
M. Collard (Ed.): ODBIS 2005/2006, LNCS 4623, pp. 37–50, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Scalable Interoperability Through the Use of COIN
Lightweight Ontology

Hongwei Zhu1,2 and Stuart E. Madnick1

1 Massachusetts Institute of Technology
Sloan School of Management

30 Wadsworth Street, E53-320, Cambridge, MA 02142, USA
{mrzhu,smadnick}@mit.edu

2 Old Dominion University
College of Business and Public Administration

Constant 2079, Norfolk, VA 23529, USA
hzhu@odu.edu

Abstract. There are many different kinds of ontologies used for different
purposes in modern computing. A continuum exists from lightweight ontologies
to formal ontologies. In this paper we compare and contrast the lightweight
ontology and the formal ontology approaches to data interoperability. Both
approaches have strengths and weaknesses, but they both lack scalability
because of the n2 problem. We present an approach that combines their
strengths and avoids their weaknesses. In this approach, the ontology includes
only high level concepts; subtle differences in the interpretation of the concepts
are captured as context descriptions outside the ontology. The resulting
ontology is simple, thus it is easy to create. It also provides a structure for
context descriptions. The structure can be exploited to facilitate automatic
composition of context mappings. This mechanism leads to a scalable solution
to semantic interoperability among disparate data sources and contexts.

Keywords: lightweight ontology, formal ontology, context, mediation,
scalability, semantic heterogeneity.

1 Introduction

Ontologies have been widely used in modern computing for purposes such as
communication, computational inference, and knowledge organization and reuse [7].
For different purposes there are a variety of different ontologies, which range from a
glossary, to a taxonomy, a database schema, or a full-fledged logic theory that
consists of concepts, relationships, constraints, axioms, and inference machinery. As
illustrated in [21], a variety of ontologies form a continuum from lightweight, rather
informal, to heavyweight, and formal ontologies.

The lightweight ontology approach and the formal ontology approach are often
used differently and have different strengths and weaknesses. Both approaches can be
used to support data interoperability among disparate sources.

38 H. Zhu and S.E. Madnick

Lightweight ontologies usually are taxonomies, which consist of a set of concepts
(i.e., terms, or semantic types) and hierarchical relationships among the concepts. As
an artifact, it is relatively easy to construct a lightweight ontology. However, such
lightweight ontologies do not capture the detailed semantics of the concepts, which
sometimes is documented in a data dictionary, and/or embedded in the data models
and the data processing programs.

There are two different approaches to using lightweight ontologies for intero-
perability purposes. One approach is to develop a single lightweight ontology, in
which case all parties need to agree on the exact meaning of the concepts. The
lightweight ontology and the agreements together form a standard that all parties
uniformly adopt and implement. That is, a lightweight ontology is often used to sup-
port strict data standardization. However, reaching such agreements can be difficult.
For example, a data standardization effort within the U.S. Department of Defense
(DoD) took more than a decade only to standardize less than 2% of the data across all
organizations of the DoD [18]. The alternative approach is to allow multiple light-
weight ontologies to co-exist, in which case mappings among the ontologies need to
be provided. Because the semantics is not formally captured in the ontologies, efforts
are required to identify the semantic differences and then develop (often hand-code)
the mappings to enable pair-wise interoperability. The number of pair-wise mappings
is n(n-1) (which is O(n2)) if there are n different ontologies, thus the amount of effort
required increases quickly as n becomes large. This is the so called n2 problem of data
interoperability. A survey [19] shows that approximately 70% of the costs of data
interoperability projects are spent on identifying the semantic differences and
developing code to reconcile them.

In contrast, the formal ontology approach uses axioms to explicitly represent
semantics and has inference capabilities. This approach can also support interoperability
either via a single ontology or via mappings of multiple ontologies. The key difference
is that the semantics of the ontological concepts and the mappings are explicitly
captured in a formal logic theory.

