has been
found to be of value to the author. Schreiber (S3) has presented a
thorough discussion of IBM's General Purpose SystemvSimulator. The

techniques he presents for system modeling are useful in analyzing SPM.

2.14.,1 The Work of J.Smith

Smith studied multiprogramming under a page on demand strategy.

He modcled a subsystem of a time-shared, multiprogramied computer



that pr~duced information on average CPU utilization. The system
included a representation of a drum-I/0O channel. Both of these

system components were.modeled with continuous time Markov processes.
Within *he multiprogramming module, three programé, maximum, were
permitted. In addition, execution intervals were exponentially distrib-
uted an¢ a priority system was implemented which determined selection
between two job classes. A utilization factor, /0, was defined for the
drum-I/) channel in terms of program and hardware characteristics. It
was found to adequately reflect system performance and worked well as

a gauge for multiprogramming. The model was-solved with RQA-1 (W1) and
statistics were used from SDC. No definite conclusions were drawn,but

insight was provided into multiprogramming operation.

2.4,2, The Work of A. Sekino

This doctoral presentation is likely to be viewed as one of the
most complete analytical analyses of an existing multipurpose computer
system. With an eye toward validating his model on the MULTICS system,
Sekino developed a general model for a time—éhared, multipr;grammed,'
multiprocessor, demand-paged, virtual storage computer.

He viewed the overall system as a hierarchical set of models,
each of which contributed a key parameter to his final analysis. Specific-
ly, Mar. ov mocels were used to study »rogran behavior, memory effects on
paging behavior, and multiprogramming in a multiprocessor environment..
The result was an analysis of the systems "percentile throughput" (a
barometer found to be as valuable as syétem throughput) as well as a

determination of the user's response time distribution.
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The analysis delved into many phases of computer operation, taking
ihto eccnsideration issues such as data-base lockout for shared writable
information, memory cycle interference resulting from multi-processor
operaticn; program paging behavior as a function of memory size, and
overhead times resulting from page faulting.in a demand paging environ-

nment.

2.4.3 Tie Work of J.P.Buzen, D.Rice, and C.Moore

Buien developed a conceptual model of multiprogramming cailed the
Central Server Model which, in fact, is the same as the System Process
Model expoused here. The mathematical model selected for analysis
was a continuous time Harkov model which studied the proposed system as
a network of queues. He derived basic properties of program behavior
in his system,such as the distribution of the number of processing
requests per program and the total prccessing time per program. These
were found useful when applying the model to specific performance eval-
uation problems. Independent of Gordon andliewell, he formulated and
solved in closed form, balance equations for the equilibrium probabilities.
A most notable result was his discovery of an efficient computational
algorithm that made evaluation of the steady state brobabilities and a
variety of interesting marginal distributions very easy. Analysis of
specifﬁc compnter system problems proceeded with the hypothesis of
the meaning of system bottleneck. Defined in terms of a sensitivity
analysis, it was suggested that if a small increase in the performance of

the component in.question produced a large increase in oversll system
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performance, that component was responsible for degrading operations.
Equipped with this methodologzy, he analyzed problems such as buffe: size
determination, peripheral processor utilization, and page traffic
balancing. Each analysis was facilitated by a mathematical formultion
of optimization equations based on a measure defined for system processing
capacity.

The work of Rice also delved into an analysis of a queuing netvork
model of multiprogramming. His basic model differed slightly from that
studied by Buzen. The nature of job exit and entry permitted é variable
level of multiprogramming with a maximum bound of N. Steady state solu-
tions were provided by applying an approximation technique and were
found to yield accuret results. A variety of system performance measures
were derived for the overall model., In addition, an approach to medeling
an I/O hierarchy as a subsysten composzd of queue dependent servers was
found to be useful for representing a disk system.

Moore's work is yet ahofher example of research into queuing
network models of computer behavior. His analysis was dedicated to time-
sharing system structure and resulted in a more intricate net of queues
than that studied by Buzen and Rice. The reason for this was his effort
to represent more complex task routing that occurs in such systems.
Observing as did Rice, that queue dependent servers could be used to
model ¢ dick subsystem, he included “uis feature in his model to m.ke
it more realistic. He was also able to represent other more realistic
service distributions by matching exponentials. Validation of his model

for MTS was effected with real system measurementis.



2.4.4 The Work of T.Schreiher

In the area of simulation analy:is, the work of Schreiber will be

discussed. His work is in the implerientation issues and modeling
’

capabilities of GPSS. The presentation is available as a very comprehen=
sive and readable manuscript which he uses ﬂo teach a course in simulation
at the Michigan business school. The case study approach was effectively
applied to build up modeling techniquas, and quite complex situations
were studied. This work deserves credit in light of all o the material
available to learn GPSS, for included are very realistic examﬁles and

an affectionate concern for all the details and subtle shortcomings of

the language.



CHAPTER 2

MULTTPROGRAMMING IN A PAGE ON DEMAND COMFUTER SYSTEM
AND A CONCEPTUAL MODEL FOR PERFORMANCE EVALUATION

3.1 Page On Demand Virtual MNemory Systams

Virtual memory systems have been developed to satisf{y basic needs
of multiprograming and timé-sharing systems. Their value in these
applications expounded on by Denning (D4), includes such advantages as
_ the ability toiload programs into spaces of arbitrary size,?the ability
to run such partially loaded programs, and the ability to vary the space
allotted these loaded programs. Of course, the benéfits to the user
include the illusion of a nearly unlimited address space.

Al:hough advances in memory sto.ase techniques may one day ob riate
the need for the complex operating systems needed to manage such virtual
memory computers, it is not clear that this will occur even in the distant

future. Thus, we can say with assurity that virtual systems are evolv-
b J
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ing as the new state of the art, and feel confident that analyzing such
systems is a valuable way to spend ercrgy. It is hoped that such
analysis will lead to insight into opurating characteristics and wiil
result in improved system performance. :

An appropriate point of view to hake from the outset which will
facilitate analvsis, is to think of {he operating system as a manager of
resources. This pcints up the irjortunt question of resource allocation
in virtual memory systems. What key resources must be available for the
system to operate efficiently and how are they utilized?

To begin to answer these guestioi's, tﬁe behavior of programs in the
system must be characterized; for, it 1s to their service that the system
is dedicated. To better understand how a system manages resources for
this important task, let us look at the underlying aspects of a real
virtual memory system that operates under Control Program-67. This
discussion is based on a recent ﬁaper by Bdrd (B1).

The system is multiprogrammed and operates under e demand paging
strategy. User jobs execute until one of the following events transpires:

(1) A page fault occurs: A program requests execution of a location
in its address space that is not currently in executable memory.

(2) An input/output request is issued to a peripheral device.

(3) The executing program exceeds its allotted time quantum,

(4) A wait PSW is loaded.

Upun'occurrence of one of these Interruptions, program execut.on is
terminated, and execution is initiated in the next users address space.

A program encountering either (1) or (2) is said to be blocked and cannot
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recei&e CPU service until the occurrernce of an associated external event
denotirs service completion. Reschdenling for CPU service the occurs in
%he same manner as for programs interrupted by timer runnout or by the
ﬁoading of a wait PSW. Thus, it is evident from this discussion, that
important resources are 'real' memory for program execution and peiipheral
devices that can be used for servicing paging and I/O requests.

Further explanation of the operation of this system in the event of
a page fault is of value. It is this aspect of the systems operation that
‘reveals the memory management algorithm, an important function essential
to the understanding of program characterization: the paging behavior
of a program in a demand paging environment.

The system operates under a single bit LRU removal algorithm. This
function , called upon whenever a program needs a new page, maintains a
pointer to a cyclical list of all main memory pages. FEach page has an
associated usage (reference) bit which is turned on when the page is re-
ferenced by a user program. The algorithm moves the pointer around this
list of pages and inspects the reference bit of the page selected for
examination. If the bit is off it removes it, otherwise it turns the
bit off and moves on to check the next page. The reference bits of a
users pages are also turned off when the user is removed from in-queue
status. Thus, a global removal algorithm is implemented by the cycling
pointex .

One can invision, then, a user program that has a time dynamic
allotment of main memory based on his demand for pages and the removal

of pages by the system algoritim. Bard calls this allotment of memory the
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users resident set. Changes in its size can occur when a user acquires a
new page due to a fault or when page: are removed while the program is
in the interrupted state. Thus, we an see that based on executable
’

memory available and system activity. system paging can vary greatly.
This may give rise to an interesting vhenomenon that will be investigated
in this thesis: Thrashing. Tor, when the system is paging rapidly due,
say, to a2 high level of multipn>éramming, t is quite possible to have
system performance detericrate (the vsers average resident set size
decreases as the level of N increases resulting in an increasé in the num-
ber of page faults suffered per user).

Given this sysfem description, there aré a variety of open questions
to which we might address ourselves. For instance, it would be of
value to specify a quantative definition of when thrashing is in progress
from the point of view of performance projection. Also, determination
of the optimal level of multiprogramming for a given job mix as well as
expected system throughpuﬁ for the load is of interest. Then, from a
resource management point of view, 1t would be of interest to identify
utilization of system écmponents in the hopes of finding any potential
system bottlenecks.

The logical approach to answering these questions is to develop an
operable,conceptual model of the system that will yield statistical
data a.d performance information. B:fore Coing this, a more deta.led
discussion of Thrashing follows in order to further motivate the need for

abquantative model for analysis.
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3.2 The Thrashing Problem: Novelbumbitative Definitions

The analysis of multiprogremming in a page on demand envirommentg
has received much attention (S10,D3,Wl). A potent problem that de-
gigners of systems of this nature face is called thrashing: excessive
competition for primery memory resulting in degredation of system
performance. Denning (D3) describes the less then optimum use of rasources
in this situation as follows,''Thrashing inevitebly turns a shortage of
memory space into a surplus of processor time."

The basic reasons vwhy thrasghing occurs have been isolated; They are
(1) the large times required to access pages stored in auxilliary memory
and (2) the availability of limited real memory coupled with address space
acquisitions that are uninsulated because of a global removal algorithm.

Tt is intended to show how these two factors do, in fact, result
in this severe performancevdegredgtion in the demand paged system studied
here. However, it is necessary to define the term "degredation" more
explicitly before we can hope to quantify an actual thrashing point
for the system. Two views for pinpointing this operation are now

presented (M2).

3.2.1 The Multipropramming Cost of Jjob Execution

The first view revolves around associating a cost factor with a job
executing in & multiprogramming envii-mment. The cost function is
determined Tor & job under given load conditions by charging him for the
amount of non-overlapoed processor time that is spent during his execu-

tion, i.c. this accounting system charges the user for any time that the
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CPU canrot be shared. The factor has thre

4]

components that can be

descrited as follows:

(1) Each program requires CPU processing time to complete. There
is no overlapping of CFU time while the job performs its
computations. Call this time Tpopg.

(2) Each program issues a number of I,/0 commands. When such a
request is issued by a DProgran, charge him for the idle CFU
time that results becausc there are no other programs available
to utilize the CPU. Call this time Ty/g.

(3) Each program suffers page faults depending on the level of N.
Charge him for idle CPU time that results when he issues a page
request and there are no other programs available to utilize
the CPU. Call this Tpage- '

Then, for a prbgram vhose paging and I/0 activity are viewed as

occuring essentially in separate systens, the entire cost for running in
a multiprogramming environment can be determined:

Trorar= Tcpu + T1/0 * Tppge
Based on this cost approach, it is clear that such a program should
experience a decrease in Tpopar, @8 the level of multiprogramming increases,
since the possibility of overlapping the execution time of one of the jobs
with the waiting time of ancther increases. However, can ore get too much
. of a good thing? Yes! And this is where the threshold definition for
Thrashing arises. In a monoprogrammned enviromment, Tqgopay, for the
sample programen be determined. Granted, this program doesn't make
efficient use of system resources. However, we can definitely say that
we woulG not want an increased level of multiprogramming (N) to result
in as poor use of the resources, i.e. we would not want increased N to

result in associating a cost factor as large as the monoprogrammed case

with a user job under that system load. It is clear that at this point thé
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system-is loosing. Define this as the Thrashing point. This approach
to determing the bounds on multiprogramming is of pedgagocial value

because each factor causing the thrashing phenomenon can be cobserved

individrally.

3.2.2 Average CPU Utilization

Alternatively, view two uses the steady state fraction of CPU
busy tie as a direct measure of Thrashing point. Here, one can determine
this CPU utilization for the monoprogramming environment. Theﬁ, with an
increase in the degree of multiprogramming, it is possible to determine
the point when the utilization of this key resource degrades to the value
found for the monoprogrammed case. This point is where Thrashing will
be said to begin. This point of view is intuitively obvious for our
system model, since we would lﬂig to ogtimizé the use of our central
resource for processing jcbs. EHowever, in general, one might question the
motive for using this CPU’uﬁilization criteria as a system barometer.
For, in a real system, the CPU might be 95% utilized and yet performing
no useful Work:( 80 ¢ of the time is being spent as overhaaa in the
supervisor). Ih such a situation, one would definitely be advised to
campaign for an analysis that produced results regafdiﬁg system throughput
or turn around time. It will be shown for the conceptual model that is
proposci in the next section, that s sten throughput is directly r.~npor-
tional to average CPU utilization, and so use of CPU utilization as a sys-

tem barometer is Jjustified.
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3.3 The System Process Model: A Conceptual Model of Computer Behavior

The System Process model (SPM) is a means to describe the operations
of a mulsiprogrammed computer utility, . characterizing the activity of the
érocesses in terms of program behavior parameters and the interaction of
the collection of processes in terms of occupancy of state positions in
a directed graph of the system.

T observe with Denning (D2), Kimbleton (K5,K6), and Sekino (87) that
the time trace of these processes finds them circulating among the
following three states: A

i. active: receiving CPU service

ii. waiting: queued for or receiving service from &
peripheral device, i.e. blocked waiting
for the completion of an associated
external event.

iii. ready: queued for CPU service

In the work of the above auﬁhors,vthe system under study was a
virtual memory system 6perating under a demand paging algorith, and
consequently, processes were characterized solely by their paging behavior.
In this model, & process will be characterized not only by its paging
behavior but by its I/0 behavior as well. The inclusion of I/0 activity
makes the analysis consistent with the description of the CP-67
multiprogramming module. The wait PSW event will not be included in
this analysis, and it will be assumed that a job in execution issues an
I/O request or suffers a page fault before a timer interrupt occurs. This
assumption mekes it possible to use the analytical modeling technigues
that will follow. It is not overly restrictive for operation of CP-07

like systems which actually demonstrate this behavior.
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3.3.1 Sample Progran Behavior

| Ccnsideration of the activitvy of program behavior in this slightly
simplified multiprograrming enviromment is now appropriate. View a
memory rartition with é uscr's pages as an executable address space that
presents the CPU with processing reguests, I/O requests, and page
requesty for new executable memory space. Let a partition be loaded
from the peripheral paging device and assume that the initial processing
activitr required to partially page in a. user for execution is part of the
géneral paging activity of that program. Observe, that the deéree of
multiprogramming is determined by the number.of pages allotted to each
users menory partition. Varying the level of N implies that that a user's
allotment of "real" core has been altercd by the system.

It can be seen that a request for service from one of the shared
resources (CPU, drum,disk) mirht not be satiéfied if the server is busy.
Consequently, the executing process stands to suffer queuing delays while
in the system; His life cyéle then consists of alternating sequences
of active,blocked, and ready intervals, with possible gueuing delays. This
is the basic nature of the System Process Model.

Now it will serve us well to explicitly describe the program behavior
so that the appropriate parameters can be evaluatedlfdr model analysis.

Sample Program Characteristics:
(this program is an assembler run under CP-67 (M2))

(1) Page size is UX-Bytes

(2) 160K-Bytes of virtual memory is required by the entire
Jjob
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(3) The progrem runs for *,000,000 instructions, i.e. it
requires 2 sec. of CPJ time to complete execution.

(L) The total amount of . 'O timc experienced by the Jou
when run in a stand-aicne enviromment is 3 sec. (This
job is a class C job &s specified in 0S-9-10: Sob
parameter statements) Tn other words, if a request is
serviced in 50 msec, ~his job issues a total of 60 I/0's.
(5) The paging behavior of the program will be a function
of the amount of "real' core memory available for it's
executable pages. A static parachor curve for the sample
program is shown ‘n figure 3-1.

The static parachor curve predic.s the number of instructions that
are executed between page faults when = job rum in a fixed partition in
cae paging apgeinst itself. Figure 3-¢ then shows the functional
relationship between.the number of page faults and the degree of multipro-
gramming; the level of I was determined as described above for 256K-Bytes
of total core available to the users.

From our previous discussion, it might appear that what one rezlly
wants is a measure of the dynamic behavior of programs in the multipro-
gramming environment, i.e. & dynamic parachor that predicts page favlts
as a function of average resident set size. Certainly, this data would
nore accurately represent the dynemic character of the resident set (B1).
However, for the following two reasons, the static parachor will be quite
appropriate for our use:

(1) Our ultimate goal is to predict a bounds on the level
of multiprogramming and to determine system performance
for +that load. Sinee the static parachor tends teo
over-paze for a give:. memory size, it is certain Tthat
the slaclk in the actual values 1s on the side that we
can afford to live with.

(2) The queuing models that will be utilized in analyzing

SPM. view the operating system as managing multiprogramming
among fixed memory partiticns.
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3.3.2 The Input/Output Subsystems

It yet remains to charactcrize the peripheral devices that service
the page faults and I/0 requests described above. The intention ins
%o specify the device characteristics in a manner that will provide
realistic values for device services; the use of available models for

these components is taken advantage of where appropriate.

3.3.2.1 The Paging Drum

The page handler will consist of a high speed magnetic drum. .odels
for such systems have been analyzed in detail in the literature (D1, C7,
F2, Al); For the purposes of this discussion, Denning's FCFS model with
no request scheduling will be used to initially represent the device
service mechanisms An exponential distribution will be assumed with me~u:

E(service 1 request)= N-1 .T + T
2N N

vhere ! is the number of sectors
T is the time for one revolution
note: the first term can be thought of as the
latency time and the latter, the constant
transfer time.
The service is for single page requests in the demand paged system.
It is assumed that requests for transfer are uniformly distributed among
the N sectors on the drum. It is also assumed that a useful model need
only treat the transfer of pages from the drum to the high speed memory
(page output from core to drum creates no delay in the input of pages from
drum to core) (S10).

