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INTRODUCTION 

As the uses of computers increase, every facility event- 
ually becomes faced with the need to increase capacity. 
The solutions normally used are to replace the equipment 
with newer and faster models or obtain additional in- 
dependent systems. The latter solution, although possibly 
satisfactory for batch processing, is inefficient for time- 
sharing and other forms of "computer utility". Techno- 
logical forecast is beyond the scope of this paper, but 
present trends indicate that future general-purpose com- 
puters will be smaller and less costly, but not significantly 
faster. 

Many people see multi-processor computing systems as 
the most promising technique for large-scale computer 
facilities. Projects, such as MIT's Multics, IBM's TSS/360, 
GE's GECOS, and UNIVAC's EXEC-8, are developing 
operating systems for multi-processor configurations. 
Papers by Corbato and Vyssotsky 1 and Dennis 2 give 
additional arguments for adopting such configurations. 

To facilitate system scaling, reliability, and modularity, 
many multi-processor operating systems are designed to 
treat the processors as homogeneous system resources. 
Hence, there is no "supervisor" processor, each schedules 
and controls itself. To prevent critical races and incon- 
sistent results, only one processor at a time is permitted 
to alter or examine certain shared system data bases; all 
other processors attempting simultaneous access are 
locked-out. This phenomenon is not strictly limited to 
homogeneous processor systems, similar requirements 
apply to any multi-processor scheme utilizing shared data 
bases. 

Lock-out is not a novel problem. It is a familiar oc- 
currence on multi-task single-processor computing sys- 
tems. If two tasks simultaneously request use of the same 
I/O device, one of the tasks must be locked-out, or blocked, 
until the device is available. Usually this merely involves 
temporarily bypassing the conflicting task by continuing 
execution of other tasks; thus this form of lock-out has 
only a logical affect on the system resources not a physical 
affect. Processor lock-out actually results in physically 
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idle resources, since the processor has been directed to 
discontinue execution of the currently active task but 
cannot complete the transition to another task due to 
lockout. At least one paper has noted this phenomenon 3. 

Mult i -Processor  Lockout  Model  

For convenience and ease of understanding, a simple 
probabilistic model was used. Each processor is con- 
sidered as independent. When executing a task, the in- 
terval of time until it becomes necessary to access a system 
data base is described by a negative exponential distribu- 
tion function with parameter 1/E. The expected execution 
interval for such a task has value E time units. Similarly, 
the processor runs in the locked state for an expected 
interval of length L time units. The ratio, L](E+L) ,  
might be loosely interpreted as the expected portion of 
total execution time that occurs in the locked state for a 
multi-task uni-processor configuration (no processor 
lock-out). 

There are three possible states for an individual proces- 
sor: (1) it is executing in the unlocked state on behalf of a 
task for an interval of time characterized by parameter 1/E 
and then will attempt to access a'system data base, (2) it 
is executing in the locked state for an interval character- 
ized by parameter 1/L and then will remove the lock, or 
(3) it attempted to access the data base but was idled by 
lock-out. The Markov Model for n processors is illus- 
trated in Figure 1. 

n n-I - --E dt --E dt " ~ d t ' ~ - d t  ~-dtl 

dt L 

State S(i) represents state with  i processors a t tempting to a c c e s s  

system data base (1 processor actually manipulating data base, i-1 
processors awaiting access). 

Figure 1. Markov Model 
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The transitions from state i to state i -  1 have a prob- 
ability of (1/L)dt representing the fact that the amount 
of time spent in the locked state by a processor is in- 
dependent o f t he  number of processors waiting to access 
a locked data base. The transitions from state i to state 
i q-1 have probability (n- i ) (1 /E)dt  representing the fact 
that each of the n -  i processors in execution have prob- 
ability (1/E)dt of requesting access to the system data 
bases. 

