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Abstract. There are many different kinds of ontologies used for different 
purposes in modern computing. A continuum exists from lightweight ontologies 
to formal ontologies. In this paper we compare and contrast the lightweight 
ontology and the formal ontology approaches to data interoperability. Both 
approaches have strengths and weaknesses, but they both lack scalability 
because of the n2 problem. We present an approach that combines their 
strengths and avoids their weaknesses. In this approach, the ontology includes 
only high level concepts; subtle differences in the interpretation of the concepts 
are captured as context descriptions outside the ontology. The resulting 
ontology is simple, thus it is easy to create. It also provides a structure for 
context descriptions. The structure can be exploited to facilitate automatic 
composition of context mappings. This mechanism leads to a scalable solution 
to semantic interoperability among disparate data sources and contexts.  
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1   Introduction 

Ontologies have been widely used in modern computing for purposes such as 
communication, computational inference, and knowledge organization and reuse [7]. 
For different purposes there are a variety of different ontologies, which range from a 
glossary, to a taxonomy, a database schema, or a full-fledged logic theory that 
consists of concepts, relationships, constraints, axioms, and inference machinery. As 
illustrated in [21], a variety of ontologies form a continuum from lightweight, rather 
informal, to heavyweight, and formal ontologies.  

The lightweight ontology approach and the formal ontology approach are often 
used differently and have different strengths and weaknesses. Both approaches can be 
used to support data interoperability among disparate sources. 
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Lightweight ontologies usually are taxonomies, which consist of a set of concepts 
(i.e., terms, or semantic types) and hierarchical relationships among the concepts. As 
an artifact, it is relatively easy to construct a lightweight ontology. However, such 
lightweight ontologies do not capture the detailed semantics of the concepts, which 
sometimes is documented in a data dictionary, and/or embedded in the data models 
and the data processing programs.  

There are two different approaches to using lightweight ontologies for intero-
perability purposes. One approach is to develop a single lightweight ontology, in 
which case all parties need to agree on the exact meaning of the concepts. The 
lightweight ontology and the agreements together form a standard that all parties 
uniformly adopt and implement. That is, a lightweight ontology is often used to sup-
port strict data standardization. However, reaching such agreements can be difficult. 
For example, a data standardization effort within the U.S. Department of Defense 
(DoD) took more than a decade only to standardize less than 2% of the data across all 
organizations of the DoD [18]. The alternative approach is to allow multiple light-
weight ontologies to co-exist, in which case mappings among the ontologies need to 
be provided. Because the semantics is not formally captured in the ontologies, efforts 
are required to identify the semantic differences and then develop (often hand-code) 
the mappings to enable pair-wise interoperability. The number of pair-wise mappings 
is n(n-1) (which is O(n2)) if there are n different ontologies, thus the amount of effort 
required increases quickly as n becomes large. This is the so called n2 problem of data 
interoperability. A survey [19] shows that approximately 70% of the costs of data 
interoperability projects are spent on identifying the semantic differences and 
developing code to reconcile them.  

In contrast, the formal ontology approach uses axioms to explicitly represent 
semantics and has inference capabilities. This approach can also support interoperability 
either via a single ontology or via mappings of multiple ontologies. The key difference 
is that the semantics of the ontological concepts and the mappings are explicitly 
captured in a formal logic theory.  

To summarize, both ontology approaches can be used to support data 
interoperability either via standardization or via mappings of multiple ontologies. The 
difficulty of reaching an agreement on a single data standard can be enormous so that 
in practice multiple standards (i.e., ontologies) co-exist even within a single 
organization. Thus, in practice ontology mappings are required to enable interoper-
ability among data sources and systems. Both ontology approaches suffer from the n2 
problem. The key difference between the two ontology approaches is that lightweight 
ontologies do not capture the semantics in the ontologies, whereas formal ontologies 
explicitly capture semantics. As artifacts, lightweight ontologies are simple and easy to 
create, whereas formal ontologies are complex and difficult to create. But the sem-
antics and the mappings of lightweight ontologies are often scattered in various data 
models and data processing programs, making maintenance extremely difficult. The 
semantics and mappings of formal ontologies are in the form of a logic theory, which 
is relatively easier to maintain. Both approaches have weaknesses that limit their 
effectiveness.  

