
Multi-processor software lockout

by STUART E. MADNICK
IBM Cambridge Scientific Center
Cambridge, Massachusetts

INTRODUCTION

As the uses of computers increase, every facility event-
ually becomes faced with the need to increase capacity.
The solutions normally used are to replace the equipment
with newer and faster models or obtain additional in-
dependent systems. The latter solution, although possibly
satisfactory for batch processing, is inefficient for time-
sharing and other forms of "computer utility". Techno-
logical forecast is beyond the scope of this paper, but
present trends indicate that future general-purpose com-
puters will be smaller and less costly, but not significantly
faster.

Many people see multi-processor computing systems as
the most promising technique for large-scale computer
facilities. Projects, such as MIT's Multics, IBM's TSS/360,
GE's GECOS, and UNIVAC's EXEC-8, are developing
operating systems for multi-processor configurations.
Papers by Corbato and Vyssotsky 1 and Dennis 2 give
additional arguments for adopting such configurations.

To facilitate system scaling, reliability, and modularity,
many multi-processor operating systems are designed to
treat the processors as homogeneous system resources.
Hence, there is no "supervisor" processor, each schedules
and controls itself. To prevent critical races and incon-
sistent results, only one processor at a time is permitted
to alter or examine certain shared system data bases; all
other processors attempting simultaneous access are
locked-out. This phenomenon is not strictly limited to
homogeneous processor systems, similar requirements
apply to any multi-processor scheme utilizing shared data
bases.

Lock-out is not a novel problem. It is a familiar oc-
currence on multi-task single-processor computing sys-
tems. If two tasks simultaneously request use of the same
I/O device, one of the tasks must be locked-out, or blocked,
until the device is available. Usually this merely involves
temporarily bypassing the conflicting task by continuing
execution of other tasks; thus this form of lock-out has
only a logical affect on the system resources not a physical
affect. Processor lock-out actually results in physically

19

idle resources, since the processor has been directed to
discontinue execution of the currently active task but
cannot complete the transition to another task due to
lockout. At least one paper has noted this phenomenon 3.

Mult i -Processor Lockout Model

For convenience and ease of understanding, a simple
probabilistic model was used. Each processor is con-
sidered as independent. When executing a task, the in-
terval of time until it becomes necessary to access a system
data base is described by a negative exponential distribu-
tion function with parameter 1/E. The expected execution
interval for such a task has value E time units. Similarly,
the processor runs in the locked state for an expected
interval of length L time units. The ratio, L](E+L) ,
might be loosely interpreted as the expected portion of
total execution time that occurs in the locked state for a
multi-task uni-processor configuration (no processor
lock-out).

There are three possible states for an individual proces-
sor: (1) it is executing in the unlocked state on behalf of a
task for an interval of time characterized by parameter 1/E
and then will attempt to access a'system data base, (2) it
is executing in the locked state for an interval character-
ized by parameter 1/L and then will remove the lock, or
(3) it attempted to access the data base but was idled by
lock-out. The Markov Model for n processors is illus-
trated in Figure 1.

n n-I - --E dt --E dt " ~ d t ' ~ - d t ~-dtl

dt L

State S(i) represents state with i processors a t tempting to a c c e s s

system data base (1 processor actually manipulating data base, i-1
processors awaiting access).

Figure 1. Markov Model

20 Proceedings-1968 ACM National Conference

The transitions from state i to state i - 1 have a prob-
ability of (1/L)dt representing the fact that the amount
of time spent in the locked state by a processor is in-
dependent o f t he number of processors waiting to access
a locked data base. The transitions from state i to state
i q-1 have probability (n- i) (1 /E)dt representing the fact
that each of the n - i processors in execution have prob-
ability (1/E)dt of requesting access to the system data
bases.

Solving for the steady state probabilities, 4 we find that

n! (L) i
P i - (n - i) ! P o i = l n

n,
with P o =

The criterion for performance with which we will be
interested is the expected number of processors idled due
to lock-out:

n

E (idle) = i~-- (i - I) P i

The preceeding formula becomes:

i (n - i) !
i = 2

E (idle) =

i (n - - i) !
i=O

Results Obtained by Use of Model

The expected number of idle processors was evaluated
for certain interesting cases and plotted in Figures 2, 3,
and 4. The diagrams demonstrate that the function differs
significantly from a linear approximation (expected num-
ber of idle processors -- number of processors times the
portion of time each would individually spend in locked
state). In fact for an operating system which has a ratio
L/E of .05, the linear approximation is in error by 133 ~o
for a 20-processor configuration and by 1700~o for a
40-processor configuration.

Figure 3, for example, illustrates the affect of software
lock-out on a system characterized by a ratio of .05 for
L/E. If there were 15 processors attached to such a system,
it is expected that on the average 1 processor will always
be idled by software lock-out. Increasing the system to 40
processors results in an expected average of 19 idle
processors, a further increase to 41 processors results in
20 idle processors.

Concluding Comments

The notion of "idle" processors must be carefully
understood. It has been suggested that a multi-processor

system is uneconomic if even 107o of a processor, for ex-
ample, is known to be idle; therefore, a 15-processor
system with 1 processor idle, as described above, is totally
unreasonable! A more meaningful way to consider the
situation is to note that the 15-processor system has the
effective power of 14 processors, whereas a 14-processor
system has the effective power of 13.25 processors.
Therefore, the 15th processor has a marginal effective
power of 75 7o (3A of a processor). Such a configuration
would be reasonable if either the marginal cost of the
additional processor (and associated hardware) is less

"than 4 ~o of the total system cost assuming some economy
of scale, or if the necessity for additional compute power
outweighs the cost. On the other hand, under the same
conditions, the marginal power of the 41st processor is
approximately 0 ~o.

