
Cyber-Physical System Security Automation through 
Blockchain Remediation and Execution (SABRE) 

Matthew Maloney, Gregory Falco, and Michael Siegel

Working Paper CISL# 2020-12 

January 2020 

Cybersecurity Interdisciplinary Systems Laboratory (CISL) 
Sloan School of Management, Room E62-422 

Massachusetts Institute of Technology 
Cambridge, MA 02142 



Cyber-Physical System Security Automation
through Blockchain Remediation and Execution

(SABRE)
Matthew Maloney∗,Gregory Falco∗, Michael Siegel∗

∗Massachusetts Institute of Technology
{maloneym,gfalco, msiegel}@mit.edu

Abstract—There are considerable challenges that surround
the security of cyber-physical systems. These challenges are
compounded by the often heterogeneous nature of different
IT and internet of things (IoT) systems that can be found
in them. Some of the most onerous tasks around securing a
cyber-physical system stem from operational security issues, like
patch and update management. Many operational security tasks
can be repetitive and prone to error. Managing the security of
these systems requires a new approach, one designed to help
reduce repetition and tackle common operational security tasks.
The Security Automation through Blockchain Remediation and
Execution (SABRE) agent was designed specifically to deal with
these types of challenges. The SABRE agent aims to reduce
complexity and increase the security within a fleet of devices
in a cyber-physical system. The solution was built on top of the
Etheruem network and designed to operate on large scale cyber-
physical systems.

I. INTRODUCTION

Cyber-physical, autonomous systems that are deployed at
scale, as is the case for energy delivery systems, face unique
security challenges as compared to traditional IT systems.
Their direct impacts on the physical world result in major
safety implications should the system not function as intended
- either by way of an innocent software bug or a malicious
attack. Further, their autonomous nature by means of artificial
intelligence could perpetuate a given security problem. This
necessitates a secure and integral process for configuring
cyber-physical systems to assure that the devices are perform-
ing in a safe and reliable way.

Cyber-physical systems could be as complex as autonomous
transportation or as accessible and thoroughly deployed as co-
generation energy plants. Regardless of the use-case, IoT de-
vices deployed in a cyber-physical environment must undergo
a configuration process to ensure interoperability with other
devices in the system. Device configuration is also critical
to ensure security parameters of a device are implemented,
a process we call security provisioning. For the purposes of
this study, we investigated a co-generation plant’s process for
implementing security across devices in the plant’s distributed
control system (DCS) to evaluate how to improve existing
operational security efforts.

We learned that new IoT devices such as variable field
drives (VFDs), remote terminal units (RTUs), firewalls or
programmable logic controllers (PLCs) are scheduled for
installation to the DCS environment on a continuous basis, as

scheduled as part of an ongoing plant commissioning process.
As a result, operators are constantly performing operational
system integration procedures to ensure these new devices
perform as intended. These devices all have default firmware
installed from the manufacturer, which must be configured
to the requirements of the plant. Not only does firmware
need to be configured, but security provisioning of such
devices must be performed as well. The nature of operating
a co-generation plant involves constant issue remediation and
”fire-fighting”, therefore some of these security configurations
are not performed when intended, which creates potential
opportunities for adversaries to compromise plant operations.

The consistency of what needs to be checked while config-
uring the security of such IoT devices is an opportunity for
automation. Automating security configuration would require
a means for reliably detecting potential known issues and
remediating them through a reliable process that does not
require the time of a busy plant operator. In light of the
operational security challenges in cyber-physical systems like
our co-generation plant, we have developed a mechanism
for detecting security configuration issues, sourcing fixes and
implementing security updates to IoT devices. We achieved
this using a light-weight blockchain client and associated
agent.

II. OPERATIONAL SECURITY CHALLENGES

IoT device security and management is a persistent issue
demonstrated by the many attacks against such systems [1].
Due to the heterogeneity of IoT devices, there are limited
mechanisms available to manage a device and its security
in a uniform capacity. This has led to a broad range of
conceptual and functional solutions that often have niche
applicability to certain IoT devices, but are not ubiquitously
relevant across the families of IoT. The challenges are broad
and often changing dependent on the environment in which
the IoT device is deployed. Operational security issues such
as provisioning or bootstrapping and maintenance are often
compounded by the heterogeneity in a fleet of devices. On
top of maintenance, properly configuring and segmenting these
often insecure devices [2] can be a daunting challenge.