It is desirable to have an approach that combines the strengths and avoid the 
weaknesses of the two ontological approaches. In this paper, we present such an 
approach, which is developed in the COntext INterchange (COIN) project [3, 5, 25] 
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for semantic data interoperation purposes. It uses a lightweight ontology, which 
provides the structure for organizing context descriptions to account for the subtleties 
of the concepts in the ontology. We will use the terms COIN ontology and COIN 
lightweight ontology interchangeably. COIN also implements a reasoning algorithm 
to determine and reconcile semantic differences between different data sources and 
receivers.  

The rest of the paper is organized as follows. In Section 2, we describe the COIN 
lightweight ontology approach. In Section 3, we present the scalability benefit of the 
approach. In Section 4, we discuss related work. In Section 5, we conclude and point 
out future research.  

2   COIN Lightweight Ontology  

We will use an online price comparison example to illustrate the COIN lightweight 
ontology approach.  

2.1   Online Price Comparison Example 

Numerous vendors make their pricing information available online. With web 
wrappers, such as Cameleon [2] and others [1], and the increasing adoption of XML 
and web services, one can gather price data and compare offers from different 
vendors. To perform meaningful comparisons, one has to reconcile the semantic 
differences of price data, especially when data is from vendors scattered around the 
world [22]. 

Consider a scenario where data is from 30 vendors from 10 different countries. For 
simplicity of discussion in this paper, let us assume that all vendors quote prices using 
the same schema and same Product identification, represented using the following 
first order predicate: 

 

quote(Product, Price, Date) 

but different vendors use different conventions so that the price values are interpreted 
differently depending on which vendor provides the quote. Table 1 provides a few 
examples of different interpretations of price. A base price refers to price with taxes 
and shipping & handling (S&H) excluded (e.g., price quotes from vendors 2 and 3). 

Let us assume that each vendor uses a different convention, thus we have 30 
unique conventions, which we call contexts. We can label vendor i’s context as ci. For 
 

Table 1. Interpretations of Price 

Vendor Interpretation of Price 
1 
2 
3 
… 
30 

In 1’s of USD, taxes and S&H included 
In 1’s of USD, taxes and S&H excluded 
In thousands of Korean won, taxes and S&H excluded 
… 
In millions of Turkish lira, taxes included 
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simplicity, we will assume that users normally adopt a vendor context. Or we can 
assume that the only users are the vendors, each of whom wants to compare his prices 
with all of his world-wide competitors and wants the comparison done in his own 
context. In this scenario, to allow users in all contexts to meaningfully compare 
vendor prices, it is necessary that price data from other contexts be converted to the 
user context, which would require 870 (i.e., 30*29=870) conversions. Hand-coding 
these conversions and maintaining them over time, since contexts do change (e.g., 
prices in French francs and German deutschemarks became Euros), can be costly and 
error-prone. 

2.2   COIN Lightweight Ontology 

In the example, there are a number of subtle differences in the meaning of the high 
level concept price. It is important that these subtleties are captured and the 
differences are reconciled for meaningful comparisons.  

Like the traditional lightweight ontology, the COIN ontology includes a set of 
concepts, among which there can be a hierarchy represented with an is_a relationship. 
Besides, the COIN ontology also includes attribute as a binary relationship between a 
pair of concepts. Attributes are also called roles, and correspondingly attribute names 
are called role names. For example, price can be the hasPrice attribute of product. 
Conversely, product can be the priceOf attribute of price.  To capture the subtle 
differences in meaning, the COIN lightweight ontology introduces modifier as a 
special kind of attribute. The values of modifiers are specified as context descriptions 
outside the ontology. Fig. 1 shows a graphic representation of the COIN lightweight 
ontology for the online price comparison example.  
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Fig. 1. COIN lightweight ontology for online price comparison example. It contains only high 
level concepts, the refined variants of which can be derived from the assignments of modifiers 
that belong to each high level concept. 