To summarize, both ontology approaches can be used to support data
interoperability either via standardization or via mappings of multiple ontologies. The
difficulty of reaching an agreement on a single data standard can be enormous so that
in practice multiple standards (i.e., ontologies) co-exist even within a single
organization. Thus, in practice ontology mappings are required to enable interoper-
ability among data sources and systems. Both ontology approaches suffer from the n2
problem. The key difference between the two ontology approaches is that lightweight
ontologies do not capture the semantics in the ontologies, whereas formal ontologies
explicitly capture semantics. As artifacts, lightweight ontologies are simple and easy to
create, whereas formal ontologies are complex and difficult to create. But the sem-
antics and the mappings of lightweight ontologies are often scattered in various data
models and data processing programs, making maintenance extremely difficult. The
semantics and mappings of formal ontologies are in the form of a logic theory, which
is relatively easier to maintain. Both approaches have weaknesses that limit their
effectiveness.

It is desirable to have an approach that combines the strengths and avoid the
weaknesses of the two ontological approaches. In this paper, we present such an
approach, which is developed in the COntext INterchange (COIN) project [3, 5, 25]

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 39

for semantic data interoperation purposes. It uses a lightweight ontology, which
provides the structure for organizing context descriptions to account for the subtleties
of the concepts in the ontology. We will use the terms COIN ontology and COIN
lightweight ontology interchangeably. COIN also implements a reasoning algorithm
to determine and reconcile semantic differences between different data sources and
receivers.

The rest of the paper is organized as follows. In Section 2, we describe the COIN
lightweight ontology approach. In Section 3, we present the scalability benefit of the
approach. In Section 4, we discuss related work. In Section 5, we conclude and point
out future research.

2 COIN Lightweight Ontology

We will use an online price comparison example to illustrate the COIN lightweight
ontology approach.

2.1 Online Price Comparison Example

Numerous vendors make their pricing information available online. With web
wrappers, such as Cameleon [2] and others [1], and the increasing adoption of XML
and web services, one can gather price data and compare offers from different
vendors. To perform meaningful comparisons, one has to reconcile the semantic
differences of price data, especially when data is from vendors scattered around the
world [22].

Consider a scenario where data is from 30 vendors from 10 different countries. For
simplicity of discussion in this paper, let us assume that all vendors quote prices using
the same schema and same Product identification, represented using the following
first order predicate:

quote(Product, Price, Date)

but different vendors use different conventions so that the price values are interpreted
differently depending on which vendor provides the quote. Table 1 provides a few
examples of different interpretations of price. A base price refers to price with taxes
and shipping & handling (S&H) excluded (e.g., price quotes from vendors 2 and 3).

Let us assume that each vendor uses a different convention, thus we have 30
unique conventions, which we call contexts. We can label vendor i’s context as ci. For

Table 1. Interpretations of Price

Vendor Interpretation of Price
1
2
3
…
30

In 1’s of USD, taxes and S&H included
In 1’s of USD, taxes and S&H excluded
In thousands of Korean won, taxes and S&H excluded
…
In millions of Turkish lira, taxes included

40 H. Zhu and S.E. Madnick

simplicity, we will assume that users normally adopt a vendor context. Or we can
assume that the only users are the vendors, each of whom wants to compare his prices
with all of his world-wide competitors and wants the comparison done in his own
context. In this scenario, to allow users in all contexts to meaningfully compare
vendor prices, it is necessary that price data from other contexts be converted to the
user context, which would require 870 (i.e., 30*29=870) conversions. Hand-coding
these conversions and maintaining them over time, since contexts do change (e.g.,
prices in French francs and German deutschemarks became Euros), can be costly and
error-prone.

2.2 COIN Lightweight Ontology

In the example, there are a number of subtle differences in the meaning of the high
level concept price. It is important that these subtleties are captured and the
differences are reconciled for meaningful comparisons.

Like the traditional lightweight ontology, the COIN ontology includes a set of
concepts, among which there can be a hierarchy represented with an is_a relationship.
Besides, the COIN ontology also includes attribute as a binary relationship between a
pair of concepts. Attributes are also called roles, and correspondingly attribute names
are called role names. For example, price can be the hasPrice attribute of product.
Conversely, product can be the priceOf attribute of price. To capture the subtle
differences in meaning, the COIN lightweight ontology introduces modifier as a
special kind of attribute. The values of modifiers are specified as context descriptions
outside the ontology. Fig. 1 shows a graphic representation of the COIN lightweight
ontology for the online price comparison example.

basic

Price

currency scaleFactor
kind

ProductpriceOfDate dateOf

t Concept/
Semantic type

a Attribute m Modifier

is_a

Legend

Fig. 1. COIN lightweight ontology for online price comparison example. It contains only high
level concepts, the refined variants of which can be derived from the assignments of modifiers
that belong to each high level concept.