The importance of establishing a security domain for your
IoT fleet cannot be overstated [3]. Managing the identities
and communications of devices is a critical aspect of security



operations. Being able to ensure identity and attestation on
your network begins with understanding what is supposed
to be on your network. Establishing identity and secure
communications for many IoT devices continues to be a
challenge though [4, 5]. The problem is exacerbated by the
environment in which these devices are deployed in and the
data they collect. Many of these devices are processing mission
critical and or private data, prospective goldmines for would
be attackers to take advantage of [6]. Establishing secure
communications and identity is a solved problem in the larger
IT landscape.

Regularly updating and patching systems is one of the best
things an organization can do to improve their cyber-hygiene.
This is also one of the most challenging operational security
tasks an organization can face, which is amplified by IoT
deployments. Many devices become less secure over time
due to patching and update policies, although it impossible
to predict what threats may emerge in the future, over time
more vulnerabilities are discovered. For instance, last year
nearly 200 million devices were found to be vulnerable to
several bugs discovered in a version of VxWorks (the real time
operating system) that was released over a decade ago [7].
Patching and updating regularly can reduce an organizations
threat profile and reduce the likelihood of a breach [8], yet,
many organizations are still struggling to manage this process
effectively.

Lastly, ongoing network policy maintenance is a challenge
for many organizations. With the introduction of the IoT, many
once static environments have to manage an ever increasing
amount of devices. When considering network security, the
whole network must be secure, going beyond just the perimeter
[9]. The network is only as secure as its weakest link, device
or communication channel. Deploying IoT can drastically
change ones threat profile, increasing ones susceptibility to
attack if misconfigured. Creating fine grained policy rules
for communications between devices and the perimeter is an
ongoing challenge but one that must be managed to ensure
secure IoT deployments.

III. RELATED WORKS

Here we review the merits and challenges with some of the
most promising operational security management techniques
for IoT devices.

A. Software/Hardware Hybrid Agent

One approach to operational security challenges in IoT
devices is using the combination of hardware and software
to decrease security concerns by increasing the credibility
of device data collection [10]. These authors have suggested
developing a ’Trustworthy Agent Execution Chip’ that would
be installed on all devices and would provide a trusted
hardware environment on which the software agent can run.
The trustworthy chip would ensure the confidentiality of data
on the device. The agent is defined as an autonomous piece of
software running on the device that could manage resources
and regulate actions in order to maximize benefits of the whole

IoT system. However, a chip solution requires installation and
restart which disrupts the routine behavior of IoT devices. This
can be a barrier for manufacturers and can limit the flexibility
of cyber-physical system device management. Although this
approach addresses an operational challenge of ensuring data
confidentiality for devices, it introduces a more burdensome
operational challenge of replacing or modifying existing de-
vices.

B. Software Defined Networking/ IoT-IDM

Another mechanism developed for cyber-physical security
management is a host based framework for intrusion detection
and mitigation that uses popular SDN tools [11]. This ad-
dresses an operational challenge of securing the network, with
a more automated solution. The authors decided to develop
their framework to work within environments at a network
level. This decision was to avoid developing embedded soft-
ware agents for the myriad of devices that may be found within
a system. This framework addresses network based attacks
by managing an inventory of network devices and analyzing
traffic. A custom java based module was written to interact
with the open SDN controller OpenFlow [12]. This module
is responsible for signalling the controller when a network
change is needed, either allowing or denying traffic to reach its
destination based on the framework detection unit. However,
this solution monitors the network as a whole and cannot
be simplified for use by specific devices. This solution is
also heavily reliant on traffic analysis, which reduces setup
costs but may miss some malicious traffic. Although auto-
mated, there is no security offered by default without analysis,
something that proper segmentation achieves. Basic rules and
segmentation of the networks and devices can address many
potential low effort security vulnerabilities.

