TIME-SHARING SYSTEMS:

VIRTUAL MACHINE CONCEPT VS; CONVENTIONAL APPROACH

Two fundamental classes of time-sharing systems are examined,

It has been said that the people involved in the develop-
ment of time-sharing systems look upon time-sharing not
as a technique but as a religion. This situation results
from the devotion of these people to their work and the
fact that their personal satisfaction is a contagious force
and usually spreads throughout the group.

An unfortunate side-effect of this fervor is the bel-
ligerence of one time-sharing group toward another group.
One of the contributing factors to this belligerence is the
communications problem. Members of different time-shar-
ing development groups frequently behave like people
discussing different religions. When the discussion gets
heated, each side falls back on the mystique of its own
techniques and jargon, thus each side becomes convinced
of its ultimate righteousness and the stubbornness of the
other side.

Time-sharing is a new field which requires an entirely
new vocabulary. The problem is that each group makes its
own definitions and even if a term becomes commonly
accepted, groups develop new words with the same mean-
ing, as if the development of jargon were as essential as the
development of systems.

Since this article discusses the aspects of whole classes
of time-sharing systems, it can easily fall into the role of the
innocent bystander in the midst of a war. Thus, the reader
is asked to accept the definitions used here (at least while
reading the article) and to consider the over-all discussion
rather than the minor details. ‘

CLASSES OF TIME-SHARING SYSTEMS

"For expository purposes, all time-sharing systems will be

divided into two classes:

Conventional Time-Sharing Systems (CTSS)—including
MIT’s CTSS and Multics, IBM’s TSS/360, and others.
Virtual Machine Time-Sharing Systems (YMTSS)—including
systems such as IBM’s M44/44X project and CP/40 - CP/67
projects, and MIT’s PDP-1 Time-Sharing System.

No special significance should be attached to the terms
used. The VMTSS are relatively few, whereas CTSS are

. much more broadly accepted, thus more “conventional.”

In this section, the basis for differentiating between the
two classes is presented. The major factor is the user’s
independence of the time-sharing system, as measured by
his ability to operate without it. (The terms “user” and
“user program” are uséd interchangeably here.)

In CTSS, the user is aware of and interacts directly with
the system. He must request that the system perform
input/output for him, manage secondary storage for him,

34

and perform many other functions. In general, the user’s
program could not run on any machine which did not
include the CTSS. An alert reader could immediately
comment that it may be possible to write a simple interface
routine that could process the user’s CTSS requests and
perform the functions for him. But the fact that the user
needs this extra level of buffering from the physical
machine points out the difference: the user never interacts
with the machine but is always one step away.

In VMTSS, the user is unaware of the system. It is
totally invisible to him. The user must specifically write his
own input/output routines, which contain actual machine
I/O instructions. In most true VMTSS, the user can switch
between the two standard physical hardware modes of
operation, called “master” and “slave,” or “supervisor” and
“problem.” Usually any special paging or mapping hard-
ware that may be available is not made accessible to the
user, but this is not a necessary restriction. In actuality, the
user’s privileged instructions, such as I/O or mode switch-
ing, are trapped by the VMTSS and appropriately simu-
lated. The simulation may be simplified by the use of
special hardware features, but these considerations (as in
CTSS merely affect the efficiency of the system. The
important points are the fundamental features of the -
Systems, not the implementation of the features.

Since the user of a VMTSS actually writes his programs
as if they were to run on a “real” machine, he can at any
time separate himself from the system (and all of its unique
special hardware, if any) and run on any “bare” machine.
The instructions available on the M44/44X VMTSS unfor-
tunately match neither the standard IBM 7044 nor the
modified M7044 identically, thus, a program written on
this system cannot be run on any existing real machine.
This point is somewhat academic, since a machine could be
built to have such an instruction set. On the other hand, the
CP40 and CP67 VMTSS creates virtual standard IBM
System/360 computers and the PDP-1 VMTSS creates
virtual PDP-1 computers. Except for some minor restric-
tions, usually involving 1/O timing dependencies and in-
struction sequence timing, the virtual 360’s and PDP-1’s are
identical to their real counterparts.

The distinctions between CTSS and VMTSS are not
completely well defined: for example, the MIT CTSS runs
the FMS batch processing system as background in a
“virtual” fashion, and the Project MAC Multics CTSS
creates “virtual” core memory for the user. The differences
between VMTSS and CTSS are largely in degree. A CTSS
characteristically provides a software interface to the user,
whereas a VMTSS presents the user with a simulated
hardware interface to a virtual computer.