In this ontology, we include a modifier-free root concept basic, which is similar to
thing as the root in many object-oriented models. We include three modifiers: kind,
currency, and scaleFactor. Each modifier captures a particular aspect in which the
underlying concept can have different interpretations. Contexts are described by
assigning values to modifiers present in the ontology. In simple cases, a specific value
is assigned to a modifier in a context. In other cases, the assignment must be specified
by a set of rules. In either case, a context is conceptually a set of assignments of all
modifiers and can be described by a set of <modifier, value> pairs. For example,
contexts c2 and c3 (refer to vendors 2 and 3 in Table 1) can be described as:

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 41

 c2 := { <kind, basePrice>, c3 := { <kind, basePrice>,
 <currency, usd>, <currency, krw>,
 <scaleFactor, 1> } <scaleFactor, 1000> }

The language used in COIN for describing context (as well as context mappings

and the lightweight ontology) is based on F-logic [12], an object-oriented logic. F-
logic rules are converted to Datalog for reasoning purposes. In COIN, various “user-
friendly” front-ends have been created so that developers do not directly need to use
F-logic or Datalog. Below is example rule using the logic to assign a value to
currency modifier in context c3:

].'')([])([
|::

33 KRWcvalueYYccurrencyX
basicYpriceX

→∧→
−∃∀

where variables (e.g., X, Y) are objects, the modifier and attributes of which are
represented by methods (which are declared in square brackets). The method value is
similar to the value predicate in context logic of [15]; it returns the ground value of
the object in the context specified by the parameter (which is c3 in the example).

2.3 Characteristics of COIN Lightweight Ontology

A COIN ontology, as shown in Fig. 1, includes only high level concepts (plus their
relationships, such as the binary relationships of context modifiers). Thus it is simple
and relatively easy to create and reach agreement. But the involved parties do not
need to agree on the details of each concept. Each party can continue to use its
preferred interpretation for each high level concept. In other words, each party can
conceptually have its own local ontology. Fig. 2 depicts the conceptual local
ontologies for vendors 2 and 3. To avoid clutter, we have omitted attribute names in
the figure.

basic

basePrice_1s_USD ProductDate

basic

basePrice_1Ks_KOW ProductDate

Fig. 2. Conceptual local ontologies for vendor 2 (left) and vendor 3 (right), derivable from
COIN lightweight ontology shown in Fig. 1

These local ontologies are not part of the COIN lightweight ontology, but they can
be derived from the COIN ontology using the context descriptions. In other words, the
COIN lightweight ontology provides a structured way to describe contexts and derive
refined local ontologies.

Furthermore, a more traditional global ontology that integrates all the local
ontologies could be constructed from the COIN ontology and the accompanying
context descriptions. A graphic representation of such a global ontology for the online
price comparison example is given in Fig. 3, which includes two intermediate layers
(i.e., the layers starting with BasePrice and In USD concepts, respectively). Concepts

42 H. Zhu and S.E. Madnick

in each layer remove a certain kind of ambiguity. For example, BasePrice indicates
the kind of price, which does not include shipping and handling charges. The nodes
below it further refine the base price concept by specifying the currency, e.g., in USD.
Alternatively, the intermediate layers can be omitted. In this case, specialized
concepts on the leaf level, such as basePrice_1s_USD, directly connect to the generic
Price concept.

Price

BasePrice Base+T+SH

In USD In EUR… In USD In EUR…

In 1’s In 1M’s… … In 1’s In 1M’s…

ProductpriceOfDate dateOf

…

basic

Fig. 3. An example fully-specified global ontology for the online price comparison example.
Leaf nodes represents the concepts with specific semantics, e.g., the first leaf node on the left
represent the concept of “price, not including taxes or shipping handling, in 1’s of USD”.