Selection of drum rotation rates is based on current and advanced

technology. The follewing values will be used in the analysis:
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Drum Rotation (msec) Expected Service Time (msec)

(Slow) 40.00 +vvvevevecrnesonaess 25,00
KMedium)l6.70 6 # % ¢ 3 6 8 2 0 0 80 2t 000N N 1019[‘

(Fast) 8;00 © 66 5000 L L LLOLEESSS ‘, 5-00

3.3.2.2 The I/0 Disk

The I/0 handler is a disk device. Using characteristic values for
a 2314 anit (GI-21 Rev.2), service will be assumed to be exponentially
distributed with mean 50 msec. This figure includes seek, rotational

delay, ¢nd transfer time for a standard I/0 from the sample program.

3.3.2.3 Scheduling the I1/0 Subsystems

The FCFS expected service times above involve long queuing delays
and do not reflect,very effectively, the performance of the devices
under queued loads. At best, théy provide a means for determining a
lower bound for system performance by operating in the slowest manner
expected for the particular device. In order to demonstrate the effect
of scheduling as well as to indicate a manner for determining the upper
bound of perfdrmance for the given system configuration, the following
two views will also be taken of the subsystem hierarchies:

(1) Service by the device is dependent on the load of requests in
the device queue, i.e. the mean service time for a request
depends on the length of the queue. This view of the server
is equivalent to including ::heduling into the channel.
Included in this view is the effect of saturating the server.
For example, as requests queve for service in the drum, the
gsector qucues might receive individual requests which could
be effectively serviced at the same time. However, as more
requests f{illed the queues, it would be likely that a re-
quest is already in @ subque. A .typical distribution for
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this sort of activity is as follows:

let Ms = the mean time to service a request
R = the service rate of that device
where R defines the regative exponential distribution:
. -R.t
prob. service interval{t =1 - e
then Ms = 1/ k*R k=1 to j
l1cjeN
Ms = 1/ j.R k2]

This disciplinc is referred to in later analyses as scheduling.
(2) Each request receives instantaneous service with the expected
service rates selected in sections (3.3.2.1 and 3.3.2.2).
There is no queuing for a sector or a track, and each memory
partition thinks it has its cwn service device. This view
results in better than realictic service and yields an upper
bound for multiprogramming performance. This service distribu-
tion is as follows

Ms = 1/ kR : k=1t¢toN
and is referred to in later aralyses as No Queuing or Optimal(Opt).

3.3.3 Basic Modeling Assumptions

Based on the above discussion the following collective observations
will be made:

i. The N jobs existing in the system are uniformly characterized
as described and are statistically identical

ii. The service disciplines are each characterized by an exponen-
tial distribution.

i1?., The processor and peripheiul devices are switched instanta-
neously among the jobs in the ready queues.

iiii. The system is assumed to be fully loaded at all times.
Assumption 'i' corresponds to the test situation in which measure-

ments were made for a job in it’'s own fixed partition, but it is re-
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strictive in terms of real job mixes. With regard to 'ii', the re -

sourceful use of exponential holding times has succeeded in modelqing
Egeneral physical systems many of which don't strictly conform to this
?behavior (S2,M7). This assumption also makes possible the analytical
‘analysis performed. Assumption 'iii' can be relaxed quite naturally
with simulation as can all of the above restrictions. It is also
necessary to permit the analytical modeling that follows. Lastly,
assumption 'iiii' permits consideration of job completions. It implies

that there is always a new job waiting to begin processing, keepinz the

level of multiprogramming constant.

3.3.4 A Derivation of System Throughput for SPHM

In section (3.2.2) it was ascerted that the average CPU utilization
was an adequate monitor of.system performance. In order to demonstrate
that this is really true, the following derivation finds CPU utilization
to be directly proportional to system throughput. A similar derivation

"percentile throughput"

was performed by Sekino (S7) when he analyzed the
of his system model.
Define the following parameters for a single processor syctem:

hs: the headway made by the CPU in processing user jobs
between service requests.

mtbs: the mean time between service requests
utiliz: the utilization factor of the CPU
also, define the following overhead terms one might associate with
such a demand paging system:

tp: paging overhead time including supervisory functions
required to hundle a page foult
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ti: I/0 overhead time including supervisory functions required
to handle an I/0 request

tm: misc. overhead time correspond.ng to all the other supervisocy

functions.
In a system with overhead, we have:
mtbs= hs + tm + £(ti + tp)

However, in the system under stucdy, observe that:

mtbs= hs
because of the assumptions of no overhead.

Now, the "percentile throughput(®)" of such a system,i.e. "the
percentage of the systems computational capacity spent as the user's
useful work'), can be expressed as:

© = utiliz « s = utiliz
nths

Then for an arbitrary length of time, T(sec), the time that the
single processor facility spends'doing‘useful work for the user isOT.
Each user's execution time (2000msec) is represented as Teji i=1 to K,
for K user jobs completed in this time. Then, under full load, the
system throughput, Th-Pt, can be calculated as follows:

Th-Pt= Lim K
Ty T

= Lim K . e'X/
T+e0 ) 7 Te; + Tep +...Teg

©
K —
zi; Te, ¥ Te
i=1 "]

Th-Pt= wciliz / Te  Q.E.D.

= Lim
T»%0




CHAPTER 4

ANALYTICAL MODELS FOR PERFORMANCE ANALYSIS

.1 Mathemetical Model Selection

The issue to which we will now address ourselves is that of find-
ing a resourcefuvl approach to solving the System Process Model. Solving
this multiprogramming model involves mapping a class of input functions
into a relevent set of output functions. The input functions, as specified
in section (3.3), were found to be process request rates for the system
resources and expected device service times. The important output functions
were presented in section (3.2) when the discussion of thrashing resulted
in the selection of two factors that could be used to quantify system
degredation: the cost of multiprogramming in non-overlapped processor time
and/or the % CPU utilization (or, equivalently, the system throughput).

Three analytical models have becn chosen as suitable to perform the

analysis. FEach model approaches the mathematical description of the
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system differently, lending insight into it's appropriateness for detailed

system analysis. It is observed that a nice feature of this multi-p:onged
modeling effort is the ability to validate the predictive capacity o the

moéels.

The formulation of the analytical models will include the design of
three continuous time Markov models. In each application, the system
representation will be presented, the mathematical analysis will be d2-
veloped, and the technique for solution demonstrated. The results ot tained
for performance prediction of the CP-07 like multiprogramming moaukawill

be presented in a separate chapter.

4.2 Tndependent Continuous Time Markov Models

It has been stated that the total cost of running a job in the multi-
programming environment consists of the nQn-overlapped processor time
resulbing from CPU execution, paging activity, and I/0 activity. Thus,
our modeling approach must iéélate these three characteristics so that

their individual effect on the cost function can be cbserved.

L4.2.1 System Representation

In order to effect the isolation of activities, it will be assumed
that the I/O behavior and the paging behavior can be separated. This can
be visua’ized in figures L-1 and L-2 wlere the programs are run on
separate computers that monitor the above two activities. Consequently,
for a given level of multiprogramming, one can think of a job executing

and requesting input/output service or suffering page faults. As ex-
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plained in section (3.3), the quantum exceeded path will not be traversed
since it is assumed that a Jjob issuer a service request before such a
time limit is reached. The block representing the wait state is intended
to include any possible queuing for service as well as the actual
time spent serving the request. When a service is compiete, the.associated
pfocess returns to the CPU ready queue for its next processinz interval,
Upon joﬁ completion, another job is asumed to be ready to take its place,
maintaiiing the full load level of multiprogramming, N. Treating the
activit;” independently is an abstraction one might vrefer to live without;
however, this restriction will be lifted in a subsequent analysis and
it will be shown that the results obtained are accurate., It should also
be mentioned that this approach does have pedgogical value in that the
individual components of the composite function can hbe observed under

varying conditions.

4,2.2 Specification of the Composite Cost Function

Calculation of the components of the TTotal cost function for s
job in the multiprogramming envirorment will now be explain;d. The need
will arise for continuous time Markov models to detgrmine information
about the system important to the final evaluation of these components.
TCPU is constant for the job as one would expect. This is true
because no shuring of the processor : allowed when it is dedicateu to
a jobs execution. Thus, TCPU is 2 sec., since this is the amount of
CPU time needed by each program to complete its computations.
TI/O is the expected cost' in non-overlapped processor time that re-

sults from a jobs 1,0 activity. It is casiest to cxplain this calculation
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by first observing the mono-proframmed cnvironment. In this regard, an
important factor that must be evaluated in both of these remaining zost
analyses is the time that the job expects to spend in the system without
%he benefits of multivrogremming. For. the class C job explained i1 sect.
k3.3.l), there are 2 sec. of CPU time and 3 sec of I/0 wait time frr a
total of 5 sec. to quit the system. Note, the I/0 wait time can bc thought
of as being generated by multiplying the 60 I/O's the job issues by .05 sec
per service for a total of 3 sec. This interpretation will be of aid in
the Tppgr calculation that follows. The need for this factor is now evi-
dent. Given the steady state fraction of system idle time that recults in
the I/O enviromment, then TI/O for the job is simply:

L is the probability of non-ovcrlsnned CPU time=
For the mono-programmed case, if Py, is .6, then T1/o0 is 3 sec.
/

TI/O= 5 sec., ¥ {%he steady state flact. of CPU idle timewhich é?s

Now, the cost of running a job in this environment decreases as the degree

of multiprogramming increasesz, since there is a greater chance of over-

lapping the execution of a Jjob in the CPU ready queue with one that has

just gone blocked for I/O’sérvice. For example, we might find PN.Ofﬂu when N=2,

with a corresponding T of 2 sec. This means that 1 sec. of the time

I;0
previously spent entirely in I/O wait has now been spent executing another
job; this time is therefore, not charged to the users cost function.

It is also apparent from this discussion that when I/O requests meetl
execssive queuing delays in the I/0 channel, the decrease in the cost fuc-
tion fur the job will begin to level »{f ac the benefits of multir-~ogram-
ming-are lost. In a real system where overhcad for I/0 set-ups is a time
factor that plays a role in the cocst of a job, one would certainly expect
the cost function to begin to rise again as the devices were saturated and

J

the steady ctate fraction of idle time for the system incressed inor-
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In summary, the cost in non-overlapped processor time for a job

in an environment where the only wait is for I/O service is:

Tr/o= 5 * (Py.o.)
vhere Py is the steady state Eraction of
time that the CPU is idle in the
multiprogrammed system of degree N.
TPAGE involves a slightly more complicated calculation. The reason
for this is that the expected time that a program would spend in the system
to complete‘its operations is a function of the degree of multiprogrammings;
for, as the level of N increases, the mumber of page faults suffered incresases,
and 0 the time spent in the system for each job increases. Consequently,
the time factor needed for the paging analysis.that ig analogous to the
5 sec. used in the I/0 analysis (remember, in that situation, a job
expected to spend 3 sec. of I/O time independent of N) must be re-evaluated
for each level of multiprogramming.
In order to calculate this valﬁe, it is necessary to determine the
number of page faults at the particular value of N from the static parachor.
This number must then be multiplied by the time for each request to be
serviced. The result is the time the user job would expect to spend for
page waiting. Finally, adding 2000 msec to this gives the total time
that the user will spend in the system to complete without the benefits of

multiprogramming. This factor, when multiplied by for the paging

P
.0,
environmeni, yields the paging cost val.e for the user when run in tle
system.

‘Sumarizing this calculation for the stand alone environment is now

done by example. Assum¢ that a page service takes 25 msec and that for

N=1, the static parachor has yielded L0 pare faultg for the job. So,
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the total paging time is then:

paging time= 4O * 5 = 1000 msec.
and, the multiplicative factor which is the total time spent in the

#

system for that level of N,without the “enefit of multiprogramming is:

total time in systern= 2000

+ 1000
3000 msec.

then
Tpage= 3000 * Py g,

If Py.o. is found to be 1/3 then Tpage V11 ﬁe 1000 msec. In other werds,
the job would need 3 sec to clear the paging environment, 1 sec. of which
would be time that the processor was not ablc to overlap its activities
due to page faulting.

In this system, as the degree of multiprogramming increases, for a time
thefe will be a greater chance to dverlapAexecution of ready Jjobs with those
of waiting jobs; however, 1t is also apparent that the load on the paging
device increases as the jobs begin to compete fér primary memory (the
system will be paging at a higher rate as the level of N increases). Con-
sequently, it will be possible to observe an increase in the paging cost
functidn for a job as less and less CPU time can be spent executing in
a useful mode. Thus, the benefits of multiprogramming are lost as the
Jjobs aré more likely to be found waiting for page service, and system
degredation sets in.

_The key value needed to evaluate the T components has been found to
be the steady state probability of CPU idle time. The next logical step

is to model these svstems in order to determine this variable.
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4.2.3 The "ontinuous Time Markov Models

It now remains to show how to calculate the fraction of CPU idle time
that occurs in each multiprogramming environment. This will be done by
modeling the behavior of the separate systems as coﬁtinuous time Markov
processes. Figures L-3 and L-L show the state'descriptioné that are
apprbpriate for the analysis. The value of the state is the number of
processes Queued for service at the peripheral device. FEach state can be
completely described by a two tuple (W,E), where W 1s the number of process-
es waiting to complete service on the device, and E is the number of pro-
cesses executing. TFor this single CPU system, this number is either 1 or O.

The parameters displayed in the figires that are essential to the
analyéis that follows have already been partially specified. It has been
stated that the service disciplines will be characterized by exponential
distributions. Thus, we have the ayerage_arri&al rate of service comple-
tions:

let E(teo)= the expected interarrival time for a service
completion

then,
R ] C
for the drum or the disk. This permits us to specify the transition prob-
abilities for the return paths in the model. Adopting the point of view
that érrivals occur at points on a continuous line, for suitably small
values of &%,
let c= a service completion arrival

then,
Plc/bt)= UbL

low it romains to characterize the I/0 and pazing behavior of the jobs
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as transition probabilities of the Marlov mocdels. For the purposes of

this discussion, it will be assumed that a programs requests for pag~ or
I/0 service are also exponentially disiributed. We have enougb’inforu
mation about the programs to determine the expected interarrival times

for requests. So it is then an easy matter to specify the foward transition
- probabilities.

let E(tr)= the expeéted interarrival time for a service

request E(t1/0)=2000 msec./#I.0."'s=2000/60
E(tppgg)=2000 msec. /ifPage Faults=2000/f (1)

A1.0.= 60/2000

1
Elto) | APage=£(I)/2000

for a page or I/O request. In the same manner as above, this permits

then

us to specify the one-step transition probabilities for the foward paths.
Por suitably small values of &%,
let r= a service request

then
’ .P(rﬁ&t):)&At

Now, the description of the models is complete.

li.2.4 The Steady State Solution

The behavior of such closed-commuting chains are known to possess a
steady state (F1,D7,C1QT3). ILet Ti (i=0,1,2,...,N) be the probability of
finding the system in state i after operation for a long time. These
values cau‘be found by one of the well Lnown techniques for solving .larxov
models of this class. Birth-Death equations can be used (Fl,D?,GD,T3);
transform analysis can be performed (TB), or differential difference equa-
tions can be solved (fl,D?).

The closed form solution availeble {rom the first two suggested
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techniques is known as the Erlang loss formula (CT7):

n
- 1[N 1 Eqn. k-1
ni\U n 1 i

" The third technique will be used here to solve for the steady state
probabili{ies. The value of using this method is that it affords the
benefit o” demonstrating the technique that will be applied to solving the
dual facility continuous time Markov model in the next section (&.3),
where no known closed form solutions exist. It also helps preserve the
equality of the two studies.

Equations 4.2, ,h3,and LU-b show the equations used to solve this model.
Eqn. 4=-2 is the set of differential difference equations for the CIMP
described above. Equation L-3 represents the éystem of equations in the
steady state. The derivatives that represent the change of the probability
of being in a sfate with respect to time have been set to zero, an implicit
condition of equilibrium. Egn.hi-k is the matrix representation of 4-3 for
the case N=5.

This set of equations lends itself to solution on a digital computer.
The CPU idle time analyzer is a computer program that waé written to
solve the set of simultaneous equations generated for the general case
of such models. A description of the ,rogram, an extended program listing,

and sample output are available in Appendix A.

i,2.5 Applyings the Solutions

Now that the steady state solutions are available, the cvaluation of
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%‘-9—: U+ P@,t) -— A ¢ P(0,t) 'n =0

dPéi‘ £l . %+ Pa-l,t) + (atl)U * P(nti,t) ~ (AnU) + P(a,t) O<N< X

dEILE) _ A - PO1,6) - N * U C P(N,0) 2= N
| Eqn. L-2 Differential Difference Equations for Single Facility
Continuous Time Markov Process (immediate service/rquoptimal)

0=0-m - Aﬂo n=20
O=Acem + () - Um o - +nl)m 0<n<N
O=Xem +N-U -7, n=N

Eqn. L-3 Equilibrium Equations for the Single Facility CTMP

LS M , Ty m, g
-\ U =0
A = (utr) 2U . =0
A 2 0+}) 3U =0
A (3 0+\) 4U =0
A -(4U+)) 5U =0
A =50 =0

s.t. :%:: =

i=0

Eqn. k-4 Example Matrix Description of CTMP : N=5, 1 CPU
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the TTOTAL cost function is possible. This can be done by utilizing
the value oquh s in fact, repr-csents the steady state CPU mrlti-~
programming idle time, Py o, . A point on the cost function if generated
by "running"” the model for a particular value of U, caleulating Tups
TI/O’ and Tppop 88 explained above, auid summing the three values. %The
total cost function is generated by'rinning' the model for various levels
of .

The results obtained from the arolication of this set of models
4o the analysis of the CP-67 like mulciprogramming module are presented

“in chapter 6.