Software locking will be required under a variety of
circumstances, such as whenever a task (I) exceeds its
time quantum, (2) requests an input/output function, or
(3) generates a page or segment fault. Furthermore, it has
been suggested that locking will be required on memory
allocation, 6 processor allocation, 6 and parameter list
validation. 7

Based upon rather crude measurements performed on
the CP/40 Experimental Time Sharing System (paged
memory) at the IBM Cambridge Scientific Center 8' 9 and
supported by measurements extracted from the SDC
system report, 1° the expected number of instructions
executed on behalf of a task before locking is required is
around 5000 for present-day systems. If we assume that
the system remains locked for at,least 100 instructions, a
value of 2 7o is obtained for L/E. Therefore, a general
range of from 0.1 ~o to 10~o might be considered reason-
able.

Several operational single processor time-sharing sys-
tems have been estimated to spend up to 50~o of the
execution time performing supervisory functions. If such
systems were adapted for multi-processing by indiscrim-
inately locking whenever entering supervisor state, locked-
time (L) might easily exceed unlocked (E). A system
designed with multi-processor operation carefully planned
to minimize lockout occurrences and duration might
maintain low values of L/E. Butler Lampson 6 has raised
some arguments for providing hardware facilities to assist
the supervisor, thereby decreasing the duration of the
locked state. As software expenditures increase in relation
to hardware costs, this technique may gain additional
support.

It is very difficult to predict how the ratio L/E will be
affected by an increase in the number of processors.
Depending upon effectiveness of shared procedures and
amount of main storage added, the paging load might
increase or decrease. Furthermore, if more tasks are
allowed on the system, the amount of time required by a
locked priority scheduler would be expected to increase.

Multi-Processor Software Lockout 21

-~ ,9 n,*
0

~rj
w .B
ro
0

.7
A

I-

0
.6

. J

LLI
_J
1:3

LL
0

0::
LLI
00

Z

W
l--
rO
W
a_
X
W

.51

.4

.3

.2

.I

.0

I I I I I I

2 3 4

NUMBER OF

= . 2 0

5 6 7

PR 0 CESSORS

I I I I

t=. I0

(L/E)=.025

8 9 I0

(CONFIGURATION)

II 12

Figure 2.

22 Proceedings--1968 ACM National Conference

¢¢
0

oO
W

¢r
13.

I--

o x,,

8
_3 2 0
IM
..J

1.1_
O

t r
W
m

Z

a
W

t..)
W
13.
X
W O'

I I
(L/E)

-.10

- . 05

I0 20 50 4O

NUMBER OF PROCESSORS (CONFIGURATION)

5(

Figure 3.

Multi-Processor Software Lockout 23

03

=o 3o

,,=,

~" ~o

0

I I I

m

/ ~ o ~ o ~ o & _

I / i CONFIGURATION

.o5 .Io .is .2o

LOCKOUT STATE RATIO (L/E)

Figure 4.

24 Proceedings--1968 ACM National Conference

The simple model used was not intended to produce a
complete and precise mathematical solution to the entire
problem of multi-processor lock-out. The presented
quantitative results and accompanying elaboration on the
basic phenomenon should provide further insight into its
potential importance as a factor in the design of multi-
processor operating systems.

ACKNOWLEDGMENTS

The author wishes to thank the many people that
graciously contributed suggestions and advice that facili-
tated the condensed presentation of this complex and
somewhat controversial topic, of special note are Bill
Harrison, Steve Zilles, Don Hatfield, Tom Rosato, and
Liz Levey of IB1V, Ed Satterthwaite of Stanford, and
Allen Moulton, Paul Mockapetris, Prof. Robert Graham,
and Prof. John Donovan of MIT. The writings and
teachings of M I T Professors Jerome Saltzer and Alvin
Drake must be credited with providing the initial stimulus
for undertaking this study.

REFERENCES

1. Corbato F J and Vyssotsky V A
Introduction and overview o f the M U L T I C S System
Proceedings AFIPS 1965 Fall Joint Computer Confer-
ence Vol 27 Part 1 Spartan Books New York pp 185-196

2. Dennis Jack B
A position paper on compnting and communications
Communications of the ACM May 1968 Vol 11 No 5
pp 370-377

3. Saltzer Jerome
Traffic control in a multiplexed computer system
MIT Project MAC MAC-TR-30 June 1966
Drake, A W
Fundamentals o f applied probability
McGraw-Hill New York 1962 pp 163-185

5. Fuchel Kurt and Heller Sidney
Considerations in the design o f a multiple computer system

with extended core storage
Communications of the ACM May 1968 Vol 11 No .~
pp. 334-340

6. Lampson Butler W
A scheduling philosophy for multiprocessing systems
Communications of the ACM May 1968 Vol 11 No .~
pp 347-360

7. Graham Robert M
Protection in an information processing utility
Communications of the ACM May 1968 Vol 11 No 5
pp 365-369

8. Adair R J Bayles R U Comeau L W and Creasy R J
A virtual machine system for the 360[40
Cambridge Scientific Center Report 36.010 May 1966

9. Comeau L W
A study o f the effect o f user program optimization in a

paging system
ACM Symposium on Operating System Principles
October 1967 Gatlinburg Tennessee

10. Smith John L
Multiprogramming under a page on demand strategy
Communications of the ACM October 1967 Vol 10
No 10 pp 636-646

4.