C. Clear as MUD: Generating, Validating and Applying IoT
Behavioral Profiles

Manufacturer Usage Description Profiles are an Internet
Engineering Task Force proposed standard [13]. The standard
hopes to provide a means for devices to signal their networks
what type of functionality they require to properly function.
By defining what is needed for these devices to operate
normally, identifying or defending against unintended network
behavior becomes more attainable. This standard could address
the operational security challenge of network management
by making normal usage patterns known. Understanding how
devices operate would allow for administrators to create and
maintain a higher level of granularity in their network policies
and definitions. MUD was not created to address how networks
should authorize requests or to be a substitute for patching
and vulnerability management. A MUD profile can provide
network administrators additional protection by reducing the
threat surface of devices to those intended by the manufac-
turer. Limiting the threat surface is achieved through access
control lists defined in the profile. Due to the nature of IoT
devices performing specific functions, many have recognizable
communication patterns, building access control lists will be



attainable [14]. MUD Profiles already have large industry buy-
in with firms like Cisco already contributing to MUD open
source projects [15]. An accessible standard will only help to
improve operational challenges around network management.

D. Whitelisting in SCADA Sensor Networks

IoT technologies have begun to merge with SCADA net-
works to more efficiently gather and analyze real time data.
This convergence requires an increased level of security man-
agement for SCADA devices to avoid compromise. To address
this issue, an approach to whitelisting network activity on
SCADA networks was developed [16]. The IndusCAP-Gte
system works by analyzing a period of regular network traffic
on a SCADA network. This traffic is used to build a model
for determining abnormal network flows. The analysis phase
outputs a set of network rules or whitelists for traffic that is
allowed to occur on the network. Although this automation
helps improve efficiencies and reduce operational security
loads, it is reliant on the length of the and accuracy of
the analysis phase. Enforcement requires the system to be
positioned inline between SCADA and field networks and acts
upon packets it observes. This solution locks devices into a
specific ecosystem in that they must remain inline between
SCADA and these field networks. A barrier to such a technique
is that existing IoT devices are required to be reconfigured
to support this solution. Considering many SCADA systems
are legacy devices, this reconfiguration is not necessarily
operationally feasible.

BLOCKCHAIN DEVELOPMENTS / DEVICE UPDATES

E. Smart Contracts

A smart contract IoT management system was proposed in
[17]. This system proposes using the Ethereum network for
the control and configuration of IoT devices. The Ethereum
network was proposed for its smart contract capabilities that
are built into the network. The authors discuss writing smart
contracts to define the behavior of devices such as smart
meters. By using smart contracts, the authors assert the data
cannot be forged or tampered with by malicious actors.

F. Peer to Peer Firmware Updates via Blockchain

A firmware update scheme that utilizes blockchain to vali-
date firmware versions was proposed in [18]. The blockchain
that is proposed would be used for storing hash information
of firmware. The downloads and storage of said firmware
would occur via a peer to peer network. The proposed scheme
enables IoT devices to keep up-to-date with released updates
while ensuring integrity and correctness of the firmware. This
process of requesting and confirming firmware may cause
unnecessary traffic due to the peer to peer nature.

G. Blockchain Firmware/Software Verification System

A system where device software and firmware can be
verified against a public blockchain was proposed in [19].
Rather than using the blockchain to distribute device updates,
the chain is used to perform validation and integrity checks.

The firmware would be stored off chain, but a conceptual
’Reference Integrity Metric’(RIM) would be stored publicly.
This RIM would be checked against when an embedded
system was updating or installing a new version of firmware.
Such a mechanism alleviates some of the traffic concerns
as previously described, but may reduce the integrity of the
communication because it relies on an external source to the
blockchain.

H. Integrity-first Communication for IoT

A secure communication protocol based on the Ethereum
Blockchain was built expressly to ensure integral communica-
tions across IoT devices [20]. This work aimed to fill a feature
gap in many IoT devices, a secure means of transmitting and
receiving data. The protocol involved shrinking the Ethereum
code-base, allowing it to be run on a wide range of IoT
devices, without impacting any integrity benefits inherent to
the blockchain.

I. IoT Security Agent

Ensuring communication integrity and providing a means
for updates is not sufficient alone to address operational
security. An agent must also be leveraged to evaluate the state
of the given IoT device in question. A lightweight security
agent that can run on a broad range of IoT devices in order to
evaluate if certain security precautions are in place has been
developed [21]. The agent ingests a whitelist of applications
that are allowed to run on the device while terminating other
processes. The proposed agent did not have a secure method
to receive the whitelist when it was first built.

IV. ARCHITECTURE

The SABRE architecture entails a command and control
(CC) server that operates over the Ethereum blockchain. An
agent is deployed on each IoT device that is designed to
interact with the CC.