Ontologies are design artifacts. Comparing the artifacts shown in Fig. 1 and Fig. 3,
we observe that the COIN approach creates much simpler ontologies – though, for
many purposes, they are functionally equivalent. As discussed in [13, 24], the COIN
approach has several advantages over the formal ontology approach. First, the COIN
ontology is usually much simpler, thus easier to manage. Although in practice it is
unlikely that one would create an ontology to include all possible variations (e.g.,
basePrice_1M’s_USD), a COIN ontology is still much easier to create than any
ontology similar to the one in Fig. 3 even with a smaller number of refined concepts.
Second, related to the first point, although the COIN ontology is simple, it provides
the means to derive all refined concepts as illustrated in Fig. 3. Third, a COIN
ontology facilitates consensus development, because it is relatively easier to agree on
a small set of high level concepts than to agree on every piece of detail of a large set
of fine-grained concepts. And more importantly, the COIN ontology is much more
adaptable to changes. For example, when a new concept “base price + S&H in 1000’s
of South Korean Won” is needed, the fully specified ontology may need to be updated
with insertions of new nodes. The update requires the approval of all parties who
agreed on the initial ontology if a single ontology is used, or mappings need to be
added to ensure its interoperability with other variants of the price concept. In
contrast, the COIN approach can accommodate this new concept by adding new
context descriptions without changing the ontology. As we will see later, the new
mappings may not need to be added when they can be derived from existing
mappings using a reasoning mechanism.

The COIN lightweight ontology approach also has advantages over the traditional
lightweight ontology approach. Although, similar to the traditional approach, the

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 43

COIN ontology does not include detailed descriptions of semantics, it does provide a
vocabulary and the structure for describing semantics using context descriptions. As
we will see in the next section, the context reasoning mechanism exploits the structure
to solve the n2 problem.

3 Scalable Interoperability with COIN Lightweight Ontology

When data sources and data receivers are in different contexts, conversions (also
called lifting rules or mappings) are needed to convert data from source contexts to
the receiver context. We call the set of conversions from a context to another context
a composite conversion. When conversions are specified pair-wise between contexts,
it requires ~n2 composite conversions to achieve interoperability among n contexts. It
is costly and error-prone to develop and maintain such a large number of conversions.
Thus approaches that hand-code the ~n2 composite conversions do not scale well
when n increases.

The use of lightweight ontology in COIN makes it possible to avoid the above
mentioned problem. In addition to using ontology and contexts to represent semantic
heterogeneity, COIN also has a reasoning component to determine and reconcile
semantic differences. We explain how COIN achieves scalability though conversion
composition in the remainder of the section.

3.1 Conversion Composition

In COIN, conversions are not specified as convoluted rules pair-wise between
contexts. Instead, they are specified for each modifier between different modifier
values. For example, a conversion can be defined for currency modifier to convert
values in different currencies such as by using an exchange rate function represented
by the following predicate:

olsen(CurFrom, CurTo, Day, Rate)

It returns an exchange Rate from CurFrom currency to CurTo currency on a given
Day. The function can be implemented externally as a table lookup or as a callable
service1. We call a conversion defined for a single modifier a component conversion.

The component conversions in COIN are also specified using F-logic. Below is an
example component conversion for currency modifier; it is parameterized with
context C1 and C2 and can convert between any currencies. We use olsen_ for the
skolemized version of original olsen predicate.

.*])2([),,,_(

][])2([])1([
],1@)2,([

|:

222
ruvrCvalueRDTBCACDRBAolsen

TdataOfxCCcurrencyXCCcurrencyX
vuCCcurrencycvtX

priceX

CC

t

C

f

tf

=∧→∧=∧=∧=∧

∧→∧→∧→
←→

−∀

1 In many applications using COIN, such conversion functions are implemented by using web

wrapped services, such as the www.oanda.com currency conversion web site.

44 H. Zhu and S.E. Madnick

Once all component conversions are defined, composite conversions can be
composed automatically using a context reasoning algorithm. Fig. 4 illustrates the
concept of conversion composition.