4.3 The Dual Facility Continuous Time Markov Model

As pointed out, the treatment of the paging and I/0 activities
as occuring in itwo separate computer eavironments is a reasonable differ-
entiation to make in a pedgagocial setting: however, it is desirable
to take a more reasiltic view of program activities in order to obtain

more accurate performance projections.

}t,3.1 System Revresentation

A conceptual view of the proposed system is shown in figure L-5.
Similar assumptions about the path selections and blocking functions
hold fc= this dual facility model. .he only difference in this ap voach
is that the activities are assuwed to occur within the same computer.
So, it can be assumed that a Job executing on the processor can suffer a

page fault or request I/0 service during his bursi of processor time.

The same rates of request and service apply that werce used in the independ-



L)
O

TIME QUANTUM FXCEEDED
(THIS PATH IS NEVER CROSSED)

N
PAGE, REQUEST RUN JOB ON I/0 REQUEST
PROCESSOR FOR 7
TIME SLICE
N
-~
JOB 5 |
OMPLETION
2
3
3
¢
¢ RUNNABLE
i > (READY)
(POSSIBLE) - LIST 1 (possIBLE
PAGE I/0
WAIT t WAIT
N-2
N-1.
N
(A 4 4
! /

ENTER
JOB

Fig. k-5 Conceptual Model Of Process Activity In A Multiprogramming
. e - ’ . - X .
Enviromnent With Fage (+) I/0 Blocking



70
dent study(sect.k.2.3). Thus, the one-step transition probabilities for the
Markov digraph agree. The continuovs time Markov model that represents
this extended environment is shown i: figure k-6 . Here, a states

’

value is the number of processcs walling for I/O service and page
service. A three~-tuple is required to describe a state completely.
This vector is (Wp,Wp,E) where Wy is the number in the I/0 wait state,
Wp is the number in the paging wdit state, and E is the number of

processes executing.

- 4.3.2 The Steady State Solution

‘Determining the differential difference‘equations for this model
is slightly more involved. There are séven conditions which must be
included to specify the model. These include 3 end points, 3 boundaries,
and 1 central condition. The sp;cific equations are shown in Egn.lk-5.
Their steady state representation is displayed in Eqn.k-6. The
program written to solve ﬁhé single channel models has been designed to
include the general case of this double barreled Markov digraph as
well. The same PL/1 subroutine, MLSQ, is used to solve the set of
N simultaneous equations. Appendix A displays sample output obtained

from application of the solution technique outlined above.

4.3.3 .oplyins the Solutions

Obtaining the steady state solutions for each system state is
the first stecp of the analysis. A variety of marginal distributions
can then be determined that are useful for the study of the multi-

programming system. For exemple, summing the probabhilities over all
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Eqn. k4-5 Differential Difference Equations for Combined I/O
and Page Model (immediate service / request)
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the states where the CPU is active,
Z\’(ni L, 1D)
s.t. ni+np I ' .
yields the steady state fraction of time that the CPU is active: the
CPU utilization factor propcsed as a harometer for measuring system
performance, It is also possiblc to cetermine the expected queue lengths
that form for the shared resources by performing sums of the following
nature,
Let Pyy = probability that the queue length is=Ni
for the CPU: E{(queue CPU)= :ﬁig: Ni - Pyi(CPU)

N

for the drum: E(queue drum)= g Wi~ Py; (Drum)
1=0
N

for the disk:  E(queve disk)= Ni- Py (Disk)
1=

A further discussion of the relevence of‘these performance measures
as well as results obtained from the application of this model to the
analysis of the multiprogramming module are presented in Chapter 6. lLet
it be noted here that although determination of a cost function is
possible for this combined module, it will not be hecessary for the analy-
sis. Pinpointing system dégredation will be a simple matter by dint of

CPU utilization.

4.l The Queuines Network Model

In a further effort to qualify the analysls of the System Process
Model of multiprogramning behavior, one final analylical model will be

provosed that is of both practical and theorectical interest in the field
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43

of computer performance analysis. his model represents SPM as a network

of queues and asso iated servers. Presentation of This other viable
technique for analyzing our multiprogrammed, virtual memory computer

lends insight into the current approaches in systems analysis.

4.4.1 System Representation

The reader is referred back to chapter 4 for a review §fis computer and
programs to be modeled. Some additional comments about particulars of this
system relevent to the representation of the system as a networt of queues
will now follow.

The view of pfocess activity will be augumented by adding one addition-
al interruption type. So, in addition to the I/0 requests scattered
throughout execution and page faults suffered in the'squeezed core" en-
vironment, jobs will be assumed to contain a symbolic stop as their last
statement., Execution of this statement within a memory partition causes
processing there to be discoﬁtinued. A new program is loaded and execut=
ed in its place at the instant when the processor returns to processing
in that partition. This view is entirely consistent with our assumption
of full load. Also, because of the assumptions that instantaneous switch-
ing of the processor occurs and that initial page loading is a part of the
new programs general activity, this explicit characterization of job
complet.ons doz2s not make this model (Fiferunt from the continuous time
Markov representation. Remember, in that analysis, program completion
was an implicit characteristic of the state space representation.

The conceptual view of this system is shown in figuve 4~7. It is
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noted that the new program path always maintains a constant level of
multiprogramming, since this path returas jobs to the ready queue for

loading and execution as a new job.

NEW PROGRAM PATH

LR 2

DRUM QUEUE

e -

READY QUEUE

* 4 4

DISK QUEUE

Fig.4-7 The Queuing Network Mcdel of Multiprogramming

4.4, Parameterization of the Hetwork

Adopting the notion that each memory partition represents a tokan
that flows in the system competing for the shared resources, the need to
specify a mechanism for path selection arises. Thus, upon completion of
a CPU processing interval. determination of the next activity for the
process is made in statistical selection mode. To motivate this choise
of path determination, consider the relative frequency interpretation of
probability. Observing with Buzen. (B3), if the system being studied was
observeu for a long time under full lu:d, oune might find the followiag
distribution of device requests upon completion of a CPU processing

interval:



Path Destination Relative Frequency.

path to disk(I/0) = = = = = - - 300/1000

path to drum(page) - - = = - - - 600/1000

new program path - = = = - = ~ 100/1000 ’

It can then be said that, when a process leaves the CPU, it has a
probability of 3/10 of selecting the disk path, a probability of 6/i0
of selecting the drum path, and a probibility of 1/10 of selecting the
new program path. The selection mode is then specified by the probabilities
p0, pl, and p2, where p0 represents the di;k path, pl the drum; and p2

the new program path. This is shown below in figure 4-8. One can think

pl 6+ Ul
jolo)
' DRUM
4 e Uvuo ||
CPU p2
Ui= service rates PP
DISK

Fig. 4-8 Probabilistic Path Selection In the Queuing Network

of the device selection probabilities as representing the manner in which
the sys*.m utilizes its resources. A’.though the actual program be?aviér
is not individually depicted, the statistical behavior of the system is
consistent with the previous model representation of a continuous time

Markov process. Devide service rates shown ave agaln assumed to be expo.dist.
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In order to quantify these probabilities for our syétem, reference is
made to the discussion of elementary jrogram properties in the Buzen thesis.
There one finds specification of the cistribution of the number of
processing requests per program, the trntal processing time per ;rogram, and
the number of service requests for the CPU as functions of the path
selection probabilities and mean sorvice rates of the devices. The

following is a summary of these résultw(BBﬁf@I

(1) Expected number of service requests in a program for the
jth peripheral processor=pj/pJ

(2) Ixpected total service time p2r program on the CPU =1/U0%p0

(3) Expected number of service recuests in a program for the
CPU=1/p0 ‘

Now, referring to the program behavior parameters of the example
program as specified in section (3.3.1), observe that the following is
true:

let Ki= the # of requests to a peripheral processor

the # of requests to the drum

Kl=

K2= the number of requests to the disk
then,

Kl= £(N)

K2= 60
and,

¥l + K2= the total numbe of I1/0's of hoth types in tle
program

Kl + K2 +1= the total number of CPU requests / program
Utilizing these observations, specification of the key parameters
U0, p0, pl, and p2 (Ul and UZ are already specified) is possible:

remember, the programs execute for 2000 msec.
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2000 = (60 + K1 + 1)/U00
JUC # (60+ K1 + 1)/2000
1/p0 = 60 + K1 + 1
/p0 # 1/(60 + K1 + 1)
pl = Kl%pO
/pl # K1/(60 + K1 + 1)
p2 = 60%p0
_/5_2‘} 60/(60 + K1 + 1)
The dependence of the CPU processing interval allotted toreach program
on the page faults predicted by the static pérachor is evidenced in the
expression for UO. It is clear from the equation that the mean service

time per interval decreases as the number of page faults increases.

4,4.3 The Steady State Solution

Now that the basic model has been specified, the next step is to
determine the.steady state érobability distribution for the system. This
well known result was initially established by Gordon and Newell (G5)

. and later applied to computer modeling by Buzen, Moore and Rice (see
section (2.4)).
in order to explain this solution method, the foliowing mathematical

description of the computer system is adcpted:

L+. = the number of servers in the netvork
Uj = the processing rate of the jth server
pij = the probability that a process leaving the ith server will

roceed to the jth server. lote that
p



-Zl' pij =1 i=0,1,2,...,L
j=

N :* the aumber of customers in the system, i.e. the degree of
multiprogramming ‘

For the queuing network, a customer leaving fhe ith server will
proceed to the jth server according to the following transition métrix:
| (00 pl  p2]
P= |1 0 0

1 0 0

For this system, let P(n0O,nl,n2) be the‘steady state probability of

. , L
finding nj customers present at the jth server, where E nj=N O<nj{N .
J:E
"Now definz the state indicator random variable,
0 if nj=0
e(nj) =
1 if nj O

Then, viewing the'systems one step trarsition probabilities as in fig.4-9,

Fig.4-9 One Step Transitions for the Queuini Network
it can be ascertained that the rate of transition out of state (n0O,nl,n2)

at equilibrium is:



o

31
2

E e(nj)-uj ?(n0,nl,n2)
30

and that the rate of flow into state “.0,nl,n2) is ' ’

2 |
i > “e(nj)-uicpij-P(...nitl,ni~1,...)

Therefore, the balance equations ior the continuous time Markov procass are

2 2 3
EE;;e(nj)-uj'P(nO,nl,HZ) = EZ: ziie(nj)-ui-pij-P(...ni+l,nj—l,...)
= A =0 j=0 A
" exit from state (n0O,nl,n2)’ " “entrance into the jth server
through the jth server from state (...ni+l,nj-1,...)

Solution of thid set of equations in the steady state is possible
with a separation of variables technique. The details are available in

the references (G5,BB); It follcws that,

P(n0,nl,n2) = 1 § (o3 U0 / UN™  s.t. E P (n0,nl,n2)=1
) i= '

1
G(N nO+nl+n2=N

Thus, G(N) is the normalizing constant selected such that the sum of

the steady state protabilities equals one:

L .
G(N)= (p3-u0/uj)™
L 3=

D mien

j=1

A very efficient computational algorithm for calculating G(}) exists as
a result of the doctoral work of Duzen. It is used to facilitate tte

evaluation of the above steady state probabilities.

4.4,4 Applying the Sclution

The use of the computational algorithm yields G(¥) and as by-
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products,G(N¥-k), k=0,1,. . .,N. The value of these results lies in the fact
that they are useful in calculating a variety of marginal distributions
that are directly applicable to performance an?lysis. For example, Buzen
G(N-1 '

has shown that the utilization of the CPU is G{X) and that the ex-

pected cueue length for the CPU in the steady state is,

Qo= i )

k=1
In addition, the expected queue length for the jth server is
N k G(I-k)

97 2y B ey

A }L/1 program has been written to evaluate the systems steady
state probabilitics and key marginal distributions. The results of this
effort can bhe found in Appendix B whers an extended program listing is

shown along with ocutput {rom sample runs of the model.



CHAPTER 5

SIMULATION: AN APPROACH TO SYSTEM PLRFORMANCE ANALYSIS

5.1 Introduction

Simulation analysis has been established as a technique that lends
itself to computer modeling, and analysists have pioduced valuable pre-
dictive information about system performance using this analysis techni-
que. (sections (1.2,2.3)).

Often, a computer model demands representation of a level of detail
that precludes using analytical models. 1In such cases, a system simula-
tion is developed as the sole model; then,if an actuél system is heing
- studied (as opposed to a feasibility study of a hypothetical system), the
model can be validated on the basis of performance data provided by a real
time environment. In the situation when the system isn't available,
validation of the model is much more difficult. In these cases, it is

possible to study the step by step operation of the simulation model in the



84
hopes of ascertaining its correctness. This, needless to say, may be
prohibitively difficult. Another appreoach might be to macroscopically
Wodel>system performance with an analytical model, and then perforn a
Statistical analysis comparing results’from the simulation with the mathe=
matical results. Thus, trends that mipht transcend intuition could be
verified and some confidence in the model as a performance analysic tool
could be achieved.

In the previous chapter, analytical models were formulated to
analyze a CP-67 like demand-paged computer system. Since three dif:erent
techniques were available to provide results for comparisen, it was
'possible to determine the predictive capacity and accuracy of the methods.
In this chapter it will be demonstrated how a performance model of the
system can be developed with simulation. Then confidence in the simulation
will be gained by validating the data on the b&sis of the analytical
models. It will then be shown hoﬁ the éimulation approach can be extend-
ed to model a greater level of detail and to overcome some of the short-

comings inherent in the System Process Model.

5.2 The Characteristics and Problems of Simulation Models

Developing a simulation model requires insight into a variety of
issues. These will be discussed prior to the actual modeling effort. To
begin, lets center on the technical izsues fcund in model developmr.it, The
first topic of importance is flexibility. It is desirable to produce
a general program which permits analysis of a wide range of parameters

with as little reprogramming as possible. Given this objective, the type



of simulation system to be used must be chosen. One then finds that

the problems encountered in model development are very different if

the system is being implemented in a general purpose, higher-level
language than if it is being implemented in an available system simnlator.

If starting from scratch, for example, the problem of equipmen:
requirements is an open question. How much memory space is needed, how
long will programs be, and how fast can they run? The synchronization of
events that are being modeled in '"real time" must be handled, as well as
the maintainence of variable length lists in which entries are usuaily
removed in different order than placed. Distribution sampling must be
implemented and statistics gathering applied. Granted, organizing a
simulation from inside out lends a much better understanding of system
operation and can provide much more efficient operation than general
systems that provide these facilities; however, since solutions to these
problems are provided by simulatisn s?sfems programmable in their own
proprietary language, tﬁe convenience of their approach is widely taken
advantage of. Let it be noted here that the models implemented in the
following section are written in GPSS, a general purpose systems sim-—
ulatof:

Now, it is of interest to discuss thoée charactgristics and prob-
lems common to both modeling approaches. To beéin, observe that a salient
feature of simulation modeling involves including components of thr. real
system that make the modeling useful as a tool for analysis and prediction.
Including componedts to make the model sufficiently real often involves
highly subjective reasoning. Often, the trade off in this area is between

producing simplistic, economical models and realistic, complex ones. A
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conscientious effort must be made to vinpeoint and modularize the essentials
of the system, for all too often, the model with additional features can
obscure the real valueto be cained , lat alone make it prohibitively
,
eXpensive to run.

Ano;her common problem revolves ¢round the fundamental nature of
systems simulation. That is to say, rhelr discrete event reprensentation
of a continuous physical prccess[resu;ts in inherent approximations and
results in the problem of simultaneity of events.

In order to appreciate the next jroblem inherent in simulétion
modeling, it is necessary to consider the nature of the behavior of individ-
ual components in the system. In a simulatién model, it is the modular
mathematical formulation of individual cﬁmponents, which when manipulated
and monitored, produce the dynamic interactions of the real system. Now,
component specification in computer modgling can be deterministic or
stochastic. TFor the obvious reason that decisions and operations are
executed in an inherently uﬁpredictable environment, it is appropriate to
select  the probabilistic descriptions. Yet, such a choise points up the
problem alluded to. Probabilistic specification leads to variability in
the results; so how can one justify predictions abqut an environment that
can only be approximately modeled?

Last but not least, it must be realized that the system simulator
does nct prodice the answer to any question that is posed to it. T'n fact,
it doesn't pretend to solve anything. It merely yields results descriptive
of system operation in an environment specified by the programmer. The

best one can hope for is to gain insight and display expected results by
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"running" the simulator with a variety of pérameters. This results in
oﬁr finil problem of simulation. How does one specify starting conditions
and determine when the results have reached equilibrium?
These problems wiil be handled in the implementation to follow. The
reader is referred to the references for more detailed discussions and

sclutions to these intrigueing problems (C8,C9,Rl1).

J.3 Simvlation of the System Process Model

As indicated in the introduction, the System Process Model will
“be simulated in order to demonstrate the application of this technique
_ to computer system analysis. Extensions of the model will be shown

to overcome some of the weaknesses inherent in SPM.

5.3.1 Statement of the Problem

The problem to be tackled here is similar to the one studied with
analytical models in Chaptef 5. A GPS5 model is proposed to provide
information on multiprogramming operation in a page on demand virtual
memory computer system. It is intended to demonstrate how simulation
modeling can lend insight into system operation by obtaining a measure
of system throughput, turn around time, device utilizafions, and queue
length statistics.

Th-: simulation development phasc can b2 viewed as an e ffort te prodice
another valid model of SPM using a different modeling tool. A point of
departure in the modeling effort that permits demonstration of the more

flexible nature of simulation dis establiished when the results of the basic -
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simulation model are shown to agree with the analytical resuits obtain-
ed for SPM. Additional features that one might add to the model such
hs the inclusion of more detailed subsystems, system overhead, the use
bf non-exponential serviqe disciplines, and écheduling of CFU requests
are discussed. It is intended to show how the inclusion of such detail
makes the SPM representation of multiprogramming more realistic.