A. Command and Control Server

The command and control servers main responsibility is
the security provisioning of deployed devices. This server acts
similarly to management servers and parallels can be drawn
to some botnet-over-blockchain architectures and defense tools
[22]. To fulfill its fleet management requirements the server
needs a way to communicate and receive logging information
from devices in the field. Communication to the agents is
handled through the Ethereum blockchain. The CC can send
Ethereum transactions that target an organizations entire fleet
of devices, an individual cogen plant, a subset of that plant
or an individual device. This is accomplished through the use
of semi unique identifiers that can be assigned to the device
on startup. This identifier has parallels to a MAC identifier, in
that the first characters in the identifier are associated with an
organization or company. The next grouping of characters can
specify a deployment identifier, that tracks where the device
is physically in use, followed by a device type and lastly
appended with a unique UID. For example a valid ID structure



will look as follows (CompanyID - SiteID - DeviceTypeID
- UniqueID). Scoping of transactions for the agent cascades
from left to right and can be specified by any of the groupings.

B. Ethereum Blockchain Implementation

The CC is responsible for publishing Etheruem transactions
with the specified security information for an organization.
The agent expects certain data and configurations to operate.
For instance, the CC is responsible for publishing the most
recent firmware version numbers. This information can be
published via need-based usage, or as a bundled transaction
that contains all configuration data. For example, the CC can
publish a whitelist update for devices that have already been
provisioned or a bundled transaction that contains information
on firmware, whitelists and certificate data. This allows for
increased flexibility with regards to device management, only
publishing what is needed for operating securely. Figure 1
shows in detail how the CC servers publish transactions with
additional whitelist data.

Fig. 1. Ethereum Transaction

To publish transactions, an organization must maintain two
Ethereum addresses or wallets, one for sending and one for
receiving. The agents are configured to listen to transac-
tions occurring on addresses owned by the organization. The
Ethereum protocol allows for additional information to be
added to the transaction in the form of a data hash. The
CC server encodes the operational security data in base64
format and appends this data into the Ethereum transaction
before publishing the transaction to the entire network. The
operational security data is held in a JSON object before
Base64 encoding occurs. Generally, no Ethereum is actually
transacted between the sending and receiving wallet in this
exchange but, depending on the amount of data encoded,
a certain amount of Ethereum ”gas” is spent to publish
the transaction. When creating transactions on the Ethereum
network, the publisher needs to be cognizant of Ethereum
network variables, primarily the gas price and gas limit. Gas
price is the cost of doing work on the network and controls
the order in which transactions are approved on the network.

The higher the price of gas, the higher the cost of publishing
a transaction on the network. In addition to there being a
gas price per transaction, there is a gas limit. The gas limit
is the amount of gas that can be spent for each block of
transactions on the network for a given time. Both of these
variables are dynamic and change based on real-time network
demand. The specific algorithms for determining the gas price
and limit can be found in the Ethereum white paper [23].
These two variables directly impact the amount of data that
can be published to the network at a given time given budget
and network constraints. Traffic across the network at a given
time may directly impact the cost of publishing a transaction.

C. GoLang

The Golang language was used because it has broad support
for cross compilation. As a compiled language, Golang runs
natively and efficiently on the devices tested. The Golang
runtime is also compact which allows for deployment across
a wide array of environments.

V. SABRE AGENT CAPABILITIES

As outlined while describing prevalent operational security
challenges, some of the most pressing issues for organizations
are managing device updates, segmentation and secure com-
munications. The security automation through blockchain re-
mediation and execution (SABRE) agent was designed to ease
these operational security issues for organizations managing
many devices. The main features of the SABRE agent includes
device firmware checks and updates, network whitelisting and
certificate management for secure communications. Each of
these features are described below.

A. Firmware Updates

Many IoT devices suffer from vulnerabilities surround-
ing device updates. Lack of a secure update mechanism is
identified as top ten threat from the Open Web Application
Security Project’s (OWASPs) IoT project [24]. To address this
security issue and help organizations manage these updates, we
sought to build functionality that facilitated the update process.
Receiving firmware updates works similarly to how the agent
receives whitelist updates. Yet, there are subtle differences
due to the size disparity between network whitelists and the
firmware. Depending on the device, firmware may expand
beyond the size the of an allowed Ethereum transaction. The
size of transaction is controlled by the dynamic network
factors of gas price and gas limit.