MODERN DATA/March 1969



FEATURES OF CTSS

Whereas VMTSS designers view with pride their ability to
simulate real machines with ever-increasing accuracy, the
CTSS supporters have a philosophy of giving the user as
much freedom as possible and, furthermore, see no reason
to limit him to the specifics of any real machine. It is
possible to provide features and services in a CTSS
environment that are not normally available on a computer.

Since the VMTSS merely create an “empty” virtual
machine, the user must write or obtain routines to perform
input/output for him. Even the loaders, assemblers, and
compilers must be acquired by the uset’ The CTSS operates
as a package deal; in addition to the time-sharing function,
it provides many efficient utility routines and translators
that are available to all users. For example, as F.J. Corbato
and V.A. Vyssotsky state in “Introduction and Overview of
the Multics System’:

However, at Project MAC it has turned out
that simultaneous access to the machine, while
" obviously necessary to the objective, has not
been the major ensuing benefit. Rather, it is
the availability at one’s fingertips of facilities
for editing, compiling, debugging, and running
in one continuous interactive session that has
had the greatest effect on programming.”

Most CTSS are designed with the idea of the computer
utility in mind. Efficiency and reliability are of prime
importance, and the particulars of operation are of minor
concern as long as they are acceptable to the user. In the
QUIKTRAN and CPS systems, for example, the user
communicates with the system via typewriter terminals
using FORTRAN or PL/1 language, respectively. Specifics,
such as whether the programs are compiled or interpreted,
are of little significance as long as the function is
performed. As an aside, it is possible to consider such CTSS
as creating “virtual” FORTRAN or PL/1 computers.

The CTSS protect each user from conflict with other
users but, at the same time, users are allowed to share data
and program procedures. The system operates as a massive
pool of resources. It can allocate processor time and storage
capacity in an efficient manner since it is supplied with
information from the system routines being used. Each user
enjoys the benefit of the efficiency without having to
average the demands of his particular program.

MéDERN DATA/March 1969

STUART E. MADNICK, Research Assistant ® MIT, Cambridge, Mass,

Even without the additional scheduling information
available from the CTSS routines, the CTSS technique
should be more efficient than the virtual machine approach.
A significant amount of input/output is required by most
programs. On a CTSS, this is performed by a special call to
the system which then schedules and performs the function
in the most efficient manner. The VMTSS user must
generate I/O instructions which are then trapped, diag-
nosed, translated, mapped, executed, and the results simu-
lated. In fact, the user might even supply, for his
input/output, elaborate error-checking and recovery rou-
tines which duplicate the functions that are already
performed by the system.

FEATURES OF VMTSS

The most important feature of the virtual machine ap-
proach is that the system is not dedicated to any language,
application, or mode of operation. Although most VMTSS
supply a basic monitor with assemblers and compilers in the
form of a read-only tape or disk shared by all users, the user
can choose an alternate monitor or write his own. Muitiple
concurrent users may load the same or different software
systems; in which case, each enjoys a dedicated virtual
machine, while time-sharing the real computer. For exam-
ple, under CP67 it is quite typical to have one user running
the standard IBM batch processing system 0S/360, another
running a standard stand-alone utility program (such as tape
conversion), a third running his own developmental operat-
ing system, while the remainder of the users operate under
the supplied console-oriented operating system, CMS.

STUART E. MADNICK is a Research
Assistant at MIT while simultaneously
completing degrees of Masters of Science
in E.E. and Management. He has been on
the teaching staff of MIT's Digital Com-
puter Programming Systems course for
several years and has worked as a con-
sultant in the area of language proces-
sors, multi-access computers, and file
systems for the Lockheed Palo Alto
Research Laboratory, INTERCOMP,
Computer Software Systems, |BM Cam-
bridge Scientific Center, and various M| T
Departments. '

35



TIME-SHARING SYSTEMS: Continued

Software written for a virtual machine may be executed
on a standard real machine. Systems programmers designing
input/output supervisors, monitors, and -other privileged
routines are probably the major users of on-line debugging
techniques, and it is precisely these problems that the
conventional time-sharing system is usually unable to
handle. On the VMTSS, all systems programmers could be
doing on-line debugging on virtual machines, simultane-
ously. The developed software can thus be delivered for use
without ever wasting any real machine time for debugging.