In this ontology, we include a modifier-free root concept basic, which is similar to 
thing as the root in many object-oriented models. We include three modifiers: kind, 
currency, and scaleFactor. Each modifier captures a particular aspect in which the 
underlying concept can have different interpretations. Contexts are described by 
assigning values to modifiers present in the ontology. In simple cases, a specific value 
is assigned to a modifier in a context. In other cases, the assignment must be specified 
by a set of rules. In either case, a context is conceptually a set of assignments of all 
modifiers and can be described by a set of <modifier, value> pairs. For example, 
contexts c2 and c3 (refer to vendors 2 and 3 in Table 1) can be described as: 
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 c2  := { <kind, basePrice>,  c3 := { <kind, basePrice>, 
  <currency, usd>,   <currency, krw>, 
  <scaleFactor, 1> }  <scaleFactor, 1000> } 
 
The language used in COIN for describing context (as well as context mappings 

and the lightweight ontology) is based on F-logic [12], an object-oriented logic. F-
logic rules are converted to Datalog for reasoning purposes. In COIN, various “user-
friendly” front-ends have been created so that developers do not directly need to use 
F-logic or Datalog. Below is example rule using the logic to assign a value to 
currency modifier in context c3: 

 

].'')([])([
|::

33 KRWcvalueYYccurrencyX
basicYpriceX

→∧→
−∃∀

 

 

where variables (e.g., X, Y) are objects, the modifier and attributes of which are 
represented by methods (which are declared in square brackets). The method value is 
similar to the value predicate in context logic of [15]; it returns the ground value of 
the object in the context specified by the parameter (which is c3 in the example).  

2.3   Characteristics of COIN Lightweight Ontology 

A COIN ontology, as shown in Fig. 1, includes only high level concepts (plus their 
relationships, such as the binary relationships of context modifiers). Thus it is simple 
and relatively easy to create and reach agreement. But the involved parties do not 
need to agree on the details of each concept. Each party can continue to use its 
preferred interpretation for each high level concept. In other words, each party can 
conceptually have its own local ontology. Fig. 2 depicts the conceptual local 
ontologies for vendors 2 and 3. To avoid clutter, we have omitted attribute names in 
the figure. 

   

basic

basePrice_1s_USD ProductDate     

basic

basePrice_1Ks_KOW ProductDate  

Fig. 2. Conceptual local ontologies for vendor 2 (left) and vendor 3 (right), derivable from 
COIN lightweight ontology shown in Fig. 1 

These local ontologies are not part of the COIN lightweight ontology, but they can 
be derived from the COIN ontology using the context descriptions. In other words, the 
COIN lightweight ontology provides a structured way to describe contexts and derive 
refined local ontologies.  

Furthermore, a more traditional global ontology that integrates all the local 
ontologies could be constructed from the COIN ontology and the accompanying 
context descriptions. A graphic representation of such a global ontology for the online 
price comparison example is given in Fig. 3, which includes two intermediate layers 
(i.e., the layers starting with BasePrice and In USD concepts, respectively). Concepts 
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in each layer remove a certain kind of ambiguity. For example, BasePrice indicates 
the kind of price, which does not include shipping and handling charges. The nodes 
below it further refine the base price concept by specifying the currency, e.g., in USD. 
Alternatively, the intermediate layers can be omitted. In this case, specialized 
concepts on the leaf level, such as basePrice_1s_USD, directly connect to the generic 
Price concept.  

 

Price

BasePrice Base+T+SH

In USD In EUR… In USD In EUR…

In 1’s In 1M’s… … In 1’s In 1M’s…

ProductpriceOfDate dateOf

…

basic

 

Fig. 3. An example fully-specified global ontology for the online price comparison example. 
Leaf nodes represents the concepts with specific semantics, e.g., the first leaf node on the left 
represent the concept of “price, not including taxes or shipping handling, in 1’s of USD”. 