In Fig. 4, the triangle symbol on the left represents the price concept in context c3,
i.e., base price in 1000’s of South Korean won (KRW); and the circle symbol on the
right represents the price concept in context c2, i.e., base price in 1’s of USD. For data
in context c3 to be viewed in context c2, they need to be appropriately converted by
applying the appropriate composite conversion. The dashed straight arrow represents
the application of the composite conversion that would have been implemented
manually in other approaches. With the COIN lightweight ontology approach, the
composite conversion can be automatically composed using the predefined
component conversions. As shown in Fig. 4, we first apply the component conversion
for currency modifier (represented by cvtcurrency), then apply the component
conversion for scaleFactor modifier (represented by cvtscaleFactor).

Price in
1000’s of KRW

Price in
1’s of USD

cvtcurrency(∆) =⌂ cvtscaleFactor(⌂)

∆ ○

Implemented manually when
contexts are unstructured

Composed automatically
when contexts are structured

Fig. 4. Composite conversion composed using component conversions. Without composition,
one would hand-code a direct conversion to convert the price in 1000’s of KRW to the price in
1’s of USD; this conversion illustrated by the straight dashed arrow. With COIN, this
composite conversion can be derived from the component conversions for currency (cvtcurrency)
and scale factor (cvtscaleFactor).

The composition algorithm, shown in Fig. 5, is quite simple. In COIN project, it is
implemented in a query rewriting mediator using abductive constraint logic
programming (ACLP) [10] and constraint handling rules (CHR) [4]. With the
mediator, queries can be issued as if all data sources were in the requester’s context
(i.e., the target context). The mediator generates mediated queries that contain the
composite conversions. Data is converted from source contexts to the requester’s
context when the mediated queries are executed.

A demonstration of the query mediator is shown in Fig. 6. The source used also
includes a Vendor column, as shown in the sample schema near the middle of the
figure. The source context corresponds to context c3, and the requester context
(c_c_usa2 in the figure) is equivalent to context c2 in the online price comparison
example discussed earlier. In the demonstration, the QuoteDate field can have
different date formats, which we did not include in the ontology discussed earlier but
can be accommodated by adding a dateFormat modifier to Date concept in the
ontology in Fig. 1.

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 45

Input: data value V, corresponding concept C in ontology,
 source context C1, target context C2
Output: data value V (interpretable in context C2)

Find all modifiers of C
 For each modifier mi
 Find and compare mi’s values in C1 and C2
 If different: V=cvtmi(V); else, V=V
Return V

Fig. 5. Algorithm for composing composite conversion using component conversions

Mediated Datalog query

Mediated SQL query

src_krea
<Product, Vendor, QuoteDate, Price>

answer('V7', 'V6'):-
src_korea("iPod", 'V7', 'V5', 'V4'),
'V3' is 'V4' * 1000.0,
datexform('V5', "ISO Style -", 'V2', "American Style /"),
olsen("KRW", "USD", 'V1', 'V2'),
'V6' is 'V3' * 'V1'.

Requester context = c2

Fig. 6. A demonstration of conversion composition as query mediation

The requester SQL query, shown in the upper left of the figure, need not be aware
of any context differences. Our demonstration system allows us to step through the
various steps of mediation individually (e.g., converting the SQL to naïve Datalog
query, etc.). The Conflict Detection step outputs a table that summarizes the concepts
(called Semantic Types) whose modifiers have different values in the source and

46 H. Zhu and S.E. Madnick

requester contexts. A mediated Datalog query is generated using the algorithm shown
in Fig. 5. As can be seen, the mediated query contains the necessary conversions to
reconcile the context differences (namely currency and scale factor differences of
price concept, which corresponds to the Price filed in the source table, and format
difference of the Date concept, which corresponds to the QuoteDate field). The
mediated Datalog query can be converted an SQL query, which is shown at the
bottom in the figure.

3.2 Scalability Benefit

The primary benefit of the composition capability is the small number of component
conversions required, thus increased scalability when many data sources and contexts
are involved in data integration applications [23, 24].

In the worst case, the number of component conversions required by the light-
weight ontology approach of COIN is:

∑ −
=

m

i
ii nn

1
)1(

where ni is the number of unique values that the ith modifier has to represent all
contexts, m is the number of modifiers in the light-weight ontology.