Before discussing the actual model development, a brief reviev of
the basic system that is initially modeled is of value. The natur: of
the system is depicted in figure 5-1. Note that the movement 6f tokens
described in the analytical models is physically modeled in the simulation

approach. Thes can be seen as the circles that represent user processes:

NEW PROGRAM PATH

JOB RECEIVING (::) <::>7 (::) —

'SERVICE
] DRUM

Vj

=0 O O—=| O |—
. S

CEU
~[O-

Fig. 5-1 Simulation Characterization of SPi DISK

Service times are all exponentially distributed. Processes requesting
use of the I/C disk queue in a FIFO "warner. with mean service time of
50 msec. Processes receiving drum service are assumed to he requesting
single pages on demand and also queue in a FIFO manner with mean ser-

vice time depending on the drum (25,10.9% , or 5.00 msec). Processes
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requésting use of the CPU also gueue for service in a FIFO manner,
with meran service time dependent on the degree of multiprogrammin‘
:(remember, the mean time between requests for peripheral devices Js

‘dependernt on the mean page fault time which is an explicit functicn of

N).

5.3.2 Approach Taken In Building the Model

This discussion is intended to explain the block diagram_that is
presented in the next section. Those problems inherent in simulation
modeling that were discussed in sectioﬁ (5.2) will be addressed in the
developnient.

The selection of important system parameters was based on the desire
to make the modeling effort both economical and comparable to the
analytical work reported.ﬂ The simulation parameters for path selection
and service distributions»gre the same as those derived in the queuing
network model (section (h.ﬁ)). This is acceptable since the simulation
explicitly represents those tokens described in that analytical network.

In order to represent the activity of multiprogramming among the
fixed memory partitions, the tokens can now be viewed as GPSS transac-
tions. The model that they flow through is constructed as a tree of
blocks (the blocks represent executable subroutines that perform the
specif.c tunction described by the biock name). These transactions
enter the system through a generate block that is designed to establish
the degree of multivrogramming, N. They then compete for CPU execution

which is simulated by a QUEUE-SEIZE-DEPART-ADVANCE-RELEASE sequence.
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This permits waiting line statistics to be gathered, representation of
the capture of the central resource, and execution of CPU cycles »y the
tcapturing process.
i A new path for the process is then determined on the basis of a
‘;statistical selection. The probabilities pO, pl, and p2 represent
selection of the new program path, the drum path, and the disk pach.
The I/0 facility and the paging facility are also represented by QUEUE-
SEIZE-DEPART-ADVANCE-RELEASE blocks for the same purpose. Jobs that
- terminate are marked for total system residence time and are returned to
the CPU ready queue as new Jjobs to compete for new central processing.
As in the queuing network, the return path keeps the level of multiprogram-
ming constant.

In building this model, it was not necessary to externally resolve
any conflicts arising from the simultaneity of events. To understand
how the GPSS processor was able fo handle this situation, an explanation
of simultaneity and how it is approached in GPSS is necessaryry.

Basically two chains are maintained by the processor for scheduling
activities, the current events chain (CEC) and the future events chain
(FEC). The CEC has placed on it those events that are to occur at the
most recently updated value of the GPSS clock. The.FEC has placed on it
those events that are to occur at some future value of the clock.

Tie GPSS clock maintains virt el time for the simulation ani is
referenced and modified during the processors clock update phase, at which
time events that expect to occur at that clock value are moved from the

FEC to the CEC. When the clock update phase is completed, the processor's



91

scan ﬁhase begins. The first transaction that is found on the CEC is
moved trrough as many blocks in it's current path as possible. Sone
Eensitive blocks can restart the scan of the CEC.

i Now, if two events are scheduled to occur at the same simulat:d
time, they are both placed on the CEC for event execution. Howevev,

it is evident tlmt the two events really occur sequentially in an order
that depends on their position on the CEC. The problem that can arise is
that events might occur in the wrong sequence, causing unexpected results.

Consider the arrival departure conflict in a teleprocessing sy/stem
modeled in GPSS. Assume that a teleprocessor request needs a main memory
buffer end that it rencgs if the buffer isn'£ available. Assume also,
that dispatched messages free a memory buffer. Now, picture the system
at simulated time &8 with the entire memory full. If at this time 2
dispatch event happens to be moved onto the CEC following a request for
buffer space, the request would be turned away and then the buffer would
be freed. In such a situation, one might prefer to adopt a policy that
caused all dispatches to occur before all arrivals in the event of
simultaneity.

In the system t5 be studied here, such a problem does not occur with
arrival-departure events (this is the only simultsneous event that might
be expected to cause problems). To see this, consider this system at
simula.~d time 88. Assume that a di.k I/0 processing interval is r~chedul-
ed to complete (note, this will cause an arrival for CPU scheduling) as
well as a CPU processing interval. Also assume that the CPU queue is

empty. If the disk completion event is placed ahead of the CPU event on
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the CEC, the processor effects termination of the event by moving it .
thiough the RELEASE-TRANSFER-ASSIGN-CPU QUEUE blocks. Finding the CPU
occupiec, it stops movement of that trensaction. Since a release block
was exeéuted, the processor restarts its scan of the CEC to find the CPU
termination event ready to move. Consequently, it moves that transaction
through “he RELEASE-TEST- and the next appropriate blocks until move-
ment is 1o longer possible, i.e. a block is found that cannot be entered.
Since a release block was executed again, the processor picks up on the
disk traasaction now in the CPU ready queuwe. It moves itthrough the
SEIZE-DEPART-ADVANCE sequence at which point'it is scheduled as a CPU
processing completion for some future clock value. The scan phase is
then completed and the next clock update phase is entered.
Thus, it cen be seen that a zero CPU queue passage occurred (the disk

I/O transaction experienced no waiting time for the CPU) as expected for
this situation. - Independent of the order in which the events occurred on
the CEC, the Statistics woula not be biased in any way. The GPSS process-
or is designed to resolve such conflicts without any external intervention.

To return now to the discussion of model development, the problem of
attaining equilibrium will be discussed. It has been implied that a model
should be run for a long enough time to let statisticslreach a steady
state. One problem with this approach is that such runs become prohibitive-~
ly expe:sive. 4+ is also an open que~tica ws to how long a model rist be
run to swamp out biasing initial conditions.

Included in the repertoire of GPSS instructions is the reset card

which facilitates achieving the goal of equilibrium. It has been used in
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conjuﬁction with the start card as can be seen in the extended prorram
listing of Appendix C. The effect of this pair of statements is as
%ollows. After the input phasc and initial start up of the model, the
éimulation runs until & timer interrupt occurs (the implicit time it
is .0l msec, runs are for 20 nmin). Upon occurrence of this event, the
processor reads the reset card. The effect of this card is to set all
statistics back to zero, yet leaving all chains in tact, i.e. the state
of the system is unaffected. Then the processor reads the next card
‘which is a start card, and the model in run until another timer inserrupt
-occurs.

The results of successive applications of these commands cleariy
demonstrates that equilibrium is attained after two twenty minute
runs with resetting and one final twenty minute run. The statistic

used as a barometer was CPU utilization as shown in figure 5-2.

RUN TIME CPU UTILIZ.
20 min. 36.3
reset
20 min. 36.8
————reset
40 min. 36.9

Fig. 5-2 CPU Utilization and Steady State Behavior
One cause of the extended length of time needed to achieve equilibrium
is the wias of statistics incurred wuen the CPU queue is loaded with
the N customers that initially establish the degree of multiprogramming.
In addition to the above considerations, the time each job is in

the system is marked and tabulated to determine the distribution of turn
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around time. The maximum contents of the respective queues can be used
to specify required memory space for buffering the queues. At the end

of eacnh simulation run, the block cownt at the termination blosk can be
used to determine system throughput, since this count gives the total
number of jobs that have completed the system in the given simulated

time. Also, execution of three independent program segments in includ-

ed to determine the distribution'of queue lengths. The basic idea being
to use the tabulate blocks in weighted mode, entering line lengths weight-
ed by the duration of clock time that they were that length. fhis re-

“sults in a specification of the % relative frequency that the line vas

e specific length.

5.3.3 Table Definiticns

GPSS ENTITY INTERPRETATION
Transactions ‘
Segment 1 ' Computer processes
Segment 2 A timer
Segment 3-5 : A line 1line length tabulator
Facilities :
CPU execute computer processes
I0CH I/0 service unit
BKST page fault service unit
Queues ‘
CPUQ CPU waiting line
10Q 1/0 waiting line
BKSTQ page waiting line
Tables
- CPULN CPU queue line length distribution
I10QLN I/0 queue line length distribution
BKQLN ‘ page queue line length distribution
Functicns
XPDIS service time distribution
1-N path selection probability distrib.

5.3.4 Block Diagram

Figures 5-3 and 5-lt show the flow diagrams for the program segments,

Symbolic notation is based on IBM conventions.  The extended program list-
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Fig.5-3 Block Diagram for GPSS Simulation
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ing for this program is included in Appendix C.

5.4 Extensions

t

The analysis performed thus far has mirrored the analytical woyk
reported. In this section the flexibility inherent in the nature oF
simulation modeling will be discussed by example in order to demonstrate
the reascn why this technique is used so widely for computer system
analysis.

The issue of the level of detail that the SPM represents Qill ve
‘addressed by looking at a more realistic I/O hierarchy and explaining
an approach for modeling it with GPSS. Then, it will be shown how a
variety cof service disciplines can be implemented very easily. Also,
introduction of priorities into the model will be demonstrated with a
simple example. The conhcepts of ?reemption and synchronization of
transactions are explained as further examples of techniques available

for extending model depth.

5.4.1 Detailed 1/0 Subsystem

The view of the I/0 subsystem taken in this thesis was simplified
compared to the actual hierarchies one finds in real systems. In fact,
I/0 subsystems are so complex that the first attention to scheduling
peripheral operating system operatioi s was dedicated to this funct.onal
area (W3). A view of a typical module of this sort is shown in figure 5-5.
It shows a typical I/0 resource structure. The issue of satisfying a

particular request becomes a more involved task that .requires the aid



INPUT-OUTPUT

INTERFACE
| 7T
; i |
| [
|
Y
CHANNEL
"1
DEVICE CONTROIILERS
DHV ICES  te cen

Fig. 5-5 Typical Input/Output Resource Structure

of the device management and information management functions of the
operating system. The main system overhead is involved in setting up

a path to the lowest level, the actual device. At each level of the
hierarchy it is necessary to determine if the next level is available
for acquistion., If it is, it can be reserved and the path extended. 1If
it isn't, a decision must be made whether to reserve the path or free

it and begin again requesting from the top. This précess is demonstrated
in figur~ 5-6,

Once a device has been assigned through execution of component

management algorithms above, the information transfer process must be
initiated. An example input process is depicted as the array of logical

steps in figure 5-7 (W3).
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I/0 PATH REQUEST

LOWEST HIERARCHY LEVEL i

No

Request ’

Reserved

Queue Request

COMPONENT /

N

Reserve
COMPONENTi

Add COMPONENT K to
: i

Tnterrupt Link LisY

N

Update i to Next Level
In COMPONENT Hierarchy
required for I/0 PatH

( i: Highest Level

Yes

Y

I/0 PATH READY

NS .
7 |For Access to
COMPONENT

Clear Appropriate
Components to
AVAILABLE State

Fig. 5-6 Typical Component Scheduling
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"INPUT" CALL

\

I/% PATH DETERMINATION
N2

P RATH READY REQUFQ}

SET INTERRUPT LINK$

Y

INITIATE FILLING OF
BUFFER FROM DEVICE

l

RETURN
(INPUT ACTIVE)

UPDATE OF
STATISTICAL

JINPUT" COMPLETE INTERRUPT
' PARAMETERS \

N (—J———D error

EHROR ANALYSIS )—>CALL DEVICE MANAGER
7 0K

RELEASE COMPONENT]
RESERVED IN PATH

v

RETURN
(INPUT COMPLETE)

Ul
(]

Fig. 5-7 An I/0 Hierarchy, General Input Algorithm
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If it is felt necessary to include such detail in_a-system model,
simulation provides the facility for this. The computer system simulation
language O0SSL (W3) has these features included within the structure of
the Fortran supported language. In GPSS it would be possible £; des-
cribe such systems with Boolean Variatles which are capable of represent-
ing complex logical conditions. In addition, the synchronizing property
available from manipulations of the processors special purpose Matching
chain and theinterrgpt facility provided by a similar chain, the Inter-
rupt chain, could be gainfully employed in the modeling effort; The main

point is that simulation is the only answer to the explicit representation

of such a special purpose subsystem.

5.4.2 Arbitrary Service Disciplines

In the modeling performed, eiponential distributions were assumed for
all of the service facilities. Inclusion of other non-uniform distributions
makes possible modeling ofAs§stems under considerably more realistic condi-
tions.. So, in GPSS the Function facility is provided to make this all
possible. The basic steps involved are defining the‘non—uniform dis-
tribution with appropriate function cards, and providing operand references
to these functions in the blocks in which they are needed. There are
eight distinct sources of uniform random numbers provided by the GPSS
process r that facilitate the sampliny of the distributions. Thes:
stochastic generators introduce the variability into the modules as des-
cribed in section (5.2). It is evident, however, that one who is using
this modeling technique would certainy be willing to live with this margih

of error if the model was sufficiently real to provide useful information
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5.4.3 Priority Scheduling

} T.i2 last area to be discussed is priority scheduling. One easy way
'to demonstrate this flexibility is wiﬁh an example. The following block
;diagram.shows a single queuing discipline that serves two process classes
identif:able by priority distinction (figure 5-3). SPM is easily extended

to this more interesting situation:

GENERATY ~ pwoRwy | GENERA PRlORI<Y 2
n
255K, 1 sssLiy2
N ¥
7 PU .
QUEUE @ QEE |00
v \
SEIZE ) SETIZE
CPU S -
Y | \
DEPART @ DEPART CPUQ
\
ADVANCE ADVANCE
\
CFy 55T
RELEASE RELEASE

Fig. 5-8 Block Diagram For Priority Process Scheduling, N=L+K
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PERFORMANCE PROJECIION: THE RESULTS

6.1 Load and Performance Measures

A model for a CP-67 iike multiprogramming module has been developed
and analyzed with a variety.of modeling techniques. The model is an
absolute one in that its inﬁended use is to predict actual performance
of the system under study. It's ultimate purpose is to provide informa-
tion about system operation that can be used in deciding the optimal
performance region for a system, given it's characteristics.

In order to perform meaningful analysis with the system model, it
is necessary to review the load and performance measures alluded to as
valuab.ic for reflecting system behavicr.

The first aspect of this discussion is identification of a load

measure. Of course, this is none other than the independent variable
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of the previous modeling discussions: N, the degree ofAﬁultiprogramming.
This indicator adequately represents the collective demand of processes
on the system resources. Often, such a lvad measure does not represent
what the system is really doing, and nence does not reflect tﬁ;
demands placed on the system. Since our job set is a group of statistic-
ly identical processes with similar Jemand needs, this often used
indicator is valid for this application.

Performance indicators that mer:it review and discussion now follow.
For example, in seétion (3.2.1) the composite multiprogramming cost
function derived was based on the proSability of non-overlapped processor
time.. Also, in section (3.3.4) it was shown that the average CPU
utilization provided information onvtﬁe'effective processing capacity
of the.system.

One additional indicator, expected queue lengths for shared re-
sources, was pointed out in the ;pplicétioﬁs sections of the
models solved. To expiain the of this quantity, use is made of
Buzen's derivation of server utilization and his definition of system
bottleneck (B3,B5). He has shown that the most highly utilized server
has the largest expected queue length. He has also defined a bottle-
necked resource as one which is seriously degradiﬁg system performance.
Intuitively, the expected queue length provides a means for recognizing
a potertially critical resource (one that is a bottleneck). The longér
the steady state queue length, the more utilized the resource, and the
greater the possibility that it isn't adequate to permit optimal per-

formance. Doing a sensitivity analysis on this service component by
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improving its service rate and determining its effect on system process—
ing capability is a sensible measurement to make. Thus, queue leagth
iwill be measured in the hopes that it willi be effective in monitoring
%the use of the shared resources.

This latter concept and related measurement points up one of
several possible approaches for improving system performance. In fact,
for the system under study, it will be shown that the most effective and

: appropriéte technique for effecting improved resource utilization of

. the CPU is to increase secondary memory speed. This is done through both
scheduling memory activities and upgrading the device to one with a
faster service rate.

Sumarizing, the information available from the model analysis that
will be of value in determining optimal multiprogramming performance and
pinpointing system degredation is:

(1) The multiprogramming idie timé

(2) The average CfU utilization

(3) Expected queue lengths that form for the shared resources

6.2 Performance Prediction For the Multiprogramming Module

Solving the multiprogramming model has resulted in mapping a class
of input functions into a relevent set of output functions. The
input {unctions have been specified in the discussion of the systrm
model in section (3.3). They were found to be process request rates
for the system resources (or equivalently, path selection probabilities)

and expected device service times. The output functions useful for
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analysis have been presented above in section (6.1).

This section will present the results of performance projection
|for the multiprogramming system. First, the multiprogramming cos:
?accounting technique will be applied to specifing the range of desired
‘operation of the system when it is configured with the medium speed drum.
The purpose of the presentation is pedgagocial in nature, the intention
being to explicitly identify the individual behavior characteristics
as a function of the level of multiprogramming. It is found that the

 abstract view of the system taken in this analysis does in faét provide
results that agree very closely with the dual model that follows.

In the dual model, performance is predicted under a variety of
loads with all three drums. The reason fcr the sensitivity analysis
using the drum is that it is this device that is found to be potentially
critical with respect to éystem performance. It is shown how increasing
the speed of this device's service mechanism through scheduling and
improved device technologf.éan greatly improve system performance. As
a result of this p:ojection, a very interesting characteristic of this
system is discovered. The law of diminishing returns to scale is found
to be in effect for the optimal degree of multiprogramming possible
with the configuration under study. Both @ improvements in the system
throughput as achieved by increased device speed,amthe optimal degree of
N appinach a constant.