Ontologies are design artifacts. Comparing the artifacts shown in Fig. 1 and Fig. 3, 
we observe that the COIN approach creates much simpler ontologies – though, for 
many purposes, they are functionally equivalent. As discussed in [13, 24], the COIN 
approach has several advantages over the formal ontology approach. First, the COIN 
ontology is usually much simpler, thus easier to manage. Although in practice it is 
unlikely that one would create an ontology to include all possible variations (e.g., 
basePrice_1M’s_USD), a COIN ontology is still much easier to create than any 
ontology similar to the one in Fig. 3 even with a smaller number of refined concepts. 
Second, related to the first point, although the COIN ontology is simple, it provides 
the means to derive all refined concepts as illustrated in Fig. 3. Third, a COIN 
ontology facilitates consensus development, because it is relatively easier to agree on 
a small set of high level concepts than to agree on every piece of detail of a large set 
of fine-grained concepts. And more importantly, the COIN ontology is much more 
adaptable to changes. For example, when a new concept “base price + S&H in 1000’s 
of South Korean Won” is needed, the fully specified ontology may need to be updated 
with insertions of new nodes. The update requires the approval of all parties who 
agreed on the initial ontology if a single ontology is used, or mappings need to be 
added to ensure its interoperability with other variants of the price concept. In 
contrast, the COIN approach can accommodate this new concept by adding new 
context descriptions without changing the ontology. As we will see later, the new 
mappings may not need to be added when they can be derived from existing 
mappings using a reasoning mechanism. 

The COIN lightweight ontology approach also has advantages over the traditional 
lightweight ontology approach. Although, similar to the traditional approach, the 
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COIN ontology does not include detailed descriptions of semantics, it does provide a 
vocabulary and the structure for describing semantics using context descriptions. As 
we will see in the next section, the context reasoning mechanism exploits the structure 
to solve the n2 problem.  

3   Scalable Interoperability with COIN Lightweight Ontology 

When data sources and data receivers are in different contexts, conversions (also 
called lifting rules or mappings) are needed to convert data from source contexts to 
the receiver context. We call the set of conversions from a context to another context 
a composite conversion. When conversions are specified pair-wise between contexts, 
it requires ~n2 composite conversions to achieve interoperability among n contexts. It 
is costly and error-prone to develop and maintain such a large number of conversions. 
Thus approaches that hand-code the ~n2 composite conversions do not scale well 
when n increases.  

The use of lightweight ontology in COIN makes it possible to avoid the above 
mentioned problem. In addition to using ontology and contexts to represent semantic 
heterogeneity, COIN also has a reasoning component to determine and reconcile 
semantic differences. We explain how COIN achieves scalability though conversion 
composition in the remainder of the section.  

3.1   Conversion Composition 

In COIN, conversions are not specified as convoluted rules pair-wise between 
contexts. Instead, they are specified for each modifier between different modifier 
values. For example, a conversion can be defined for currency modifier to convert 
values in different currencies such as by using an exchange rate function represented 
by the following predicate: 
 

olsen(CurFrom, CurTo, Day, Rate) 
 

It returns an exchange Rate from CurFrom currency to CurTo currency on a given 
Day. The function can be implemented externally as a table lookup or as a callable 
service1. We call a conversion defined for a single modifier a component conversion.  

The component conversions in COIN are also specified using F-logic. Below is an 
example component conversion for currency modifier; it is parameterized with 
context C1 and C2 and can convert between any currencies. We use olsen_ for the 
skolemized version of original olsen predicate. 
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1 In many applications using COIN, such conversion functions are implemented by using web 

wrapped services, such as the www.oanda.com currency conversion web site. 
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Once all component conversions are defined, composite conversions can be 
composed automatically using a context reasoning algorithm. Fig. 4 illustrates the 
concept of conversion composition.  