Considering the constraints, we employed the Ethereum
blockchain as a source of truth for firmware, rather than
a distribution mechanism. The agent listens to transactions
happening on the blockchain, filtering out those that not from
the configured CC and addressed to it. Once the agent observes
a transaction meant for its device, it begins to unpack and
decode the data. The data will contain a SHA256 and a
retrieval URL for where the firmware is currently stored. For
the proof of concept we used a free online cloud service
to temporarily store our device firmware [25]. The SHA256



is placed in the agents memory and a download is begun
on the retrieval URL. Once the download is completed, a
checksum is run on the file, generating a separate SHA256. A
comparison to the SHA256 in memory and the most recently
computed SHA256 is completed. If the two values match,
the firmware upgrade process begins on the device. This
process can take up to several minutes and will restart the
device, losing connectivity. If the two values do not match,
the download is deleted and a log is sent back to the CC
server to alert the operators of the failure. For the proof of
concept, the ”sysupgrade” OpenBSD utility was used to handle
installation of the new firmware. This is a command line utility
that simplifies the process of updating a devices firmware.

B. Certificate Management

When provisioning a device or fleet of devices for an or-
ganization, an important part is distributing organization keys
or certificates to those devices. The distribution of public keys
and certificates allows for a secure communication channel and
encryption across devices you own. In public key encryption
schemes, there needs to be a way to receive the public key of
the site, service or device that is being communicated with.
This public key is used to sign or encrypt data before it is
transmitted and the owner of the public key can decrypt this
information using its paired private key. A secure communi-
cation channel is then created using public information. The
agent and CC server were designed to facilitate the distribution
and management of an organizations public keys across its
fleet.

Similar to how firmware updates are sent across the
Ethereum network, the same can be done with certificates
and public keys. The CC can control which devices the
keys are intended for being as granular as single device
updates. The CC can send out single certificates or chained
certificates containing multiple sites or services the device can
communicate securely with. When a transaction containing a
certificate is received the agent is responsible for verifying
and importing the certificate on the device. Once properly
installed the device can communicate with servers specified
in the certificate securely.

C. Network Filtering/Whitelisting

The agent is capable of filtering network traffic based on
certain network and packet qualifiers. Network rules can be
written to route, drop or allow traffic based on characteristics
such as IP addresses and MAC addresses. They agent can
whitelist specific IP and MAC addresses, allowing packets
to travel only to known devices and addresses. For network
filtering to be enabled, devices must have support for the
Linux kernel module iptables. The module is how the agent
creates rules for filtering of network packets. The iptables
module works by creating ALLOW/DENY rules that match
characteristics of the packets such as source, destination IPs,
MAC address and port numbers. A limitation to using the
iptables module is that rule order matters; a packet may
technically match two existing rules but only the first rule

would apply. For this reason a general whitelist approach
should be taken, define a default drop policy and explicitly
define ALLOW rules thereafter.

VI. TESTING THE AGENT

For the proof of concept SABRE agent, we used the
Ethereum test network Ropsten [26]. This network was de-
signed to mimic the real Ethereum networks functionality but
designed for developers building applications on top of the
network. The main advantage to using the Ropsten network is
that it is free to use compared to the main Ethereum network.
Gas and Ether can be acquired using free ’faucets’, or accounts
that distribute Ether (without its monetary value) at no cost.

The main goal of testing the SABRE agent was to showcase
its functionality. To achieve that goal the agent would need
to ingest a variety of the security operations data from the
CC server. We sought to engage the agent to receive and
dynamically update the configuration of its host device. This
principle can equally be applied to receiving public keys or
certificates. When a device is being provisioned, it should
be able to install and utilize the public key. Lastly, after
provisioning a device, we sought to demonstrate a firwmare
update on the device facilitated by the agent. The testing
was completed using commercial off of the shelf routers. The
routers selected came with OpenWRT pre-installed which is
an open source router operating system that is easy to work
with and test software on. The agent was installed using SCP
and run as a daemon on the device.

Testing the provisioning capabilities required us to generate
a self signed RSA public key. This key would represent a
public key that could be used to communicate securely with
a series of services or other devices for an organization. For
purposes of our test, we used the openssl library to generate the
shared key. Once the key was generated, a test transaction was
published on the Ethereum network. This transaction contained
the contents of the public key certificate. The agent quickly
identified the transaction as valid shortly after the transaction
was confirmed by the network. The agent was able to save the
public key stored in the transaction. The public transaction can
be found and inspected on the public block viewer Etherscan
1.