It is quite reasonable at this point to view the analysis performed
by the continuous time Markov state approach, the queuing network approach

and the GPSS approach, on the dual conceptual model of SPM, as equivalent.
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The rational behind this is provided by a demonstrationAof the results
obtained bty these three techniques for the same model configuration and
loads. The results agree within .4% with the simulation solutions caus-
ing the largest margin of error. ’

Reviewing the general approach taken iﬁ the following sections:
A level of multiprogramming is selecved by determining the number of
pages that are to be permitted in real core/user. The paging behavior
that reflects the effect of memory on program activity is determined by
picking the number of page faults for the‘given level of N. The number
of 1/0's per program is constant. These values determine the appropriate
transition probabilities for'the models. Performance information is
gathered for the level of N selected,vand then the procedure is repeated
again if desired. It has been found that a maximum level of eight

jobs is sufficient to demonstrate system performance.

6.2.1 Multiprogramming Idle T ime Analysis

In order to determine the optimal region of multiprogramming opera-
tion a lower and upper bound of expected performance wae established by
selecting two extreme views of secondary memory. For the given job mix
and the same CPU processing speed, the input/output hierarchies were
assumed to behave according to the two views presented in section (3.3.2).
First, requests were assumed to quvg in a FCFS manner for thedis™ anﬁ
drum. The medium drum (mean service time 10.94 msec) was chosen as
representative of channel behavior for these model runs. Then, each

request for a peripheral device was assumed to receive instantaneous
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service. In this situation, there were no queuing delays, the only
delay per request was in access and transfer. The same device sarvice

% rates were maintained. Tables6-,2tabulate the results obtained. These
§ data are then plotted in figures 6-1 and 6-2., Remember, each type of

. request 1s assumed to occur independently of the other in its own
operating environment, hence the determination of individual costs

for each activity. Sumarizing these results below in table 6-3, 'we have:

Service Discipline | Nypp \Npypasning

FCFS Queuing 2 3

No Queuing 3 5

Table 6-3 Summary of Result From Cost Accounting Analysis

No attempt was made-fg obtain any other performance information
with this model. Such analysis is left to the more realistic dual
channel view of SPM which follows shortly. Let it suffice to observe that’
as the level of multiprogramming increases, we do in. fact experience a
decrease in the cost function as the benefits of multiprogramming are
enjoyed. Then, there is a sharp increase based primarily on the cost
of psging user jobs, as we get too much of a good thing! The ex.essive
competition for primary memory resulted in system paging levels that
could not be supported by the available hardware. It is also noted that

scheduling the bottlenecked resourée, the paging drum,would result in
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Tahle 6-1 Single Facility Markov Model Results For the Cost
of Multiprogramming (FCFS Queuing-Medium Drum)

N Tepu | T170 | Teace | TroraL
1 2.00 3.00 ik 5.4k
2 2.00 2.37 .38 4,75
3 2.60 2.08 2.15 6.23
4 2.00 1.92 b7 8.69
5 2.00 1.83 11.1k 1h,97
6 2.00 1.77 23.90 27.67
7 2.00 1.73 39.28 43.01
8 2.00 | 1.71 54,63 | 58,3k

N Tepu T1/0 Tpace | TroTaL
1 | 200 | 3000 kb 5.
2 2.00 | 1.55 .22 3.75
3 2,00 67 .71 3.48
4 2.00 .2k 1.32 3.56
5 2.00 .07 4,61 6.68
6 2,00 .02 | 14,52 | 16.5k
7 2.00 .00 27.63 29.63
8 2.00 .00 | L0.87 | k2,87

Table 6-2 Single Facility Markov Moéel Results For the Cost
of Multiprogramming (No Queuing-lfedium Drum)
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performance close to N

oPT" This claim will be justified in subsequent

analyses. A guesstimate of CPU utilization for such operation is

made as follows:

CPU Utilization (XN OPT)= TCPU = 2.0
ey ¥ Tr70 * Toace 34

g»* 100=57%

It is at this point when throughput will be greatest by dint of having
as many user jobs in the system as possible benefiting from CPU
servici:. A side effect expected is a stretch out in execution time

resulting in lbngér turn around time per job entry.

6.2.2 Average CPU Utilization Analysis

Our performance projection now proceeds with analysis of SPM in
its entirety. That is té say, analysis is performed on a single module
with both I/0 and pagingvaptivities occuring naturally within. For the
given system configuration; similar views of secondary memory are
taken in order to establish a bounds on the degree of multiprogramming.
The tabulated results that follow demoﬁstrate system{;erformance
for a variety of situations. The first (table 6-k, fig.6-3) are for the
slow drum. The FCFS data shows extremely poor performance with maximum
CPU utilization of 41.74 % obtained at N=2. Since the paging drum was
clearl; limiting system performance, scheduling this device was carried
out in the hopes of improving performance. However, even for the optimal

case, the benefits of multiprogramming were not being taken well ad-

vantage of. No increate in the optimal level of N was achievedthrough
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FCFS
N % UTILIZ | THRPT QUEUES
Jobs/min,| C i p

1 33.33 10.00 .33 .50 | .17
2 b1,k 12,52 54 [.89 | .58
3 26,21 7.86 .33 1.57 12.10
4 15.91 4. 77 .19 .31 |3.50
5 1.62 2.29 .08 .13 |4.79
6 3.64 1.09. Loh 1,06 /5,90
7 2,22 67 .02 |.0k {6,904
8 1.60 U8 .02 .03 |7.96

SCHEDULING PAGE CHANNEL
N 7# UTILIZ | THRPT QUEUES

Jobs/min.| C I P
1 33,33 | 10.00 | .33 |.50 | .17
2 L4, 70 13.40 .57 1.95 | .48
3 41.57 12,47 .56 1.98 |1.46
4 39.5k4 11.86 .55 [.98 [2.47
5 30.00 9.00 .39 {.67 |3.94
6 17.61 5.28 .21 | .34 5,45
7 11.09 3.33 .12 .20 6,68
8 8,00 |- 2,40 .09 |.14 17.78
NO QUEUING-OPT
N % UTILIZ | THRPT QUEUES
Jobs/min. C I P

1 33.33 10,00 .33 1.50 | L1
2 52.04 15,61 67 1.78 | .55
3 47,03 1Lk.11 .65 | .71 [1.65]
4 43.63 13.09 62 | .66 [2.73
5 31,38 9.41 | b1 | .47 |b.12
6 19.87 5.96 .24 | .30 |5.50
7 14.69 L.k A7 .22 |6.61
8 12.29 3.69 J1bh ] .19 |7.68

Table 6-L4 Dual Facility SPM Results (Slow Drum)
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scheduling the page cahnnel. It was found that this technique yielded

only a 2.96 increase in CPU utilization over the FCFS case. In

gddition, the performance curve for the slow drum is quite sharp,
indicating that thrashing occurs at a level of L4 jobs. The peaked
hature of the curve and the small range of reasonable system performance,
(2-3) jobs, is clearly undesirable in an environment where the level of
N might Tluctuate around the optimal point.

Moving to a better drum was the next step taken in an effort to
improve CPU processing capacity as well as achieve a higher level of
multiprogramming. These results are tabulated in table 6=5 and are
plotted in figure 6-4. More encouraging results were obtained as
the upgraded device (medium speed drum, T=16.70 msec) not only reduced
effective page queue lengths but also improved the level of multiprogram-
ming to 4. Scheduling resulted in an increase of 4,529 in CPU utilization
for the same drum, and it resultéd invaﬁ increase of over 8% in CPU
utilization compared té the slow drum in the same situation. This latter
increase resulted in an increase of 20% in overall system throughput.

The smoothing out of the performance curve is also a desirable feature
gained by moving to the medium speed drum. In this case of scheduling
the paging drum, it is evidenced by the thrashing point being moved out
to N=6.

Th- next logical question is whelher or not upgrading the hardware

further can afford sufficient gains to make such an investment of in-
terest. Results obtained for this situation are based on the use of

the fast drum discussed in section (3.2.1). These data are tabulated in
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FCFS
N % UTILIZ. | THRPT QUEUES
Jobs/min{ € I | P

1 36.78 11,03 .37 1,55 | .08
Z 48.38 14,51 65 11.09] .26
3 43.95 13.19 641016 [1.20
4 33.86 10.16 .48 | ,882.64
5 17.38 5.21 .21 | .35|h.hY
6 8.31 2,49 .09 | .Aki5.77
7 5.08 1.52 .05 | .0816.86
8 3.66 1.10 ol | .06{7.90

SCHEDULING PAGE CHANNEL

N | % UTILIZ.| THRPT - QU§UES =
1 36.78 11.03 .37 | .55] .08
2 49,23 14,77 66 1,11 .23
3 51.51 15.45 .78 11.431 .79
4 52.90 15.87 87 {1.69[1.45
5 48.08 1h, 42 .76 [1.h49 2,76
6 35.62 10.67 .50 | .93 k.57
7 b, 77 7.43 .33 | .5616.11
8 18.23 © 5.4 .22 | .37 |7.h0
NO QUEUING-OPT
N % UTILIZ.| THRPT o QUEUES S
1 36.78 11.03 .37 | .55] .08
2 60.57 18.17 .81 | .91 .28
3 65.00 19.50 1.03| .9811.00
4 66.71 20.01 1,78 1.00[1.83
5 56.12 16.84 94 | .84 3,22
6 40.05 12.01 .58 | .60 k.12
7 31.07 9.32 2 | b7 6,12
8 26.55 7.96 34 | b0 |7.26

Table 6~5 Dual Facility SPM Results (Medium Drum)
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table 6-6 and plotted in figure 6-5. It is noticed that even for CI'T,
the best level of N is still 4. For the scheduling situation, the
Aaximum gain in CPU utilization over the same situation for the medium
épeed drum was 5.52% and the increase in throughput from 15.87(jobs/min)
to 17.53(jobs/min) yielded only a 10% increase in CPU processing power.
A benefit gained was the further smoothing of the performance curve with
thrashing occuring at N=7, in this scheduling situation.

The gains achieved for this latter upgrading of support hardwere were
not as great as those obtained in the former. The system is begining
to operate in the region of diminishing returns to scale, as the benefits
gained from improved page service are leveling off. Since adequate per-
formance characteristics were achieved with the medium speed drum, the
latter investment is not advisable.

To further demonstraté the law of diminishing returns that occur for
the optimal level of N (as well as for system throughput), one further
study was made with a drﬁm df T=4 msec. The overall results, plotted below
in figure 6-6, show that the paging drum has yielded it's share in im-

proving system performance.

A
>

=

DRUM KEY

#1 T=40 msec.
#o T=16.7 msec.
#3 7=8.0 msec.
#4 7=k .0 msec.

[y

OPTIMAL ILEVEL OF N
e n

0 1 2 3 4 DRUM #
Fig. 6-6 System Performance Under the Law of Diminishing Returns
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FCFS

QUEULS

N % UTILIZ ng§§£in C I 7

1 38.L6 11.54 .39 .58] .ok
2 50.93 15.28 LT00 1,19 .12
3 53.70 16.11 .86 1.62| .52
4 52.30 15.69 .00 1.80{1.30
5 36.20 1l0.89 .55/ 1,05/ 3.40
6 18.17 5.45 .22 .37|5.40
7 11.11 3.33 13 .20]6.67
8 8.00 2.0 .09 .14/ T7.78

SCHEDULING PAGE CHANNEL

N % UTILIZ | THRPT C QU§UES 5
1 38.46 11,54 .39 .58/ .ob
2 51.1k 15.34 L7001.19] .11
3 55.65 16.70 .90 .70 .39
4 58. 42 17.53 1.06/ 2.20] .73
5 58.2k4 17.47 1.100 2.38] 1.53
6 53.70 16.11 .96| 2.04| 3.00
7 | 46.23 | 13.87 | .77 1.58] 4.65
8 38.052 | -11.h2 .59 1.17| 6.24
NO QUEUING-OPT

N % UTILIZ | THRPT c QU§UES 5
1 38.46 11,5k .39 .58] .ok
2 64,91 19.h47 .89 .97 .14
3 76.00 22,80 | 1.33 1.1 .53
4 82.13 24,66 1.741.2311.03
5 78.98 23.69 1.74 1.19/ 2.07
6 66.87 20.06 i.321.00| 3.68
7 56.93 17.08 1.02] .85/ 5.12
8 50.95 15.29 87 .77 6.37

Table 6-6 Dual Facility SPM Results (Fast Drum)
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6.3 Discussion of Results

The following table summarizes the results obtained from the above

analysis (table 6-7):

APPROACH TAKEN | DRUM QUEUING N(OPT.) | N(THRASH) | %CPU UTIL.
17 MODEL DEVICE | MECHANISM . _ OPT., N
- (| 1:DEPETDENT ~MEDIUM FCFS 2 3 32,1
CTMPs SPET
| II'DEP.CTMP. MEDIUM OPT. 3 5 57.5
| DUAL SPM SIOW FCFS 2 3 LI, 7L
| DJAL SPM SLOW SCHEDULE 2 5 4k, 70
DUAL SPM SICW OPTIMAL 2 5 7.03
| DUAL SPM MEDIUM | FCFS L 18.38
DUAL SPM | MEDIUM | SCHEDULE L 6 52.90
DUAL SPM MEDIUM OPTIMAL 6 66.71
DUAL SPM FAST FCFS 3 5 53.70
'DUAL SPM FAST  [SCIEDULE b 8 58.42
DUAL SPM FAST OPTIMAL L 10 82.13

Table 6-7 Summary of Results of Performance Projection

One observation is that the cost function analysis was able to
provide a useful indication of the expected bounds of multiprograrming
' performancejﬁ%This justifies itls use in a pedgagocial setting, where
demonstration of the effect of the different componeénts of the composite
function would be instructive.

| The difference in the predicted *»ounds and the lower 9% CPU utilization

(57% vs 67.7% ,T=10.94,0PT.) can be explained most readily by conéidering
the multiprogramming idle time in the systems. When the activities of-

paging and I/0 were incorporated into the same operating system, it was
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possible to overlap the operations of the processor for these activities,
where as in the separate facilities, it was not. This is the mair reason
for the observed discrepencies.,

Concerning the degredation of system performance, it is impdrtant
to remember the type of page removal algorifhm that the data repfesents.
Thé.static parachor éurve was obtained as an approximation to the
paging pehavior in a system with a global LRU page.removal policy. For
this data, it was found that multiprogramming was limited to I jobs
even with the fast drum, because competition for primary memory caused
system paging to iﬁcrease at.a rate beyond system capabilities. The
' most severe bottleneck was shown to occur in the paging channel where
procésses encountered excessive queuing delays for service} Hence, the
loss of the benefits of mgltiprogramming and the quantification of the
thrashing point.

System changes such as:implementation of & working set policy for
page removal have been employed to decrease excessive system paging as
the level of multiprogramming increases, i;e. as programs qperate with
smaller real core allotments. Also, as has been demonstrated above,
an increase in the relative speed of drum access time to main memory
operations has proved successful in implementing efficient demand paging
virtual memory systems.

Thus, it has been shown how a model for a multiprogramming operation
can be used to study performance for given load conditions in both a

teaching environment as well as a real decision making situation.
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Determination of the optimal level of multiprogramming and specification
of the thrashing region of system performance were based on sample
program. parameters characteristic of an assembler run under CP-67 in a
"squeezed core" enviromment. The analysis was facilitated by such system
indicators as multiprogramming idle time, average CPU utilization, and
queuve lengths forming for shared resources.

Other areas where application of such technigques can be used t0
‘provide performance information are based on the means for determining
"the parachor curve from which input function data was generated. For
example:

(1) Using Bards model for average resident set size(Bl), one can
determine a dynamic parachor curve. Using this paging
characteristic as an input function would yield more true to
life performance projections for the actual systemn.

(2) System performance might be projected for programs run with var=-
ious page sizes. The queuing model can then be used to isolate
optimal performance for-this new varying parameter.

(3) In addition, quantative statements can be advanced on the behavior
of systems under different pege removal algorithms. Parachor

curve measurements must be performed to generate the necessary
inputs here as well.

6.4 Comparison of the Results for the Alternative Modeling Technigques

In this section it will be shown that the analytical and simulation
models chosen for analysis were all adequate for performing the above
analys’s. The reason for studying the system with three different tech-
niques was to lend insight into the dppropriateness of each approach for
computer modeling. This aspect of the effort will be discussed more fully

in the next chapter when the techniques are compared on a number of
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interesting, revealing points.

The three models compared in the following table are:
% (1) the dual facility continuous time Markov model
: (2) the queuing network model

(3) the GPSS simulation

These results are based on varying the level of N as done in the
preceeding analysis. The data selected for display is from the FCI'S
queuing discipline and the medium speed drum (T=16.97). Table 6-8

"is shown below:

N Markov-state Que. Ntwk | GPSS Sim. |
1 36.781 36.792 36.9
2 48.379 48.380 48.5
3 43.950 143,956 3.8
u 38.855 ~ 33.860 33.9
5 17.376 17.376 17.4
6 8.310 8.310 8.2
7 5.079 5.078 5.1
8 3.657 3.656 3.5

Table 6~-8 Summary of Results of the Alternative Modeling Techniques

Thus application of any one of the methods to ﬁhe solution of SPM
would have provided us with similar predictive information. It is safe to
say that we have validated the predictive accuracy of the models.

As indicated above, the next chepter provides a comparison of the
modeling approaches. It is hoped that this will aid the modeler in

selecting the most appropriate modeling tool for his given application.



CHAPTER 7

CONCLUSIONS

7.1 A Couparison of the Modeling Techniques

The analysis of SPM with both analytical and simulation models
has resulted in similar pe;fprmance projections for the CP-67 like
mulitprogramming module (sect. (6~-3)). Yet, the means to achieve these
ends were quite different. It would be of &alue, now, to assess these
. means in order to determine the technique that was best suiged for the
problem posed in this thesis. In addition, an effort will be made to
shed light on the application of these models to problems further
reaching in nature than those studied here.