In Fig. 4, the triangle symbol on the left represents the price concept in context c3, 
i.e., base price in 1000’s of South Korean won (KRW); and the circle symbol on the 
right represents the price concept in context c2, i.e., base price in 1’s of USD. For data 
in context c3 to be viewed in context c2, they need to be appropriately converted by 
applying the appropriate composite conversion. The dashed straight arrow represents 
the application of the composite conversion that would have been implemented 
manually in other approaches. With the COIN lightweight ontology approach, the 
composite conversion can be automatically composed using the predefined 
component conversions. As shown in Fig. 4, we first apply the component conversion 
for currency modifier (represented by cvtcurrency), then apply the component 
conversion for scaleFactor modifier (represented by cvtscaleFactor). 

 

Price in 
1000’s of KRW

Price in 
1’s of USD

cvtcurrency(∆) =⌂ cvtscaleFactor(⌂)

∆ ○

Implemented manually when 
contexts are unstructured

Composed automatically 
when contexts are structured  

Fig. 4. Composite conversion composed using component conversions. Without composition, 
one would hand-code a direct conversion to convert the price in 1000’s of KRW to the price in 
1’s of USD; this conversion illustrated by the straight dashed arrow. With COIN, this 
composite conversion can be derived from the component conversions for currency (cvtcurrency) 
and scale factor (cvtscaleFactor). 

The composition algorithm, shown in Fig. 5, is quite simple. In COIN project, it is 
implemented in a query rewriting mediator using abductive constraint logic 
programming (ACLP) [10] and constraint handling rules (CHR) [4]. With the 
mediator, queries can be issued as if all data sources were in the requester’s context 
(i.e., the target context). The mediator generates mediated queries that contain the 
composite conversions. Data is converted from source contexts to the requester’s 
context when the mediated queries are executed. 

A demonstration of the query mediator is shown in Fig. 6. The source used also 
includes a Vendor column, as shown in the sample schema near the middle of the 
figure. The source context corresponds to context c3, and the requester context 
(c_c_usa2 in the figure) is equivalent to context c2 in the online price comparison 
example discussed earlier. In the demonstration, the QuoteDate field can have 
different date formats, which we did not include in the ontology discussed earlier but 
can be accommodated by adding a dateFormat modifier to Date concept in the 
ontology in Fig. 1.  
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Input: data value V, corresponding concept C in ontology,  
            source context C1, target context C2 
Output: data value V (interpretable in context C2) 
 
Find all modifiers of C 
 For each modifier mi 
  Find and compare mi’s values in C1 and C2 
  If different: V=cvtmi(V); else, V=V 
Return V 

Fig. 5. Algorithm for composing composite conversion using component conversions 

Mediated Datalog query

Mediated SQL query

src_krea
<Product, Vendor, QuoteDate, Price>

answer('V7', 'V6'):-
src_korea("iPod", 'V7', 'V5', 'V4'),
'V3' is 'V4' * 1000.0,
datexform('V5', "ISO Style -", 'V2', "American Style /"),
olsen("KRW", "USD", 'V1', 'V2'),
'V6' is 'V3' * 'V1'.

Requester context = c2

 

Fig. 6. A demonstration of conversion composition as query mediation 

The requester SQL query, shown in the upper left of the figure, need not be aware 
of any context differences. Our demonstration system allows us to step through the 
various steps of mediation individually (e.g., converting the SQL to naïve Datalog 
query, etc.). The Conflict Detection step outputs a table that summarizes the concepts 
(called Semantic Types) whose modifiers have different values in the source and 
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requester contexts. A mediated Datalog query is generated using the algorithm shown 
in Fig. 5. As can be seen, the mediated query contains the necessary conversions to 
reconcile the context differences (namely currency and scale factor differences of 
price concept, which corresponds to the Price filed in the source table, and format 
difference of the Date concept, which corresponds to the QuoteDate field). The 
mediated Datalog query can be converted an SQL query, which is shown at the 
bottom in the figure.  