Similarly, we tested the update capabilities of the agent.
The agent was installed on a device running an old version
of firmware. The CC published a transaction containing all
the requisite information for a secure update: a SHA256,
the new version and the URL from which the firmware
could be downloaded. Once the transaction was confirmed on
the network, the agent ran a version comparison, checking
its own version to the version in the transaction. Once the
determination that an old version was being utilized, the agent
downloaded the updated firmware and ran its own SHA256
of the file. Upon validation of matching hashes, the agent

1”https://ropsten.etherscan.io/tx/0x39471ed242cc69da9556d71966d76b83f05b4f0a3baff
5947795a45d6f0fca09”



successfully began the update process by utilizing sysupgrade.
The transaction can be examined on Etherscan as well 2.

VII. DISCUSSION

Considering the vast scale of future cyber-physical system
deployments, there will be many opportunities for incomplete
security provisioning that could result in security holes. To
mitigate the laborious operational process, SABRE can be
used to streamline the security of these devices. Employing
an agent to conduct security configuration checks provides a
mechanism for ensuring devices are checked consistently, with
less opportunity for human error. The blockchain provides a
reliable storage location for the necessary security information.
The blockchain is both resilient to attack because of its
distributed nature and because in order to compromise the
integrity of the security information posted to the chain, an
attacker would need to achieve a 51% attack on the network,
which is difficult for large chains such as Ethereum.

The benefits would primarily be realized for multiple de-
vices that must be provisioned in the same manner. For
example, in our co-generation plant, the security consistency
of VFDs that are routinely updated could benefit from SABRE
considering the large number of VFDs in the plant. The
operator would benefit from a work-factor reduction since
they would only need to configure the agent once versus
ostensibly performing the security provisioning many times for
each updated VFD. This benefit would scale accordingly for
a wider implementation of SABRE across larger deployments
such as an energy delivery system. Equally there are risks to
deploying SABRE. Should an operator make an error when
configuring SABRE, all devices in scope will be affected,
rather than a single device. This could cause system-wide
failures; therefore, it will be crucial for only experienced
operators to be configuring SABRE.

VIII. CONCLUSION

Future research will require investigating the operational
impacts of employing an agent as described in SABRE -
especially for real-time operating systems as are common
in autonomous cyber-physical systems. Operational latency
or downtime caused by SABRE could limit its usability to
certain classes of systems. Additional work is also required
to test concurrent security provisioning checks and its impact
on memory and processing power of IoT devices. Finally,
SABRE should be tested at scale with hundreds of devices in
a testbed environment in order to stress-test the provisioning
mechanism.

As autonomous, cyber-physical IoT devices continue to be
employed for energy delivery systems, we need scalable means
for ensuring their security. Conducting proper security provi-
sioning of these devices is critical to assuring the autonomous
system functions. SABRE could offer a scalable means for
automating the security provisioning of such devices.

2”https://ropsten.etherscan.io/tx/0xa70cb53034ff4f15d567a97b9
0d685648d22a7633815b3e5681c87c42d3b63d7”

Acknowledgements

Acknowledgments: This material is based in part on work
supported by the Department of Energy under Award Number
DE-OE0000780.

Disclaimer

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not nec-
essarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

REFERENCES

[1] Constantinos Kolias, Georgios Kambourakis, Angelos
Stavrou, and Jeffrey Voas. Ddos in the iot: Mirai and
other botnets. Computer, 50(7):80–84, 2017.

[2] Mario Ballano Barcena and Candid Wueest. Insecurity
in the internet of things. Security Response, Symantec,
2015.

[3] Tobias Heer, Oscar Garcia-Morchon, René Hummen,
Sye Loong Keoh, Sandeep S Kumar, and Klaus
Wehrle. Security challenges in the ip-based internet of
things. Wireless Personal Communications, 61(3):527–
542, 2011.

[4] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam,
and Abdellah Ait Ouahman. Access control in the
internet of things: Big challenges and new opportunities.
Computer Networks, 112:237–262, 2017.

[5] Bruno Bogaz Zarpelão, Rodrigo Sanches Miani,
Cláudio Toshio Kawakani, and Sean Carlisto de Al-
varenga. A survey of intrusion detection in internet of
things. Journal of Network and Computer Applications,
84:25–37, 2017.