The comparison will be based on the following criteria considered
important in the development and implementation of system models:

(1) the level of detail describable

(2) the number of parametérs needed to describe the model
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(3) the ease of development of the model for implementation

(4) the ease of solution and the exactness of the solution

(5) the overall cost of the approach

Lets begin then, with the level of detail des;ribable. In terms of
the models studied here, all of the modeling approaches were capable of
represecting the input functions and mapping them into the output functions
essential for the analysis performed. However, on the basis of the ex-
tensions discussed for GPSS, simulatioﬁ is clearly the most flexible of
the threz approaches. Selection between the continuous time Markov
model state approach and the queuing network continuous time Markov model
is difficult. The level of detail that they can be used to describe is
tied into the view of the system that they choose to tdke. For example,
Sekino(S7) modeled a general purpose time sharing system with the intention
of including all factors that contr%bute to overall system performance.
He was able to represent multiple’processors, data base lockout, and various
system overheads by buiidihg:on a hierarchical set of models much like the
single facility continuous time Markov state models used here. Moore(M7),
on the other hand, modeled a general purpose time sharing system paying
more attention.to intricate job routing in such systems. His approach
was to model the system as a network of queues similar to the queuing
netvork model used here. Clearly, both analysists set out to study
similér systems, both men arrived at valid models of their systems upera-
tion, yet both described different details of the systems behavior. One
can see that both methods hawmet with notable success.

Concerning the number of Qarameteré needed to specify the model, the
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queuing network model was most reasonable. Since the GPSS simulation
was based on the network interpretation of multiprogramming, deriving
its parameters from that analysis, it gertainly fits into the same cate-
éory. Not only were fewer parameters required in these implementatioms,
but they were more readily understandable as well. The obvious reason
for this was the manner in which the closed form solution used expiicit
probabilities to describe movement among queues that represented physical
characteristics of the real system. The single and dual continuous time
Markov processes, instead,chose to explicitly represent all system cstates;
and transitions in the system consequently, require multiple use of
the program and device behavior parameters. Note, the closed form solution
of the queuing network model obviated this view of the system.

In terms of ease of mcdel development for implementation, the net-
work approach was again superior. This 1s not only based on its parameter-
ization but also on the closed form solution &eveloped by Buzen and the
associated computational aiébrithm he derived. The simulation model was
facilitated by the General Purpose System Simulator and implementation
was supported by the debugging facilities in the language. The most in-
volved technique was the Markov state approach. Repregentation of the
differential difference equations as a general NxN matrix for solution
by MLSQ was tedious. |

T'e next to last category involr/es a discussion of the exactress of
the solutions. Both of the analytical models were solved with available
algorithms. The closed form solution proposed by Buzen resulted in an

exact solution; however, a numerical analysis technique used to solve the
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equations economically resulted iﬂ introducing marginal érrors into the
results. The approximate solution for the differential difference eq-
uations agreed within .005% . Both of these approaches were clearly
superior to the simulation analysis with its stochastic generaégrs and
running approach to achieving equilibrium. These results agreed within
47 .

In the last category, cost, simulation exceeded the other two methods
by a factor of 10. The network of qucues solution was less costly than the
solution of the N simultaneous equaticns bgcause of the neat computational
algorithm. In general, simulation is che most expensive of the modeling
approaches. When more complex systems are under study, such analysis
can become prohibitively expensive very quickly if extreme care is not
taken in the model development phase. The trade off is that mentioned in
section (5.1) of economy versus detail.

So, in conclusion, the queuigg network'continuous time Markov model
was superior and was the mbsf appropriate for the study undertaken here.
This is not surprising, for the conceptual framework of the Central Server
Model on which its development is based is much like SPM (B3). It is
suggegted, as a final comment on these models, that reasoning out the
issues above is an important first step before any.model selection is
made. An important factor in this regard, as pointed out by the look

at the -vork of Sekino and Moore, is tlie ultimate view to be taken Jf the

system.

7.2 The Scope of SPM: Future Work

The system process model has been gainfully employed in analyzing



129
the performance of a virtual memory system that multiprograms under a
demand paging strategy. The advantage gained in applying this mcdel

iwas to transcend the use of human intuition in a problem characterized
4

jby complex interdependencies. Yet, in studying the multiprogramming
;module, certain limitations in the use of the analytical models to
solve SPM became more apparent. These are now presented in the Lope
that future work in this area is addressed to some of these issues:

(1) The composite activity of N real processes in the system were
represented by N virtual, statistically identical jobs. It
is clear that more work must be done in the area of inclvding .
job classes in the model of the system. '

(2) Priorities are not associated with any of the jobs that were
represented in SPM. It certainlywuld be desirable to model
this relevent system characteristic.

(3) System overload was assumed. This aspect of the model has
been overcome in the literature (R2,B3) but was not included
in this model. Practical application of this model feature
to realistic system behavior should be studied further.

(4) Model parameters cannot vary with time. This limitation is
one that is basic to the representation.

(5) Operating system overhead is not included in the processing
activities of the CPU. The behavior parameters of the model
should be studied further to gain more insight into this
important factor.

(6) Peripheral queues represent devices that cannot be dedicated,
i.e. a process cannot occupy two marker positions at one time.
This limitation is cited as basic to the nature of the
representation. :

(7) Effort should be made to include more realistic distributions
for the server mechanisms = done in Moore's work (M7).

Further effort in resolving these limitations will result in more
resourceful applications of such models in ccmputer analysis. To date,

the work done in the area of SPM has ylelded valuable predictive results
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in a'nuMber of situations and has contributed to insight into the
operations not only of multiprogramming modules, but of the more com-

plex time-sharing systems in use today.

' 7.3 Final Comments

It has been the intention of this thesis to present a model that
is useful for performance projection of computers managiﬁg multipirrogram-
ming under a page on demand virtual memory strategy. The limitations
of the model that have been cited are receiving attention. The ex-
clusion of system overhead from this analysis represents a restriction
that has yielded performance results that are slightly better than
might really be expected.

Furthermore, it was intended to show how parameterization and
analysis of a complex coﬁéuter system can provide insight into the
potential problems and intgrdependencies of such systems.

In addition, the resuit of the multi-pronged modeling effort per-
formed was a comparative analysis of the techniques currently in use
in the area of performance evaluation. This review is of value to
anyone who is thinking about selecting one of these tools for system
studies. Another result of this approach was to demonstrate the
predictive capacity of these models.

sMe final comment will be addressed vo the general nature or
computer system models. All to often, ﬁodels have been developed that
are too specific to be of value in answering questions about new or

different systems. Rather than having to develop a new model for each
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systém studied, stress should be placed on developing classes of
 generel purpose models capable of representing a variety of important
:behavior characteristics and system configurations. In the light of
Ethe rapidly changing technology attention should also be paid to {uture
ISystems being developed. The emphasis on developing new systems should

go hand in hand with research on modeling techniques capable of accurate

representation of these systems.
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APPENDIX A: The Continuous Time Markov-State Analysis Program

The following extended program listing performs the solution of
the differential difference equations,in the steady state, for both

’
the single and combined Markov interrretations of SPM.

The input parameters and output parameters are defined on the

sample outputs that follow the listing.

For reasons based on the lettering available for symbol definition,

the following choises were necessary:



ANALY ZE:

LETLAT:

PRUCEDURE OPT IONS (MAIN)

DECLAKE

UECLARE
DELLARE

(NO_RHS M) FIXED BINARY INITIAL(L), ;
(DISP oCNT yNL ¢ N2, K)FIXED BINARY INITIAL(O),
STOPyNPL yNUC FIXED BINARYS
(NPyNyCUNFIG_CUDETYPE) FIXED DINARY{ 159U
(NO_PAGLyNU_T1GCy NU_PARALJNLDUM, NZDUM,
NU_TCSyNO_PF) FIXED BINARY(15,0);

DELLARE{LP LI JUP UL, LyU) FLCAT bINAKY;

DELLARE
DECLARE
UDECLARE
DECLARE
DeCLAKE
DeCLARE
UDELLARE
UECLARE
DECLARE

(TIMEsTHRUUGH_PUT ¢ MEAN_CAEC_TIME) FLUAT BINARY;
{EQICyEWCPUy EWPAGE) FLUAT BINARY;

(MLPy ML Iy MUPy MUT yML y#U) FLUAT BINARY;
(TIUy 1P ALE) FLUAT BINARY;

(EPFy EPFT) FLUAT BINAKY INITIAL(Z2UG)
(CPU_IDLE_TIME, SUM_PL) FLUAT BINARY INITIAL(U);
CPU_BUSY FLOAT BINAKRY; ,

{(PI(K yK)yRHS{Ky 1)) BLNARY FLUAT (53) CTL;
{QSUM_TUIND y QSUM_PAGE(N) sy QSUM_CPUIN))

FLOAT BINARY CTL;

UN CUNLITION (EUF) GG Tu LONEs
GET LISTUNSNP MUPyMUIL s MUy NC_PFyCONFLIG_CUDE,TYPL,

K=03;

NU_PAGE s NO_T Uy NU_PARAL yiNU_LUS yMEAN_EXEC_TIME yiNW) 3

IF CONFIG_CUDE=2 THEN DBC3

K=h+13

IF TYPE=

DU 1=K+l TO 1 BY -1;

K=1+K3;

END;S
MLI=NMUAN_EXEC_TIME/NO_1CSS
MLP=MEAN_EXEC_TIME/NO_PF;

* Lb=1/MmLP; UP=L1/MUP;
LI=1/8LLs Ul=1/MUl;
GL TO ALLULLU
ENUS

1 THEN ML=MEAN_EXEC_TIME/NDO_IUS;

¢



ELSE ML=MEAN_EXLC_TIME/NO_PFs; B
L=1/ML3; U=1/ML3;
ALLUCS ALLUCATE PIsRES3
IF CONFIG_CGDE=2 THEN DOU3
CALL INITIALS
CALL DUAL;S
END3
ELSE DC3
CatL INITIAL
CALL SIKNGLES
END;

/* ENTER CUNSTRAINT RELATICNSH[P INTU Pl ®/
bu J=1 TO K3 .
PI{KsJd)=13
END;

/%  SET UP KIGHT HANU SIDE MATRIX{RHS) FUR MLSQ SUBROUTINE %/
DU =1 TU K-13
RHS (1,1)=0;
END 3 _
RHS (K, 13=13;

/%  PRINT OUT SYSTiM VARIABLES */
PUT PAuk;s
PUT SKI1P(6);
PUT SKiP EDIT('SYSTEM CONFIGURATION IS '"L,CONFIG_CODLE]D
{COLUMN{4t)y AlZ23)y F(2,00);
1F TYPE=1 THEN DO,
PUT SKIP EDIT{'1/0 MUDEL') (COLUMNI{S5G)
A(S));
GU TO GUTPT;
END;

el



IF TYPE=2 THEN DU3
PUT SKIP EDIT('PAGE MODEL') (COLUMNI(56),

A(10) )5
GO Tu GUIPT;
END; ‘ :
PUT SKIP EDIT{'CUMBINED PAGE AND I/0 MUDEL®){COLUMN(4T)
WA(27))5
QuUTPT:
IF NQ=0 THEN DUs
PUT SKIP EDIT(*NU QUEUINGT* I {COLUMNIS50),
A(l101); '
Gu TU CONTS;
END
IF NQ=1 THEN LU;
PUT . SKIP EDIT{'WCLFS QUEUING'I{COLUMNI(SS)
yA(12)) 5
GuU Tu CONTS;
END;
PUT SKIP EDIT('SULHEDULING PAGE CHANNEL?')
{CULUMNISLs9snAZ3) ),
CONTG:
/%  USc MATRIX SUBROUTINE MLSQ TO SGLVE PI¥X=KHS . , */
: CALL MLSQU(PI 4RHSyKeKyNU_RHKS};
/% CALCULATE THE CONSTRAINT RELATIUN AS A CHECLK=>SUM_PI */
SUM_PI=0;
DU I=1 TO K;
SUM_PI=SUM_PIL + RHS(I,1);
END3
/*  CALCULATE FRACTIGN OF CPU IULE TIME IN THE STEADY STATE */

CPU_IDLE_TIME=03;
N1=03; N2=0;
. bu I=1 TO K3

Gel



IF N1+N2=N THEN DU}
CPU_IDLE_TIME=CPU_IDLE_TIME+RHS(Is1);

N1=0;
N2=NZ+13
GU TU COUNT5;
END3
Nl=Nl+13
CONT5: END 3

/®

PUT

PUT

PUT

CPU_BUSY=1-CPU_IDLE_TIME;

CALCULATE THE SYSTEM THRCUGHPUT IN JOBS/MIN x/
THRUUGH_PUT=CPU_BUSY*60*;ODO/MEAN_EX&C_TIME3

SKLP(2) EDIT{(*NUMBER OF PRGCESSGRS=', NP)
‘ (CULUMN{L16) yA(2L)sF{4,0))5

SKiP EDJH(*DEUREE GF MULTIPRUGRAMMING(N)=",N)
(CULUMN({LO) yA(31) 9F(4,40) )5

SKiP EDIT(*NUMBEK UF SYSTEM EQUATIONS{K)=',K)

(CdLUMN(lb)yA(3b) F{4,0));

Ik CUNFIG_CLue=2 THEN DU

PUT
PUT
PUTl
PUT
PUT

PUT

SKiP{2) EDIT(*ucXPECTED TIME BETWEEN PAGE FAULTS(MS =44y MLP)
{CULUMNILOY s A{4U) +F(B45) )3
SKiP EVIT('PAGE FAULT RATE(LPyMSEC)=",LP)
(CULUMNILIO)Y 9A(26)4F (74510 )5
SKIP(Z) cOIT(*cAPECTED TIME BETWEEN I/U REQUESTS(MSEC)=',MLI)
(CULUMNILOEY s A(4L)4F{38450);
SKIP EUIT{*1/U REQUEST-RATE(LL,#M5EC)="*,01)
(CULUMNILOL) yA(26)4F(T95) )5
SKLIP{2) EUIT(*cXPECTED TIME TO SERVICE A PH(MSEC)=1,MUP)
v (CULUMN{LO) +A(37) 4F(8451) )5
SKIP EDIV(*PAGE SERVICE RATE(UPMSEC)=1",UP)
(CULUMNI(L6) yA(2T) 9F(T45) )3

9¢t



PUT

PUT

PUT

PUT

PUT

PUT

PUT

PUT

PUT

SKIP(2) EDIT(*EXPECTED TIME TO SERVICE AN I/CG(MSEC)=',MUI)
(CULUMN(LE) s A(38)4F(845) )3
SKIP EDIT('1/U SEKVILE KATE(UIsMSECI='4UTI)
{COLUMRK(LE) yAL2T)yF(T4y5) )5
END3

ELSE DU;
SKIP(2) EDIT{YEXPECTED TIME BETWEEN 1/0**S{MLyMSEC)=",ML)
(CLLUMN(LO ) A (38)¢F(895)1) 3
SKIP EDITIUI'REwUEST RATE(LyMSEC)I="4L)
(COLUMNILE)9AL21) 3F{T745)) 5
SKIP(2) EDIT('EAPLCTED TIME BEVTWEEN SERVICES(MUsMSEC)=',MU)
({CLLUMNILE ) 1A(40)yF{3895) )3
SKIP EDIT('SERVICE RATE(U,MSEC)=',U)
{CULUMNCLO) yA(21) 9F 174503
END

SKIP(2) EDIT{*CUONSTRAINT RELATIUN SUM_PI YIELDS SUM_PI=*,SUM_PI)

_ ({COLUMN(16) 9A{43) 4yFLT745))3

SKIP EDIT{'STEADY STATE FRACTION UF CPU IuLE TIME=',CPU_IULE_TIME)
(CULUMNILO) yA{39) yF(7,5) )3

SKIP EDITU{'STEADY STATE FRACTION GF CPU BUSY TIME=',CPU_BUSY)
(CULUMN{L16) 4A(39) 4F(T45)); '

i{F TYPE=1 THEN DO;
TIO=5%RHS{(Ky 1}
PUT SKIP{Z) EDIT(*TIG(MSEC)=",T10) :
(COLUMNI(LO) sALLU)sFL{Be5) )5
END
IF TYPE=2 THEN DOU;
TIME=NO_PFXMU+ 2000
TPAGE=TIME*RHS{Ky1);
PUT SKIP{2) EDIT('TPAGE(MSEC)=%,TPAGE)

LZ



(CULUMNI(16) yA(12)+F(1245));

END3

IF CONFIG_CODE=1 THEN GO TO FOLLOUW;

/% INITIALIZL SUMS +tUR COMPUT ING EXPECTED QUEUE LENGTHS

ALLUCATE QSUM_1U;
ALLUCATE QSUM_PAGE;
ALLOCATE QSUM_CPU;
DU I=0 TU N3
GOUM_LPU(L)=03
GSUM_PAGE(T) =03
WOUM_1UL{1)=03
END S

/%  UALCULATE SUMS FUR ESTABLISHING EXPECTED QUEUE LENGTHS

CUNT b

/%

N1=0; N2=0;

bu I=1 TO K3

NUC=N—(NL+N2) 3§
NOUM_LTUINL)=QSUM_IOINLI+RHS{I,1)3
QSUM_PAGE(NZ) =QSUM_PAGE(N2) +KkHS(I,1)3;
QSUM_CPUINOC ) =W SUM_CPUINCC) +RHS (1,41 )3
IF Nl+in2=N THEN DU;

N1=03
NZ2=N2+13;
GU TO CONTe;
} END3S
N1=N1l+1;
LD

CALCULATE ANO PRINT EXPECTED QUEUE LENGIHS

EQCPU=03 EQPAGE=0; EQIG=03

DU N1=0 TO N3
EQlU=EQIUG#NL*QSUM_TO(NL) ;

*/

8¢l



END

DU N2=0 TO N3
EWPAGE=EQPAGE#N2*QSUM_PAGE(N2) 3
END '

D0 NUC=0 TU N3

EQCPU=EQCPU+NUC*YSUM_CPUINCL) ;
END

PUT SKIP(2) EDIT('cXPECTEL CPU QUEUE LENGTH=',EQCPU)

(CULUMN(L16) 9A(26)9F (593133

PUT OKIP EDIT('eXPECTED I0 QUEUE LENGTH=',ELIU)

(CULUMN(16) yAL25) yE(543) )3

PUT SKIP EDIT('EXPECTED PAGE QUEUE LENGTH=1*,EWQPAGE)