3.2   Scalability Benefit  

The primary benefit of the composition capability is the small number of component 
conversions required, thus increased scalability when many data sources and contexts 
are involved in data integration applications [23, 24]. 

In the worst case, the number of component conversions required by the light-
weight ontology approach of COIN is: 

 

∑ −
=

m

i
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where ni is the number of unique values that the ith modifier has to represent all 
contexts, m is the number of modifiers in the light-weight ontology.   

While the formula appears to be n2, it is fundamentally different from the approach 
that supplies comprehensive conversions between each pair of contexts. The supplied 
conversions in COIN are component conversions, which are much simpler than the 
comprehensive conversions that consider the differences of all data elements in all 
aspects between two contexts. Furthermore, as shown below, the number of 
component conversions required can be significantly smaller.  

Let us use the online price comparison example to illustrate the scalability benefit 
of the approach. With the given scenario, we can model the 30 unique contexts using 
the three modifiers in the light-weight ontology shown in Fig. 1. Suppose the number 
of unique values of each modifier is as shown in Table 2.  

Table 2. Modifier values 

Modifier Unique values 
currency 10, corresponding to 10 different currencies 
scaleFactor 3, i.e., 1, 1000, 1 million 
kind 3, i.e., base, base+tax, base+tax+S&H 

In the worst case, the light-weight ontology approach needs 102 (i.e., 90+6+6) 
component conversions. But since the conversions for currency and scaleFactor 
modifiers are parameterizable, the actual number of component conversions needed is 
further reduced to 8, which is a significant improvement from the 870 composite 
conversions required when conversions are specified pair-wise between contexts.  

The number of component conversions can be further reduced when equational 
relationships exist between contexts with different values of a modifier. Symbolic 
equation solver techniques have been developed to exploit such relationships [3]. For 
example, consider the three definitions for price: (A) base price, (B) price with tax 
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included, and (C) price with tax and shipping & handling included. With known 
equational relationships among the three price definitions, and two component 
conversions:  

 

(1) from base_price to base_price+tax (i.e., A to B) and  
(2) from base_price+tax to base_price + tax + shipping & handling (i.e., B to C) 
 

the symbolic equation solver can compute the other four conversions automatically (A 
to C and the three inverses). This technique further reduces the number of component 
conversions needed for a modifier from ni(ni-1) to (ni-1).  

In many cases, the component conversion for a modifier can be parameterized, i.e., 
the component conversion can be applied to convert for any given pair of modifier 
values. In this case, we only need to supply one component conversion for the 
modifier, regardless of the number of unique values that the modifier may have. The 
exchange rate function given earlier is such an example; with it, we only need one 
component conversion for the currency modifier. 

We use Fig. 7 to illustrate the intuition of the scalability result.  
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Fig. 7. Intuition of scalability of COIN approach. Component conversions are provided along 
the modifier axes. Composite conversions between any cubes in the space can be automatically 
composed. 

The modifiers of each ontological concept span a context space within which the 
variants of the concept exist. Each modifier defines a dimension. In the figure, we 
show the space spanned by the three modifiers of price concept. The component 
conversions required by the COIN approach are defined along the axes of the 
modifiers. With the composition capability, the COIN approach can automatically 
generate all the conversions between units (e.g., the cubes in a three-dimensional 
space, as sown in Fig. 7) in the space using the component conversions along the 
dimensions. In contrast, the approaches that suffer from the n2 problem require the 
conversions between any two units in the space to be supplied. 
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4   Related Work and Discussion 

The most commonly cited definition for ontology is given in [6], where an ontology is 
a “formal explicit specification of a share conceptualization”. But as discussed in  
[7, 20], there is not a consensus definition for ontology, and there are many types of 
ontologies, some of which use formal logic to explicitly capture the intended 
meanings, and others use a set of mutually agreed terms to provide a shared 
taxonomy. In the latter case, the intended meanings are not explicitly captured in the 
ontology, rather, they are implicitly captured in the agreement. 