[6] Mauro Conti, Ali Dehghantanha, Katrin Franke, and
Steve Watson. Internet of things security and forensics:
Challenges and opportunities, 2018.

[7] Over 200M devices affected by critical
flaws found in real-time operating system,
(accessed January, 2020). https://www.
scmagazine.com/home/security-news/vulnerabilities/
over-2b-devices-affected-by-critical-flaws-found-in-real\
-time-operating-system/.

[8] Bill Brykczynski and Robert A Small. Reducing internet-
based intrusions: Effective security patch management.
IEEE software, 20(1):50–57, 2003.



[9] Bhavya Daya. Network security: History, importance,
and future. University of Florida Department of Electri-
cal and Computer Engineering, 4, 2013.

[10] Xu X., Bessis N., and Cao J. An autonomic agent
trust model for iot systems. The 4th International Con-
ference on Emerging Ubiquitous Systems and Pervasive
Networks, 2013.

[11] Nobakht Medhi, Sivaraman Vijay, and Boreli Roksana.
A host-based intrustion detection and mitigation frame-
owrk for smart home iot using openflow. 11th In-
ternational Conference on Availability, Reliability and
Security, 2016.

[12] Open Networking Foundation, (accessed February, 2019).
https://www.opennetworking.org/.

[13] Eliot Lear, Ralph Droms, and Dan Romascanu. Manufac-
turer usage description specification (work in progress).
Working Draft, IETF Secretariat, Internet-Draft draft-
ietf-opsawg-mud-25, 2018.

[14] Arunan Sivanathan, Daniel Sherratt, Hassan Habibi
Gharakheili, Adam Radford, Chamith Wijenayake, Arun
Vishwanath, and Vijay Sivaraman. Characterizing and
classifying iot traffic in smart cities and campuses.
In 2017 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), pages 559–564.
IEEE, 2017.

[15] MUD-Manager, (accessed January, 2020). https://github.
com/CiscoDevNet/MUD-Manager.

[16] DongHo Kang, ByoungKoo Kim, JungChan Na, and
KyoungSon Jhang. Whitelists based multiple filtering
techniques in scada sensor networks. Journal of Applied
Mathematics, 2014, 2014.

[17] Seyoung Huh, Sangrae Cho, and Soohyung Kim. Manag-
ing iot devices using blockchain platform. In 2017 19th
international conference on advanced communication
technology (ICACT), pages 464–467. IEEE, 2017.

[18] Boohyung Lee and Jong-Hyouk Lee. Blockchain-based
secure firmware update for embedded devices in an
internet of things environment. The Journal of Super-
computing, 73(3):1152–1167, 2017.

[19] Mandrita Banerjee, Junghee Lee, and Kim-Kwang Ray-
mond Choo. A blockchain future for internet of things
security: A position paper. Digital Communications and
Networks, 4(3):149–160, 2018.

[20] Elizabeth Reilly, Matthew Maloney, Michael Siegel, and
Gregory Falco. A smart city iot integrity-first com-
munication protocol via an ethereum blockchain light
client. In Proceedings of the International Workshop
on Software Engineering Research and Practices for
the Internet of Things (SERP4IoT 2019), Marrakech,
Morocco, pages 15–19, 2019.

[21] Matthew Maloney, Elizabeth Reilly, Michael Siegel, and
Gregory Falco. Cyber physical iot device management
using a lightweight agent. In 2019 International Con-
ference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and

IEEE Smart Data (SmartData), pages 1009–1014. IEEE,
2019.

[22] Gregory Falco, Caleb Li, Pavel Fedorov, Carlos Caldera,
Rahul Arora, and Kelly Jackson. Neuromesh: Iot security
enabled by a blockchain powered botnet vaccine. In
Proceedings of the International Conference on Omni-
Layer Intelligent Systems, pages 1–6. ACM, 2019.

[23] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1–32, 2014.

[24] OWASP Internet of Things Project, (accessed Jan-
uary, 2020). https://www.owasp.org/index.php/OWASP
Internet of Things Project.

[25] Transfer.sh Easy file sharing from the command line,
(accessed January, 2020). https://transfer.sh.

[26] Ropsten testnet PoW Chain, (accessed January, 2020).
https://github.com/ethereum/ropsten.


	2020-11 Cover Page.pdf
	2020-12 SABRE-Agent.pdf