FULLUwW:S

(CULUMNILE) yA(27) 9yF (5930133

PUT SKLIP{2) EUDIT(*STEADY STATE SYSTEM THRUUGHPUT (JUBS/MIN)=*,

THROUUGH_PUT ) (CULUMN( Lo ) s A4l F (8453 )2

/% PRINT UUT KESULTS UF SULUTIGN GF SYSTEM UF EQUAT IONS

CONT 72

PUT SKIP(2) EDIT('STEADY STATE PRUBABILITIES?)
' (COLUMNL16) 4A(27) )5 '
Nl=us: N2=0;
DO I=1 TU K;
PUT SKIP EDITU('STEAUDY STATE ("yNLyN2,*')=",RHS(I,1))
(CULUMNI(L6) 9ALL4) 9 FL2490) sF(290)9A(2) sF(T45));
IF N1+N2=N THEN DO3 '

N1=03
N2=NZ+13
GU TC CONTT7;
END;
NL=Nl+1;
ENDS

_ FRtk PI4RHS;

*/
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FREE QSUM_I0;
FREC WSUM_PAGE;
FREE WSUM_CPU3
GU TU GETDAT; |
/% INITIALIZE PI MATRIX FUR MLSQ SUBROUTINE | ny
INITIAL: PROCEDURE 3
DU I=1 TU K3
Du J=1 TU K;
PILI,J)=03
END 3
END
END INITIALS

/% NUW MAKE THE APPRUPRIATE ENTRIES IN THE STRUCTURED PI MATRIX */

/% CALCULATE ALL UF THE DIAGONAL ENTRIES FUR THk DUAL SYSTEM */
DUAL: © PRUCLEDURES
N1=03; N2=0;
NPL1=NP 3

Du I=1 70 K-13
NLDUM=NL; N2DUM=N2;
IF NL>=KNU_I0 THEN N1DUM=NO_I0U; .
IF N2>=NU_PAGE THEN N2DUM=NU_PAGE;
IF Ni+N2=N THEN DO;
Pi{lyI)==({NLDUM)*UI+{N2DUM)*UP);
N1=0;
Nz=N2+1;
NP1=NP;
y 60 Tu CONTL
END3
ELSE DU KNP=1 TU NP3
IF NL+N2=N-NP+KNP THEN DOC;
NP1=NP—KNP;
GU TO ENTL;

Ol



ENTLS

CUNI L:

END;
END;
PI(ls1)==(INIDUMI*UI+(NZ2DUMI*UP+(NPL*(LI+LPI) )}
NiI=N1+13
END

/% LCALCULATE AnND ENTER UPPER AND LOWEK DI1AGONAL ENTRIES

ENTZ 2

LUNTZ2:
/%

NL=03; N2=03 NF1l=NP;
STUP=N+13;
Du =2 TO K-13
N1=NLl+13
NLDUM=NL13;
[F NI>=NO_I0 THEN NLDUM=NO_1U3
IF N1=5TUP THEN DO;-
NPLl=NP;
N1=0;
N2=NZ+13
STUP=STUP-13
GU TU €ONTZ23;
END
ELSE 1F NP=1 THEN GO TU ENT2;
ELSE DU KNP=1 TG NP;
IF NL+N2=1+N-NP+KNP THEN LO;
NP L=NP—KNP ;
GO TO ENTZ2;
END
END3
PL{IsI-1)=NPLl%LI;
PI(I-1y1)=NLDUM*UI;
END;

CALCULATE AND ENTER UPPER —-UPPER AND LUWER-LOWER DIAGUNAL ENTR

N1=0U; N2=13 NPL=NP; DISP=03;
STuP=nN+1;

DU I=N+2 TO K3

Ni=nNl+13;

NZ2LUM=NZ3S

IF NZ2>=NU_PAGE THEN NZ2DUM=NO_PAGE;

w/

*/

il



ENT3:

CUNT 3:

SINGLE:

[F NL=STOP THEN DU

ELSE

STOP=STUP—-13

DISP=DISP+1;

NPL=NP; ,

IF NP+N2=N+1 THEN NP l=NP1l-1.
Ni=13

NZ2Z=N2+13

NZDUM=N2 ;

IF N2>=NU_PAGE THEN N2ULUM=RU_PAGEL;

GU Tu ENT3;

END;

DU KNP=1 TU NP3

IF N1#NZ2=2+N-NP+KNP THEN U0

NPL=NP-KNP;
GU TU ENT3;

END;
END s

PI{IyI={(N+1)+CISP)=NPL*LPF;

END 3
END DUAL;S

PRUCEDURE}

CPI{I-IN¥L)I+DISP,1)=N2DUMXUP;

/% ENTER THE DIAGUNAL ENTRIES FUR THE SINGLE SYSTE
NL=03; NPL=NPj;
LU i=]1 TU K-13
N1DUM=NL}
1F N1>=NU_PARAL THEN N1DUM=NO_PARAL;
IF NP=1 THEN GU TU ENT4;
DU KNP=1 TC NP3
iF NLI=N-NP+KNP THEN DGj

NP L=NP—KNP;
Gu TO ENT4;
END;

®/

chl



ENT 43

/*®

ENT5:

DUNE 3

PIliysI)

NL=N1+1

END;
ENTER UPPER ANL LOWER DIAGONAL ENTRIES FOR THE SINGLE SYSTEM %/

NL=03 NFl=NP;

DU 1=2 TO K3

IF N1>=NU_PARAL THEN N1DUM=NG_PARAL;
ELSE NLDUM=I-1;

=={{N1OUMI*U+(NPL)*L);
; .

DU KNP=1 TC NP3
IF N1=N—-NP#+KNP THEN DU
NP1=NP—-KNP3
GO TU ENTS;’
END;
END
PI(IyI-1)=NPLl%L; .
PL{I-1eI)=N1DUM*U3;
NL=NL+1;
END 3
END SINGLE;

ENU ANALYZE;

Chl



SYSTEM CONFIGURATION IS 1

1/0 MODEL
NO QUEUING
NUMBER OF PROC-SSORS= 1 '
DEGREF 0OF MULTIPROGRAMMING(N)= 5
NUMBER NOF SYSTEM EQUATIONS(K)= 6

EXPECTED TIME BETWEEN I/0'S{ML,MSEC)= 33,33333
REQUEST RATE(L,MSEC)=0.,03000

EXPECTED TIME BETWEEN SERVICES(MU,MSEC)=50.0000)
SERVICE RATE(U,MSEC)=0,02000 ’

CONSTRAINT RELATION SUM_PI YIELDS SUM_PI= 1.00000
STEADY STATE FRACTION OF CPU IDLF TIME=).01418
STEADY STATE FRACTION OF CPU BUSY TIME=0.98582
TIN(MSEC)= 0.07092

STEADY STATE SYSTEM THRNUGHPUT(JOBS/MIN)=29.57449

STEADY STATE PROBABILITIES
STEADY STATE 3 ))=0,22413

(
STEADY STATE (1 0)=0.33619
STEADY STATE ( 2 0)=0.25214
STEADY STATE ( 3 0)=0,12607
STEARY STATE ( 4 0)=0.04728
STEACY STATE ( 5 9)=i.71418

il



SYSTEM CONFIGURATION IS 1

1/70 MODEL
FCFS QUEUING
NUMBER OF PROCu SSORS= 1
DEGREE OF MULTIPROGRAMMING{(N)= 5
NUMBER 0OF SYSTEM EQUATIONS(K)= 6

EXPFCTED TIMF BETWEEN T1/0°'S(ML,MSEC)= 33.33333
REQUFST RATE(L,MSEC)=0.03000 '

EXPECTFD TIME BETWEEN SERVICES(MU,MSEC)=57.27020
SERVICE RATE{U,MSEC)=0.02C00

CONSTRAINT RELATION SUM_PI YIELDS SyM_PI= 1 1.00000
STEABY STATE FRACTION OF CPU IDLE TIME=0.36541
STEADY STATE FRACTION OF CPU BUSY TIME=0.63459

TIO(MSEC)= 1.82733
STFADY STATE SYSTEM THROUGHPUT(JDBS/MIN)=19.03778

STEADY STATE PROBABILITIES

STEADY STATE ( 0 0)=0,04812
STEADY STATE 1 0)=0.07218
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE

2 2)=2.1.827
3 0)=0.16241
4 0)=0.24361
5 i)=3636541

— v ey

S



SYSTEM CONFIGURATION IS 1

PAGE MODEL
NO QUEUING

NUMBER OF PROC=-SSORS= 1 '
DEGREE OF MULTIPROGRAMMING(N)= 5
NUMBER 0OF SYSTEM FQUATIONS(K)= 6

EXPECTED TIMF BETWEEN I/0'S(ML,MSEC)= 1.90476
REQUEST RATE(L ,MSEC)=0.52500

EXPECTED TIME BETWEEN SERVICES(MU,MSEC)=10.94000
SERVICE RATE(U,MSEC)=0.09141 ’

COMSTRAINT RELATION SUM_PI YIELDS SUM_PI=  1.30370)
STEADY STATE FRACTION OF CPU IDLE TIME=0.34211
STEADY STATE ERACTION OF CPU BUSY TIME=0.65789
TPAGE(MSEC)= 4614.09766

STEADY STATE SYSTEM THROUGHPUT(JOBS/MIN)=19.73654

STEADY STATE PROBABILITIES

STEADY STATE ( 0 0)=0.00657
STEADY STATE ( 1 0)=0.03773
STEADY STATE ( 2 0)=0,10834
STEADY STATE ( 3 0)=0.20742
STEADY STATE ( 4 w)=".29783
STEADY STATE ( 5

01=0.34211

ol



SYSTEM CONFIGURATION IS 1

PAGE MODEL
FCFS QUEUING

NUMBER OF PROCE3SORS= 1
DEGREE OF MULTIPROGRAMMING(N)= 5
NUMBER DF SYSTEM EQUATIONS(K)= 6

EXPECTED TIME RETWEEN I/0O'S{ML,MSEC)= 1.50476
REQUEST RATE(L,MSEC)=1.525ui) -

EXPECTED TIME BETWEEN SERVICES(MU,MSEC)=10.94000
SFRVICE RATE(U,MSEC)=0.09141

CONSTRAINT PELATION SUM_PI YIELDS SUM_PI= 1.00000
STEADY STATE FRACTION OF CPU IDLE TIME=0.82591
STEADY STATE FRACTION OF CPU BUSY TIME=)a17439
TPAGEIMSEC)= 11139.07813

STEADY STATE SYSTEM THROUGHPUT (JOBS/MIN)= 5.22262

STFADY STATE PROBABILITIES
STEADY STATE ( 0 0)=0.00013
STEADY STATE (1 J)=3.353276
STEADY STATE ( 2 0)1=0.00436
-STEADY STATE ( 3 0)=0.02504
STEARY STATE ( 4 0)=0,14380
STEADY STATE ( 5 0)=0.82591

A



SYSTEM CONFIGURATION IS 2
COMBINED PAGE AND 1/0 MODEL
FCFS QUEUING

NUMBER NF PROCESSORS= 1
DEGRFE OF MULTIPROGRAMMING(N)= 2
NUMBER OF SYSTEM EQUATIONS(K)= 6

EXPECTED TIME BETWEEN PAGE FAULTS(MSEC)=23.52940
PAGE FAULT RATE(LP,MSEC)= 0.04250 '

FXPECTED TIMFE BETWEEN I/0 REQUESTS(MSEC)=33.33333
I1/0 REQUEST RATE(LI,MSEC)=J.)33 50

EXPECTED TIME 70O SERVICE A PF(MSEC)= 10.94000
PAGE SERVICF RATE(UP,MSEC)=0.09141

EXPECTED TIME T0O SERVICE AN I/0(MSEC)=50.00000
1/0 SERVICE RATE(UI,MSEC)= 0.02000

"CONSTRAINT RELATION SUM_PI YIELDS SUM_PI= 1.3900)
STEADY STATE FRACTION OF CPU IDLE TIME=0.51621
STEADY STATE FRACTION OF CPU BUSY TIME=0.48379

EXPECTED CPU QUEUE LENGTH=0.647
EXPECTED I7 QUEUE LENGTH=1.093
.EXPECTED PAGE QUEUE LENGTH=1J.264

STEADY STATE SYSTEM THRDUGHPUT(JOBS/MIN)=14.51377

STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE
STEADY STATE

ROBABILITIES °
0 0)=0.16317
1 0)=0.24476
2 31=N.3671%
0 1)=0.07586
1 1)=0.11380
3 2)=56.73527

e e Ben N i »
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SYSTEM CONFIGURATION IS 2
COMBINED PAGE AND 1/0 MODEL
SCHEDULING PAGE CHANNEL

NUMBER QOF PROC!I:OSNRS= 1 ,
DEGREE OF MULTIPROGRAMMING(N)= 2
NUMBER OF SYSTEM EQUATIONS(K]}= 6

EXPECTED TIME BETWEEN PAGE FAULTS(MSEC)=23.52940
PAGE FAULT RATE(LP,MSEC)= 0.04250

EXPECTED TIME BETWEEN I/0 REQUESTS(MSEC)=33,33333
1/0 RENUEST RATE(LI,MSEC)=0.03000 )

EXPECTED TIME TO SERVICE A PF(MSEC)=;13.94§w0
PAGE SFRVICE RATE(UP,MSEC)=0.09141

EXPECTEDR TIME YO SERVICE AN I/O(MSEC)=53.000500
1/0 SERVICE RATE(UI,MSEC)= 0,02000

CONSTRAINT RELATION SUM_PI YIELDS SUM_PI= 1.00000
STEADY STATE FRACTION CF CPU IDLE TIME=.51752
STEADY STATE FRACTION OF CPY BUSY TIME=0.49248

EXPECTED CPU QUEUE LENGTH=0.659

EXPECTED 10 QUEUE LENGTH=1.112

EXPECTED PAGE QUEUE LENGTH=0.229

STEADY STATE SYSTEM THPOUGHPUT{JOBS/MIN)=14,T7T7433

STEADY STATE PROBABILITIES

P

STEADY STATE ( 0 0)1=0.1661"
STEADY STATE { 1 01=0.24915
STEADY STATE ( 2 0)=0.37373
STEADY STATE « ) 1)=3.77723
STEADY STATE ( 1 1)=0.11584
STEADY STATE ( O 21)1=0.01795

641



SYSTEM CONFIGURATICN IS 2
COMBINED PAGE AND 1/0 MODEL
NO QUEUING

NUMBER QOF PROCESS(CRS= 1 ,
DEGREE OF MULTIPROGRAMMING(N)= 2
NUMBER NF SYSTEM EQUATINNS{K)= 6

EXPECTED TIME BETWEEN PAGE FAULTS(MSEC)=23.52947
PAGE FAULT RATE(LP,sMSEC)= 0.04250

EXPECTED TIME BETWEEN 1/0 REQUESTS(MSEC)=33,.33333
I/0 REQUEST RATE(LI MSEC)=D04u30u0 '

EXPECTED TIME T0O SERVICE A PF(MSEC)=.:10.94000
PAGE SFRVICE RATE(UP,MSEC)=0.09141

EXPECTED TIME TO SERVICE AN 1/0({MSEC)=50.00000
I/0 SERVICE RATE(UI,MSEC)= 0.02000

CONSTRAINT RELATION SUM_PI YIELDS SUM_PI= 1,00000
STEADY STATE FRACTION OF CPU IDLE TIMF=0,39435
STEARY STATE FRACTICN OF CPU BUSY TIME=3.6.)565

EXPECTED CPU QUEUE LENGTH=0.810
EXPECTED 10 QUEUE LENGTH=0.908
EXPECTED PAGE QUEUE LENGTH=3,282

STEADY STATE SYSTEM THRQUGHPUT(JNBS/MIN)=18.16956

STEADY STATE PROBABILITIES

STEADY STATE ( O 0)1=0.20427
STEADY STATE ( 1 0)=0.30641
STEADY STATE ( 2 3)=3.22981
STEADY STATE ( 0 1)=0.09497
STEARY STATE ( 1 1)=0.14246
STEADY STATE ( 0 2)=0.02208

0S1
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APPENDIX B: The Queuing Network Analysis Program

The extended program listing that follows solves the queuing network
%odel of SPM. The input and output functions are defined on the sample
Lutputs which follow. The GN normalizing constants which are by-products
Bf the computational algorithm are output along with the performance

information. They have been used within the program to generate

the key marginal distributions owtlined in section (h.h.L).