While the formula appears to be n2, it is fundamentally different from the approach
that supplies comprehensive conversions between each pair of contexts. The supplied
conversions in COIN are component conversions, which are much simpler than the
comprehensive conversions that consider the differences of all data elements in all
aspects between two contexts. Furthermore, as shown below, the number of
component conversions required can be significantly smaller.

Let us use the online price comparison example to illustrate the scalability benefit
of the approach. With the given scenario, we can model the 30 unique contexts using
the three modifiers in the light-weight ontology shown in Fig. 1. Suppose the number
of unique values of each modifier is as shown in Table 2.

Table 2. Modifier values

Modifier Unique values
currency 10, corresponding to 10 different currencies
scaleFactor 3, i.e., 1, 1000, 1 million
kind 3, i.e., base, base+tax, base+tax+S&H

In the worst case, the light-weight ontology approach needs 102 (i.e., 90+6+6)
component conversions. But since the conversions for currency and scaleFactor
modifiers are parameterizable, the actual number of component conversions needed is
further reduced to 8, which is a significant improvement from the 870 composite
conversions required when conversions are specified pair-wise between contexts.

The number of component conversions can be further reduced when equational
relationships exist between contexts with different values of a modifier. Symbolic
equation solver techniques have been developed to exploit such relationships [3]. For
example, consider the three definitions for price: (A) base price, (B) price with tax

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 47

included, and (C) price with tax and shipping & handling included. With known
equational relationships among the three price definitions, and two component
conversions:

(1) from base_price to base_price+tax (i.e., A to B) and
(2) from base_price+tax to base_price + tax + shipping & handling (i.e., B to C)

the symbolic equation solver can compute the other four conversions automatically (A
to C and the three inverses). This technique further reduces the number of component
conversions needed for a modifier from ni(ni-1) to (ni-1).

In many cases, the component conversion for a modifier can be parameterized, i.e.,
the component conversion can be applied to convert for any given pair of modifier
values. In this case, we only need to supply one component conversion for the
modifier, regardless of the number of unique values that the modifier may have. The
exchange rate function given earlier is such an example; with it, we only need one
component conversion for the currency modifier.

We use Fig. 7 to illustrate the intuition of the scalability result.

Currency

S
ca

le
 f

ac
to

r

Pric
e n

otio
n

KRW

base base

100
0 1

USD

Fig. 7. Intuition of scalability of COIN approach. Component conversions are provided along
the modifier axes. Composite conversions between any cubes in the space can be automatically
composed.

The modifiers of each ontological concept span a context space within which the
variants of the concept exist. Each modifier defines a dimension. In the figure, we
show the space spanned by the three modifiers of price concept. The component
conversions required by the COIN approach are defined along the axes of the
modifiers. With the composition capability, the COIN approach can automatically
generate all the conversions between units (e.g., the cubes in a three-dimensional
space, as sown in Fig. 7) in the space using the component conversions along the
dimensions. In contrast, the approaches that suffer from the n2 problem require the
conversions between any two units in the space to be supplied.

48 H. Zhu and S.E. Madnick

4 Related Work and Discussion

The most commonly cited definition for ontology is given in [6], where an ontology is
a “formal explicit specification of a share conceptualization”. But as discussed in
[7, 20], there is not a consensus definition for ontology, and there are many types of
ontologies, some of which use formal logic to explicitly capture the intended
meanings, and others use a set of mutually agreed terms to provide a shared
taxonomy. In the latter case, the intended meanings are not explicitly captured in the
ontology, rather, they are implicitly captured in the agreement.

The term lightweight ontology has been used very loosely in the literature.
Generally speaking, a lightweight ontology refers to a set of concepts organized in a
hierarchy with is_a relationships. Data dictionaries, product catalogs, and topic maps
are often considered to be lightweight ontologies. Opposite to lightweight ontologies
are formal ontologies, which often use formal logic to specify constraints,
relationships, and other rules that apply to the concepts [8, 14].