The term lightweight ontology has been used very loosely in the literature. 
Generally speaking, a lightweight ontology refers to a set of concepts organized in a 
hierarchy with is_a relationships. Data dictionaries, product catalogs, and topic maps 
are often considered to be lightweight ontologies. Opposite to lightweight ontologies 
are formal ontologies, which often use formal logic to specify constraints, 
relationships, and other rules that apply to the concepts [8, 14].  

The use of ontology and contexts in the COIN approach is quite unique. The 
ontology provides the necessary structure for context descriptions; and the context 
descriptions, in turn, disambiguate the high level concepts in the ontology. The 
structure provided by the ontology also facilitates the provision of component 
conversions and the automatic composition of composite conversions necessary to 
enable semantic interoperability among contexts. The resulting solution is scalable 
because it requires significantly less manually created conversions.  

There are other approaches that use ontology or contexts to enable interoperability 
among disparate data sources [21]. It is beyond the scope of this paper to provide a 
detailed comparison of these different approaches. We only make comments on a few 
approaches to further articulate the uniqueness of the COIN approach.  

Contexts can be described without using an ontology. For example, they can be 
described using a context logic [15]. The so described contexts lack the structure like 
the one provided by the COIN ontology. As a result, a large number of conversions 
(i.e., lifting rules) are needed to enable semantic interoperability. Below is an example 
conversion rule to convert price in c3 to price in c2 by reconciling the currency and 
scale factor differences; the rule is a logic implementation of the conversion 
represented by the straight dashed line in Fig. 4: 

.1000**),,,,()),,,(,(
)),,(,(:

3
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RPXRDusdkrwolsenDPIquotecist
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Suppose there n cubes in the contextual space shown in Fig. 7, the approach 
requires n(n-1) conversion rules like the above one to enable full interoperability.  

A recent effort tries to categorize lifting rules and attempts to use the patterns 
revealed to devise general lifting rules [9]. More work is needed to show how these 
patterns help with creation of general lifting rules and how these rules can be applied 
to reason with multiple contexts. 

Ontology is used in [16], where all types of data level and schema level 
heterogeneity in multiple data sources are explicitly represented using a semantic 
conflict resolution ontology (SCROL). For example, when acres and square meters 
are used in different sources to represent the area of a parcel of land, the SCROL 
ontology will explicitly represent the semantic difference by including two sub-
concepts of area: area_in_acre, and area_in_sq_meter. A SCROL ontology 
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resembles the one in Fig. 3. The ontology needs to be updated when a new kind of 
heterogeneity is introduced, e.g., “area in square miles”. No characterization on the 
number of conversions needed is given in the paper.  

Ontology is also used in [11] to provide structured context representation for 
purposes of data interoperability in a multi-database environment. However, we are 
not certain if their ontology would constitute a lightweight ontology. Nor does the 
paper provide an assessment about the number of conversions required. 

5   Conclusion 

The COIN lightweight ontology approach to semantic interoperability has several 
advantages. The ontology is simple, thus it is easy to create. The semantics of the 
concepts is described as context descriptions outside the ontology. It can be as a 
hybrid approach where are a lightweight ontology is annotated with a logic (i.e., F-
logic) that can be in a formal ontology approach. The use of modifiers to capture 
subtle meaning differences provides the structure for describing the subtleties, and 
facilitates the provision of component conversions, with which any composite 
conversions can be composed dynamically to reconcile the semantic differences 
between the sources and the receivers of data.  

For future research, we would like to explore the applicability of the COIN approach 
in other application domains, such as context-aware web services and peer-to-peer 
information sharing. Another promising area is to apply the context represent-tation and 
reasoning techniques to Semantic Web applications. Initial work has been done [19] to 
represent COIN ontology and contexts using Semantic Web languages, such as OWL 
and RuleML. The preliminary results indicate that COIN lightweight ontology, 
structured context descriptions, and component lifting rules can be represented using 
Semantic Web languages. Future work will adapt the reasoning algorithm and evaluate 
its performance at large scales that are typical on the Semantic Web. 
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