SPM:

GETDAT

PROCEDURE UPTIUNS{MAIN);
DECLARE(Ny N_CLUNT yCHAN_COUNT y NO_CHANNELS ¢y NU_IG_CHAN,
NU_PAGE_CHANyNO_I1.C0SyNU_PAGE_FAULTS) FIXED BINARY(15901:
DECLARE (UTILIZ,THRGUGH_PUT 4 MUL ¢4MUPMCPULUT»UPUCPU,
DENGMs POy PL oy PP9QSUMs QL yC2+9Q3) FLUAT RINARY;S
DECLARE (GN(Tg9Jd)y X{CHAN_CUUNT)) BINAKY FLUAT CTL;
DECLARE {w_DEVZyQ_DEV3) BINARY FLUAT (53);

UN LNDFILE(SYSIN) GU TU DUNE3;
GET LIST(NsNG_LU_CHANyNU_PAGE_CEANsMUI ¢MUP 3 NU_IUS,

NU_PAGE_FAULTS ¢yMEAN_EXEC_TIME) 5
UP=1/MUP; ul=1/MUl;

/*UtTcKMINt PATH SELECTIUN PRUBABILITIES PO, FP1, PP AND UCPU FOR CSM %/

DENUGM=NU_LUS+NU_PAGE_FAULTS+1;
UCPU={NU_TUS+NU_PAGE_FAULTS+1)/MEAN_EXEC_TIMES
MUPU=1/UCP U3

PU=1/DENUM;

Pl=Nu_1lu>d/DENUM;

PP=pU_PAuvEe_FAULTS/DENOMS

SUM_PI=Pu+PI+PP;

/¥INITIALLZE GN CALCULATING MATRIX ‘ V4

/*¥CALCULATE THE CULUMN MULTIPLIERS */

CHAN_CULUNT=NU_TUG_CHAN+NU_PAGE_CHAN+1;
I=N+13 J=CHAN_COUNT;

ALLUCATE OGN;s

DU J=1 TU CHAN_COUNT 3

GN(lsJd)=15

END3

DG I=1 TU N+1;

ON{lslid=i; “

END;

ALLUCATE X; |
X(2)=UCPU*PP/UP;

AR



X{3)=UCPuU*Pl/Ul3
/* INITIALIZE FUK SUMS

dSUM=0;
Q_DEV2=0;
Q_DeV3=0;

/¥CALCULATE ON ENTRIES
DU J=2 TU CHAN_COUNT
LU I=2 TU N+13
OGN (L pJ)=6NT1sd=1)+X(JI*GN{I=1+J) 3
It J=CHAN_CUUNT & I-=N+1 THEN GQSUM=QSUM+GNI{I,J);
END 3 ‘ .
END;

/*CALCULATE & SUMS FUR THE OTHER DEVICES
DU K=1 TJ N-13 )
U_DEV2={X{2)%%K)*GN{N+1-Ky CHAN_COUNT ) +4G_DEVZ;
ENUS

D0 k=1 TO N-13
Q_DEV3=(X{3)**K)*GN(N+1-Ky CHAN_COUUNT )+Q_DEV3;
END3

/*#CALCULATE 5YSTeM UTILIZATION FUR CSM
UTILLI Z=6NANy CHAN_COUNT 3/ GN{N+1, CHAN_CGUNT) ;

/*CALCULATE SYSTEM THROGUGHPUT
THRUUGH_PUT=UTILIZ*60%1000/MEAN_EXEC_TIMES

/*CALCULATE EXPECTED QUEUE LENGTHS
Q1= WS UM/GN (N+1 y CHAN_COUNT ) 3
W= i_DEVZ/ONIN+L ,CHAN_COUNT )
WI=W_0EV3/ Ui+l CHAN_CUOUNT) 3

*/

*/

*/

*/

X/

*/

¢Sl



/*JUTPUT RESULTS T ®/.

PUT
PUT
PUT

PAGE,
SK1P{(6) EDIT{*CENTRAL SERVER MODEL"){COLUMN{53),A(20));
SKiP EUIT(*FCFS QUEUING* Y (COLUMNIST) 4AlL2))5

/#PRInT UUT o MATRIX */

PUT

PUT

Put

PUT

PUT

PUT

PUT

PUT

PUT

PUT

PUT

PUT

PUT

SKIP{3);
Ui J=1 Tu CHAN_CUUNT;
DU I=1 TU N+1;
PUT >KIP EDIT('GN('117'1'1J1',='15N([9J))
(CULUMNTLED) yA(3 )9 FI300) 9A{ 1) 2aF{340) sALZ) yF(8y5) )5
END 3
END 3 A
SKIP(2) EDIT('NUMBER UF PROUCESSURS=1%,1)
(CULUMNILO) sA(ZL) o F (4Gl s
SKIP EDIT('DEGREE UF MULTIPRUGRAMMINGIN}="4N)
(CULUMNCLOE) yAL{31) 4F(445,01))3
SKLP EDIT(*eXPECTEL TIME BETwbteN CHANNEL REQUESTS=',MCPU)
(CULUMN (L6) 2AL39) 4F(8+5) )3
SKIP EDIT{'EXPECTED SERVICE RATE UF CPU{MSEL-L)}=*,UCPU)
{(CULUMNILOE) s A{3T7)+F(3:5));
SKIP EDITU'uxXPECTED TIME TO SERVILE A PF({MSEL)=1',MUP)
(CULUMNILOE) s A{36) 4 (ByD )i
SKIP EDIT('EXPECTED VIME TO SERVICLE AN L/0(MSEC)I=*,MUL)
{COLUNN{LO) 9 A(3E) 9 (395D 05
SKIP(2) ELIT{*CUNSTRAINT RELATIUN SUM_PI YILELDS SUM_PI=',SUM_PI)
(CULUMNCLEY s AL43) oF{TyD} 13
SKiP EDIT('PuU=t4Pu,? PIl=tyPl,? PP=1,PP){LULUMN(LG),
A(3)2FL{T35)1A(5)sF(745) 9D (55yF{T45))3
SRIP(2) EDIT{'STEADY STATE FRACTIUN UF CPU BUSY TIMe=*,UTILIZ}
{CULUMNI{LO)Y 9 A(39)4F(Ten) )5
SKIP EDLIT('EXPeCTED LENGTH LF CPU QUEUE=',QL)
{CULUMNILLO) yAL2S9) 9F (845013
SKIP EDIT('EXPECTED LENGIH UF 1/0 QUEUE=',43)
{CULUNMNILE) sALZS) 2F(895) )35
SKLIP EDLT('EXPECTED LENGTH UF PAGE QUTZUE=',u2)
(CULUMN(LG) sAL3C) sF(8s5) )3

%51



PUT 5KIP(2) EDIT(*SYSTEM THROUGHPUT(JUBS/MIN)="*, THRUUGH_PUT)
(COLUMN{16) 4 A(28)yF(T+2)1);
FREE X3
FREE GN;3
GU 13 GETDATS
DUNE: END SPM;

GG 1



CENTRAL SERVER MUDEL
FCFS QUEUING

Ch{ 1y L)= leCCUCC
ON( 2y 1)= 1.CCUQO
Gl 3 I)= 100000
ON{ Ly 2)= laCLUCO
GN{ 29 )= la4€454
GhNE 39 2)= le6tlly
GN{ Ly 3)= 1a0CGC0
GN( 2y 3)= 2456490
Gi{ 39 3)= Gelce833

NUMBER UF PRLLCESSULRYS= 1
LEGREE ULF MLL]LPRLoRAMFIhG(A)' 2

EXPECTEU TIME BETWEEN CHANNEL REQUESTS=13.€55CC
EXPECTEL SERVICE RATE GF CPUIMSEC-1)= 0.C720C
EXPECTED TIME viu SERVICE A PFR(MSECI=10.54CC(C
EXPELTLD TIME TC SERVICE AN I/C{MSEC)=5C.CCCCC

LONSTRAINT KE ELa

ICN SUM_
PU=U.UVLED «4lUY0

T S SUM_FIi=. 1.00000
¢ 1 :
STEADY STATE FRACTLCN CF CPL ELSY TIME 0.48380
eXxPeLTeu LENGTH LF CPU QUELE= (.4838

EXAPELCTELD LENOGTE CF 1/0 GUEUE= (. 7zbbb
EXPECTED LENGTH CF PAGE (UEUE= (0.22494

SYSTEM THRULGLHPUT(JUBS/MINI=  14.51

9G 1



CENTRAL SERVER MUODEL
- FCFS QUEUING

GN{ 1ls 1)= 1lsCCCCO
GNLU 2, L)= 1.LCUCC
GN{ 3. 1)= 1.CCCOC
GN( 4, 1)= 1.00C0C
GNA Ly 2)= 1C0CCL0
G g 29 2)= 2253134
CN{ 3, 2)= 4.81t34
GN( 4, 2)= Ua.46134
LNL by 32= le.lCluu
Giv{ ly 3)= 4.03109
GN{ 3y 31=10Ue%¢1l55
LN 49 3)=24.64146

NUMBER UF PRUUESSCORS= 1

LEGREE UF MULLTLPRULRAMMIANG(N)= 3

EXPLCTED TiMec BETWEEN CHANNEL RECULESTS= 5.86¢(S
EXPelTbu SERVICE RATE CF CPUIMSEC-1)= C.17C41
EXPECTED TIME TU SERVICE A PF(MSEC)=10.54L0C
ExPELTceD TIkME TC SERVICE AN I/C{MSEC)=50.L(L0CC

CUNSTRAINT RELATICN S k1 LCS SUM_PI= 1.00000
Pu=Ueuue93 Pl=Ca.171595 PP= <lil

STeALY >TATE FRACTION UF CPU ELSY TIME=0.43G6%¢
EXPECTEU LENGTH LF LPU QUEUE= (C.€0179
EXPELTED LENGTH CF 1/0 GULEUE= 1.(02413
EXPECTED LENGTH GF PAGE QUEUE= 1.05355

SYSTEM THROLGAUT(JOBS/MINI=  13.16

AY!
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APPENDIX C: The General Purpose Systems Simulation Program

The following extended program listing is for the GPSS simulation
hhich was used to model SPM. The program is explained by block diagrams
&n section (5.3.4). The technique that permits use of the same model
for varying levels of N as well as varying path selection probabilities
is shown of pages162-1GY. There, the block redefinition statemernts which
follow the initial start up of the model facilitate the solution ol the

model for the various loads and parameters.



REALLOCATE ST0,0,C0M,7000 GIVE MORE MEMORY TO COMMON -POOCL
*LAB JPERATION A4B.CyeDyELF COMMENTS
*

SIMULATE
*
*  FUNCTION DEFINITIONS
* .

1 FUNCTIUGN RN3,D3
e 0099091/ .4059442/1,+3

2 FUNCTION RN3,D3
«00685917.58904492/1+3

3 FUNCTION RN3,03
«00293,1/.82404,2/1,3

4 FUNCTION RN3,D3

5 FUNCTICUN RN3,D3
«00090+ 1/ .9450942/1,3

6 FUNCTIUN RN3,D3
« 000 4%, 1/ -9734672/193

7 FUNCTICN RN3, D3
«000274917.98361,2/1+3

8 FUNCTION RN3,D3
«00020,1/7.98815,2/1,3
*

XPDIS FUNCTION RN2,C24
0e090eU/02130e104/002906222/0.3906355/0+4+0.509/045,04.69
De69Ue91927/0e71102/0e7531638/0e85126/0.8421.83/0e488422.12
0e912e63/009292e52/009492e81/069592e99/0.9643.27/0.9793.5

0069893069/ 069994e6/069559563/0e69989602/09999T720/0.9997,98.0
*

#
* ELEMENT SAVE VALUES DECLARATIONS/INITIALIZATIONS

INITIAL X5 50000000/ X11,1981/X22+5000/X33,1094/X34,120000000
*

% TABLE DEFINi:TIONS
*

651



CPULN

I0QLN

BKQLN

JBTIM
*

TABLE
TABLE
TABLE
TABLE

PlyOylyW5
PlsDslsW5
Pls0y1yW5S

MP2,0,4100000,100

*VARIABLE DEFINITIONS

THRPT
*

VARI ABLE

X5%NSTERM/ X34

*MAIN PRUGRAM SEGMENT

KEY

DETPR
CPUIN

BKSTO

TERM

GENERATE
MARK

ASS LGN
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TEST NE
TEST NE
QJEUE
SEIZE
DEPART
ADVANCE
RELEASE
TRANSFER
QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TRANSFER
TABULATE
MAKK
TRANSFER

rrelale2,yF

2

1s1s1

cPuUQ

CPU

CPUQ
X11,FNS$XPDIS
cpPU
PLyl,TERM
PL42yBKSTQ
10Q

IOCH

10Q
X22,FN$XPDIS
I0CH

s DETPR

BKSTQ

BKST.

BKSTQ
X33,FN$XPDIS
BKST

s DETPR g
JBTIM

2

¢ DETPR

TABLE FOR CPU LENGTHS

TABLE FCGR I0 LENGTHS

TABLE FOR BKST LENGTHS

TABULATE JOB TIMES TIME UNIT MSEC/100

STEADY STATE SYS THPT JOBS/HOUR

ESTABLISH THE DEGREE OF MULTIPROGRAM
ESTABLISH JOB ENTRY TIME FOR NEW JOBS
PARML IS PTH SELECT VEH BASED ON RUN
GATHER Q STAT FOR CPU

CPU IS A FACILITY

LEAVE QUEUE ,

ADVANCE FOR CPU PROCESSING

FREE CPU FGR UTHER PROGRAM EXECUT ION
IF P1 HAS VALUE 1 GU TO TERM

Pl=2 GO TO BACKING STORE

OTHERWISE QUEUE UP IN I/0 CHANMEL
GET CHANNEL

EXIT STATISTICS ROUTINE

1/0 SERVICE ,

DUNE WITH CHANNEL AND DEVICE
RETURN FOR CPU PROCESSING INTERVAL
PAGE SERVICE INITIATED

GET PAGING DRUM

COMPLETE STAT.

FIXED RATE GF PAGE SERVICE

FREE FOR NEXT FIFO ENTRY

RETURN FOR CPU PROCESSING INTERVAL
DETERMINE JUB EXECUTIGN TIMES
ESTABLISH NEW ENTRY JOB TIME

BLOCK COUNT HERE IS NUMBER OF TERM °
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CcPU

EVALUATE THROUGHPUT
SHUT UOFF THE RUN

SEED CPU LNGTH-DISTRIB SEGMENT
P1=CURRENT LINE LENGTH
P2=ABSOLUTE CLOCK TIME

WAIT FGR A NET CHANGE IN LINE LENGHT
RECORD OLD LING LENGTH, WT BY DURATI

BACK TU WAIT F3R NEXT LINE CHANGE
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SEED IO~ LNGTH-DISTRIB SEGMENT

P1=CURRENT LINE LENCTH

P2=ABSOLUTE CLOCK TIME
WAIT FOGR A NET CHANGE IN LINE LENGHT

RECORD OGLD LING LENGTH, WT BY DURATI

BACK TO WAIT FOR NEXT LINE CHANGE

BKST

SEED BKS LNGTH-OISTRIB SEGMENT
P1=CURRENT LINE LENGTH

P2=ABSOLUTE CLOCK TIME

WAIT FUR A NET CHANGE IN LINE LENGHT
RECORD OLD LING LENGTH, WT BY DURATI
BACK TO WAIT FOR NEXT LINE CHANGE

GENERATE X34
SAVEVALUE 4,V$THRPT
TERMINATE 1
% .
i
A
*
* LOGIC TO ESTIMATE LINE LENGTH DISTRIBUTION
*
% QUEJE LENGTH DISTRIBUTION -
. GENERATE 1911992y F
KEEPL ASSIGN 1,Q3CPUQ
MARK 2
TEST NE Pl,Q$CPUQ
TABULATE CPULN,MP2
TRANSFER yKEEPL
*
* QUEJE LINE LENGTH DISTRIBUTION -
‘ SENERATE 191l992yF
KEEP2 ASSIGN 1,Q%10Q
MAKK 2
TEST NE P1,0%10Q
TABULATE IOQWLNyMP2
TRANSFER +yKEEP2
*
¥ QUEUE LINE LENGTH DISTRIBUTION -
GENERATE 199lys 2y F
KEEP3 ASSIGN 1+Q$BKSTQ
“MARK 2
TEST NE P1,2$BKSTQ
TABULATE BKQLN,MP2
TRANSFER +KEEP3
*
*
START 1

RESET

START THE FIRST RUN FOR 20 MIN

191



KEY
DETPR

KEY
DETPR

KEY
DETPR

START
RESET
START
RESET
START

GCcNERATE
ASSIGN
INITIAL
CLEAR
START
RESET
START
RESET
START
RESET
START
GENERATE
ASSIGN
INITIAL
CLEAR
START
RESET
START
RESET
START
RESET
START

GENERATE
ASSIGN
INITIAL
CLEAR
START
RESET
START

1
2
19929192yF

Lely2 .
X11,51370

X59X119X229 X334X34

1
1
1
2
1993 91924F

1:1,3
X1l1,587

ASSUME STEADY STATE RNCACHED RUNM 2 1M

N{DEGREE OF MULTIPROGRAMMING)=2
2ND PROB DISTRIBUTION
ADVANCE FOR NEW CPU PROCESSING INTER

START THE SECOND

ASSUME STEADY STATE REACHED RUN 2 IN
N=3

3RD PROB DISTRIB

ADVANCE FOR NEW CPU PROCESSING INTER

X594 X119X229X334,X34

1
1
1
2
191491 92,F

leles
X11,357

“

START THE THIRD

ASSUME STEADY STATE REACHED RUN 2 IN

N=4
4TH PROB DISTRIB
ADVANCE FOR NEW CPU PROCESSING INTER

X59X119X229X33.:X34

1

1

START THE FOURTH
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RESET

START 1
RESET , | ! |
START -2 : ASSUME STEADY STATE REACHED RUN 2 IN
* ‘
KEY GENERATE 191501 92,yF N=5
DETPR ASSIGN 1ls145 5TH PROB DISTRISB
INITIAL Xi1i,180 . ADVANCE FOR NEW CPU PROCESSING INTER
CLEAR X5 4 X119X225 X33 ,X34 ’
START i START 'THE FIFTH
RESET
START 1
RESET
START 1
RESET .
' START 2 ASSUME STEADY STATE REACHED RUN 2 IN
*
KEY GENERATE 9;1691,21F N=6 '
DETPR ASSIGN L1196 ‘ 6TH PROB DISTRIB
C INITIAL X11,88 ADVANCE FOR NEW CPU PROCESSING INTER
CLEAR X59X119X229X33,X34%
START 1 START THE SIXTH
RESET
START 1
RESET
START 1
RESET : '
START 2 ) ASSUME STEADY STATE REACHED RUN 2 IN
x
KEY GENERATE 9297 el 92 ,F N=7
DETPR ASSIGN Ly lo7 * T7TH PRUB DISTRIB
INITIAL X11l4.55 ADVANCS FOR NEW CPU PROCESSING INTER
CLEAR X59X119X229X33,4X34
START 1 START THE SEVENTH
RESET

START 1

€9t



KEY
DETPR

RESET
START
RESET
START

GENERATE
ASSIGN
INITIAL
CLEAR
START
RESET
START
RESET
START
RESET
START

END

1

2 ASSUME STEADY STATE REACHED RUN 2 IN
191891 42,F N=8
14148 8TH PRQOB DISTRIB

X11,39 ADVANCE FOR NEW CPU PROCESSING INTER
X59X119X229X33,X34

1 START THE EIGHTH

1

1

2 ASSUME STEADY STATE REACHED RUN 2 IN
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Bl

B2
B3

Bk

B5

C1
c2
C3

Ch

c5

cé

CT
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