Solving for the steady state probabilities, 4 we find that 

n! ( L ) i  
P i  - ( n - i ) !  P o  i = l . . . . .  n 

n, 
with P o  = 

The criterion for performance with which we will be 
interested is the expected number of processors idled due 
to lock-out: 

n 

E ( idle)  = i~-- ( i -  I) P i  

The preceeding formula becomes: 

i ( n - i ) !  
i = 2  

E ( idle)  = 

i ( n - - i ) !  
i=O 

Results Obtained by Use of Model 

The expected number of idle processors was evaluated 
for certain interesting cases and plotted in Figures 2, 3, 
and 4. The diagrams demonstrate that the function differs 
significantly from a linear approximation (expected num- 
ber of idle processors -- number of processors times the 
portion of time each would individually spend in locked 
state). In fact for an operating system which has a ratio 
L/E of .05, the linear approximation is in error by 133 ~o 
for a 20-processor configuration and by 1700~o for a 
40-processor configuration. 

Figure 3, for example, illustrates the affect of software 
lock-out on a system characterized by a ratio of .05 for 
L/E. If there were 15 processors attached to such a system, 
it is expected that on the average 1 processor will always 
be idled by software lock-out. Increasing the system to 40 
processors results in an expected average of 19 idle 
processors, a further increase to 41 processors results in 
20 idle processors. 

Concluding Comments  

The notion of "idle" processors must be carefully 
understood. It has been suggested that a multi-processor 

system is uneconomic if even 107o of a processor, for ex- 
ample, is known to be idle; therefore, a 15-processor 
system with 1 processor idle, as described above, is totally 
unreasonable! A more meaningful way to consider the 
situation is to note that the 15-processor system has the 
effective power of 14 processors, whereas a 14-processor 
system has the effective power of 13.25 processors. 
Therefore, the 15th processor has a marginal effective 
power of 75 7o (3A of a processor). Such a configuration 
would be reasonable if either the marginal cost of the 
additional processor (and associated hardware) is less 

"than 4 ~o of the total system cost assuming some economy 
of scale, or if the necessity for additional compute power 
outweighs the cost. On the other hand, under the same 
conditions, the marginal power of the 41st processor is 
approximately 0 ~o. 

Software locking will be required under a variety of 
circumstances, such as whenever a task (I) exceeds its 
time quantum, (2) requests an input/output function, or 
(3) generates a page or segment fault. Furthermore, it has 
been suggested that locking will be required on memory 
allocation, 6 processor allocation, 6 and parameter list 
validation. 7 

Based upon rather crude measurements performed on 
the CP/40 Experimental Time Sharing System (paged 
memory) at the IBM Cambridge Scientific Center 8' 9 and 
supported by measurements extracted from the SDC 
system report, 1° the expected number of instructions 
executed on behalf of a task before locking is required is 
around 5000 for present-day systems. If we assume that 
the system remains locked for at,least 100 instructions, a 
value of 2 7o is obtained for L/E. Therefore, a general 
range of from 0.1 ~o to 10~o might be considered reason- 
able. 

Several operational single processor time-sharing sys- 
tems have been estimated to spend up to 50~o of the 
execution time performing supervisory functions. If such 
systems were adapted for multi-processing by indiscrim- 
inately locking whenever entering supervisor state, locked- 
time (L) might easily exceed unlocked (E). A system 
designed with multi-processor operation carefully planned 
to minimize lockout occurrences and duration might 
maintain low values of L/E. Butler Lampson 6 has raised 
some arguments for providing hardware facilities to assist 
the supervisor, thereby decreasing the duration of the 
locked state. As software expenditures increase in relation 
to hardware costs, this technique may gain additional 
support. 

It is very difficult to predict how the ratio L/E will be 
affected by an increase in the number of processors. 
Depending upon effectiveness of shared procedures and 
amount of main storage added, the paging load might 
increase or decrease. Furthermore, if more tasks are 
allowed on the system, the amount of time required by a 
locked priority scheduler would be expected to increase. 
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The simple model used was not intended to produce a 
complete and precise mathematical solution to the entire 
problem of multi-processor lock-out. The presented 
quantitative results and accompanying elaboration on the 
basic phenomenon should provide further insight into its 
potential importance as a factor in the design of multi- 
processor operating systems. 
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