The use of ontology and contexts in the COIN approach is quite unique. The
ontology provides the necessary structure for context descriptions; and the context
descriptions, in turn, disambiguate the high level concepts in the ontology. The
structure provided by the ontology also facilitates the provision of component
conversions and the automatic composition of composite conversions necessary to
enable semantic interoperability among contexts. The resulting solution is scalable
because it requires significantly less manually created conversions.

There are other approaches that use ontology or contexts to enable interoperability
among disparate data sources [21]. It is beyond the scope of this paper to provide a
detailed comparison of these different approaches. We only make comments on a few
approaches to further articulate the uniqueness of the COIN approach.

Contexts can be described without using an ontology. For example, they can be
described using a context logic [15]. The so described contexts lack the structure like
the one provided by the COIN ontology. As a result, a large number of conversions
(i.e., lifting rules) are needed to enable semantic interoperability. Below is an example
conversion rule to convert price in c3 to price in c2 by reconciling the currency and
scale factor differences; the rule is a logic implementation of the conversion
represented by the straight dashed line in Fig. 4:

.1000**),,,,()),,,(,(
)),,(,(:

3

20
RPXRDusdkrwolsenDPIquotecist

DXIquotecistc
=

←

Suppose there n cubes in the contextual space shown in Fig. 7, the approach
requires n(n-1) conversion rules like the above one to enable full interoperability.

A recent effort tries to categorize lifting rules and attempts to use the patterns
revealed to devise general lifting rules [9]. More work is needed to show how these
patterns help with creation of general lifting rules and how these rules can be applied
to reason with multiple contexts.

Ontology is used in [16], where all types of data level and schema level
heterogeneity in multiple data sources are explicitly represented using a semantic
conflict resolution ontology (SCROL). For example, when acres and square meters
are used in different sources to represent the area of a parcel of land, the SCROL
ontology will explicitly represent the semantic difference by including two sub-
concepts of area: area_in_acre, and area_in_sq_meter. A SCROL ontology

 Scalable Interoperability Through the Use of COIN Lightweight Ontology 49

resembles the one in Fig. 3. The ontology needs to be updated when a new kind of
heterogeneity is introduced, e.g., “area in square miles”. No characterization on the
number of conversions needed is given in the paper.

Ontology is also used in [11] to provide structured context representation for
purposes of data interoperability in a multi-database environment. However, we are
not certain if their ontology would constitute a lightweight ontology. Nor does the
paper provide an assessment about the number of conversions required.

5 Conclusion

The COIN lightweight ontology approach to semantic interoperability has several
advantages. The ontology is simple, thus it is easy to create. The semantics of the
concepts is described as context descriptions outside the ontology. It can be as a
hybrid approach where are a lightweight ontology is annotated with a logic (i.e., F-
logic) that can be in a formal ontology approach. The use of modifiers to capture
subtle meaning differences provides the structure for describing the subtleties, and
facilitates the provision of component conversions, with which any composite
conversions can be composed dynamically to reconcile the semantic differences
between the sources and the receivers of data.

For future research, we would like to explore the applicability of the COIN approach
in other application domains, such as context-aware web services and peer-to-peer
information sharing. Another promising area is to apply the context represent-tation and
reasoning techniques to Semantic Web applications. Initial work has been done [19] to
represent COIN ontology and contexts using Semantic Web languages, such as OWL
and RuleML. The preliminary results indicate that COIN lightweight ontology,
structured context descriptions, and component lifting rules can be represented using
Semantic Web languages. Future work will adapt the reasoning algorithm and evaluate
its performance at large scales that are typical on the Semantic Web.

Acknowledgements. This work has been supported, in part, by The MITRE
Corporation, the MIT-Malaysia University of Science and Technology (MUST)
project, the Singapore-MIT Alliance (SMA), and Suruga Bank.