In theory, it would be possible to develop a time-shar-
ing system on a virtual machine, or even develop a VMTSS
on a virtual machine provided by a VMTSS on a virtual
machine, provided by a VMTSS, etc. ad infinitum. In
practice, this is seldom done due to the difficulty of
providing access to the special hardware needed by the

"VMTSS, since it is not usually made available to the user on
a virtual machine. This limitation could definitely be
overcome if it proved sufficiently important.

It is possible for a virtual machine to have a richer
configuration than the machine on which it is being run
since, for example, the amount of virtual memory and
number of input/output devices are not limited by the
_physical configuration. Programs requiring very large
amounts of core memory or input/output capability can be
run and tested on a virtual machine even though the
available real machine does not have sufficient memory or
I/0O devices.

In general, VMTSS are more modular, easier to write,
and better protected against software failure. There are
usually three rings of protection on a VMTSS (as opposed
to two on most CTSS):

e Control program, which creates the virtual machine;

» Monitor system, which actually runs in a simulated
supervisor mode;

o User programs.

Whereas most of the effort in a CTSS is spent in the
development of the secondary file system and the transla-
tors, the VMTSS only requires the control program to
create virtual machines. Any available monitor that exists
for the real machine equivalent can be run on the virtual, or
a specially-tailored monitor can be developed and tested
and debugged on the virtual machine.

Experiments have shown that the use of virtual ma-
chines may even increase the throughput of batch jobs,
many of which operate on a “compute then print” basis,
and do not balance the hardware usage of a real machine.
By running two or more of these jobs at once, some jobs
will be printing while others are computing. The over-all
effect is that the computer is used more efficiently and,
despite the VMTSS overhead, the throughput is actually
increased. The potential of this technique is still uncertain,
but several clever algorithms have been developed to
increase or decrease the number of active batch-running
virtual machines to optimize machine usage. In principle,
this technique is the basis for the complex multi-processing
batch systems such as IBM’s 0S/360 and GE’s GECOS.

36

Finally, a VMTSS can be used to evaluate and help
improve programs. Very expensive hardware monitors and
meters have been developed to measure the performance of
programs. A VMTSS can collect the same, or more
elaborate, statistics as the hardware devices. A user might
run a program or monitor systems-on a virtual machine just
to obtain measurements of amounts of memory used,
input/output usage, idle time, and many other relevant
parameters.

CONCLUSION

This article is not intended to show that Conventional
Time-Sharing Systems are better than Virtual Machine
Time-Sharing Systems, or vice versa. In a very broad sense,
the following summarizes the characteristics of both
approaches:

Conventional Time-Sharing Systems:

e Computer utility—provide basic functions to
many users

e Pool of resources

. Efficiency.’
Virtual Machine Time-Sharing Systems:

e Modular development

o Medium-scale time-sharing systems

o Development of systems programs

e Program evaluation and measurement.

The reader should be aware of the existence of both

approaches, and will then be in a position to render a

decision as to which system is more appropriate for a
specific situation.

BIBLIOGRAPHY

Adair, R.J,, et al.,, “A Virtual Machine System for the 360/40,” IBM
Cambridge Scientific Center Report, May 1966.

“Adding Computers Virtually,” IBM Computing Report, Vol. 111,
No. 2, March, 1967.

Corbato, F.J., M.M. Daggett, and R.E. Daley, “An Experimental
Time-Sharing System,” 1962 Spring Joint Computer Conference.

Corbato, F.J. and V.A. Vyssotsky, “Introduction and Overview of
the Muitics System,” 1965 Fall Joint Computer Conference.

Corbato, F.J., et al., The Compatible Time-Sharing System, MIT
Press, 1963.

Dennis, J.B., “Segmentation and the Design of Multiprogrammed
Computer Systems,” IEEE International Convention Record, 1965,

Fano, R.M., “The MAC System: The Computer Utility Approach,”
IEEE Spectrum, Vol. 2, pp. 55-64, Jan. 1965.

Linquist, A.B., R.R. Seeber, and L.W. Comeau, “A Time-Sharing
System Using an Associative Memory,” Proceedings of the IEEE,
Dec. 1966.

O’Neil, R.W., “Experience Using a Time-Shared Multi-Programming
System with Dynamic Address Relocation Hardware,” 1967 Spring
Joint Computer Conference, Vol. 30.

Sayre, D., On Virtual Systems, IBM Watson Research Center,
Yorktown Heights, New York.

MODERN DATA/March 1969