References

1. Chang, C.H., Kaye, M., Girgis, M.R., Shaalan, K.F.: A Survey of Web Information
Extraction System. IEEE Transactions on Knowledge and Data Engineering 18(10), 1411–
1428 (2006)

2. Firat, A., Madnick, S.E., Siegel, M.D.: The Cameleon Web Wrapper Engine. In:
Workshop on Technologies for E-Services (TES’00), Cairo, Egypt (2000)

3. Firat, A.: Information Integration using Contextual Knowledge and Ontology Merging. In:
PhD Thesis, Sloan School of Management. MIT, Cambridge, MA (2003)

4. Frühwirth, T.: Theory and Practice of Constraint Handling Rules. Journal of Logic
Programming 37(1-3), 95–138 (1998)

5. Goh, C.H., Bressan, S., Madnick, S., Siegel, M.: Context Interchange: New Features and
Formalisms for the Intelligent Integration of Information. ACM Transitions on
Information Systems 17(3), 270–293 (1999)

50 H. Zhu and S.E. Madnick

6. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

7. Gruninger, M., Lee, J.: Ontology Applications and Design. Communications of the
ACM 45(2), 39–41 (2002)

8. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) Proceedings
of Formal Ontologies in Information Systems (FOIS ’98), Trento, Italy, June 6-8, 1998,
pp. 3–15. IOS Press, Amsterdam (1998)

9. Guha, R., McCarthy, J.: Varieties of Contexts. In: Blackburn, P., Ghidini, C., Turner,
R.M., Giunchiglia, F. (eds.) CONTEXT 2003. LNCS, vol. 2680, pp. 164–177. Springer,
Heidelberg (2003)

10. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive Constraint Logic Programming.
Journal of Logic Programming 44(1-3), 129–177 (2000)

11. Kashyap, V., Sheth, A.P.: Semantic and Schematic Similarities between Database Objects:
A Context-Based Approach. VLDB Journal 5(4), 276–304 (1996)

12. Kiffer, M., Laussen, G., Wu, J.: Logic Foundations of Object-Oriented and Frame-based
Languages. J. ACM 42(4), 741–843 (1995)

13. Madnick, S.E., Zhu, H.: Improving data quality through effective use of data semantics.
Data & Knowledge Engineering 59(2), 460–475 (2006)

14. Mädsche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Publishers,
Boston, MA (2002)

15. McCarthy, J., Buvac, S.: Formalizing Context (Expanded Notes). In: Aliseda, A., van
Glabbeek, R., Westerstahl, D. (eds.) Computing natural language, Sanford University
(1997)

16. Ram, S., Park, J.: Semantic Conflict Resolution Ontology (SCROL): An Ontology for
Detecting and Resolving Data and Schema-Level Semantic Conflict. IEEE Transactions
on Knowledge and Data Engineering 16(2), 189–202 (2004)

17. Rosenthal, A., Seligman, L., Renner, S.: From Semantic Integration to Semantics
Management: Case Studies and a Way Forward. ACM SIGMOD Record 33(4), 44–50 (2004)

18. Seligman, L., Rosenthal, A., Lehner, P., Smith, A.: Data Integration: Where Does the
Time Go? IEEE Bulletin of the Technical Committee on Data Engineering 25(3), 3–10
(2002)

19. Tan, P., Madnick, S.E., Tan, K.-L.: Context Mediation in the Semantic Web: Handling
OWL Ontology and Data Disparity Through Context Interchange. In: Bussler, C.J.,
Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 140–154. Springer,
Heidelberg (2005)

20. Uschfold, M., Gruninger, M.: Ontologies and Semantics for Seamless Connectivity. ACM
SIGMOD Record 33(4), 58–64 (2004)

21. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Hübner, S.: Ontology-Based Integration of Information - A Survey of Existing
Approaches. In: IJCAI-01 Workshop: Ontologies and Information Sharing, Seattle, WA,
pp. 108–117 (2001)

22. Zhu, H., Madnick, S., Siegel, M.: Global Comparison Aggregation Services. In: 1st
Workshop on E-Business, Barcelona, Spain (2002)

23. Zhu, H., Madnick, S.E: Context Interchange as a Scalable Solution to Interoperating
Amongst Heterogeneous Dynamic Services. In: 3rd Workshop on eBusiness (WEB),
Washington, D.C., pp. 150–161 (2004)

24. Zhu, H.: Effective Information Integration and Reutilization: Solutions to Technological
Deficiency and Legal Uncertainty. In: Ph.D. Thesis. MIT, Cambridge, MA (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

