accepted for publication at the International Conference on Industrial Applications of
Prolog (INAP “97)

Extraction and Integration of Data from
Semi-structured Documents into
Business Applications

Ph. Bonnet & S. Bressan

Sloan WP# 3979 CISL WP# 97-12
September 1997

The Sloan School of Management
Massachusetts Institute of Technology
Cambridge, MA 02142

. Extraction and Integration of Data from Semi-structured
Documents into Business Applications

Ph. Bonnet
GIE Dyade, Inria Rhéne-Alpes
655 Avenue de 'Europe

38330, Monbonnot Saint Martin, France

Philippe.Bonnet@dyade.fr

1 Introduction

Collecting useful information along the information
Autobahn is a fun window shopping activity which
rapidly becomes frustrating. As the technology of-
fers a broader logical connectivity, enables schemes
for secure transactions, and offers more guarantees
of quality, validity, and reliability, it remains diffi-
cult to manage the potentially available data, and to
integrate them into applications.

Can 1 write a program which would assist me in
planning my next business trip by retrieving rele-
vant data about hotel prices, weather forecast, plane
ticket reservations? How can I manage my invest-
ment portfolio without gathering and copying every-
day, by hand, stock prices and analysts recommen-
dations into spreadsheets?

On the one hand users can browse or surf the
World Wide Web (under the name of which we lib-
erally include all electronic information sources and
protocols, e.g. WAIS, FTP, etc). Data is then
embedded into HyperText Markup Language doc-
uments, Postscript, LaTeX, Rich Text Format, or
PDF documents. These documents are meant for
viewer applications, i.e application whose task is only
to present them to end-users in a readable, possibly
nicely laid out format. On the other hand, Electronic
Data Interchange networks, which allow the integra-
tion of data into complex applications, remain spe-
cific to narrow application domains, operating sys-
tems, and most often proprietary applications.

Wiederhold, in [Wie92], proposed a reference ar-
chitecture, the mediation architecture, for the de-
sign of heterogeneous information systems integra-
tion networks. As the reference for the Intelligent
Integration of Information (13) DARPA program, it
has been adopted by most American research groups
and became a de facto standard for the research com-
munity. As several other projects (e.g. the SIMS
project at ISI [AK92], the TSIMMIS project at Stan-
ford [GM95], The Information Manifold project at

S. Bressan
MIT Sloan School of Management
50 memorial drive, E53-320
Cambridge, MA, 02139, USA
steph@context.mit.edu

AT&T [LSK95], the Garlic project at IBM [PGHI6],
the knowledge Broker project at Xerox [ABP96], or
the Infomaster project at Stanford [GKD97]), the
Disco project at GIE Dyade [TRV96, TAB197] and
the COIN project at MIT [GBMS97, BGF*97] im-
plement this architecture.

The mediation architecture categorizes the media-
tion tasks into three groups of processes: the facilita-
tors, the mediators, and the wrappers. The facilita-
tors are application programming and user interfaces
facilitating the seamless integration of the mediation
network into end-users environments. The mediators
provide the advanced integration services: query and
retrieval over multiple sources, schematic federation,
semantic integration, as well as the necessary meta-
data management. The mediator assumes physical
connectivity and a first level of logical connectivity
to the remote information sources. This initial con-
nectivity is provided by wrappers. At the physical
level a wrapper constitutes a gateway to a remote
information source, being an on-line database, a pro-
gram, a document repository, or a Web site. At the
logical level, a wrapper masks the heterogeneity of
an information source; it provides a mapping, suited
to the mediation network, of the data representation,
the data model and the query language.

Although the World Wide Web has departed from
the initial raw distributed hypertext paradigm to be-
come a generic medium for all kinds of information
services including online databases and programs,
most Web services, with the exception of Java and
ActiveX based interfaces, provide information in the
form of documents. The Web-wrapping challenge is
to extract structured data from these documents. In
fact, for large number of documents, it is possible to
identify certain patterns in the layout of the pre-
sentation which reflect the structure of the data the
document presents. These patterns can be used to
enable the automatic identification and extraction
of data. It is for instance the case when data is
organized in Excel spreadsheet tables, HTML item-

piiol dovbla 1 oom?Li” Msﬂa

el RS : =
PEsEREAT, ekvmx pnunowld mpxm mn ﬂn.ulzpm mowa Mm\vi AN
Tooems Wi ollet, fooms with nqu;N -
noumnxm!dmu «mm mm b tmmumuom

w
- Kinerican, Expls! ‘Elqnnnd/lﬁmuu;l vm nmm tlob.-,

- '~ummuum Wb

; mozx(nmamghw s
T '5; “31(O20-610982 .. -

-m«mu.mum MWM

Figure 1: Sample Web Page

ized lists, or Word structured paragraphs. Further-
more, as documents are updated or as new docu-
ments are added, a relative perennity of the patterns
can be assumed. We will call such documents semi-
structured documents [Suc97]. Of course, it is a
paradox to try and extract data from a document,
which, most likely, was generated from the content
of a structured database in the first place. However,
such a database, when it exists, is generally not avail-
able.

We focus in this paper on the pattern matching
techniques that can be used to implement generic
wrappers for semi-structured documents; we discuss
how Prolog can support these techniques.

2 Generic Wrappers

Let us consider the example document rendered on
figure 1. The document is an HTML page containing
a list of hotels together with rates, addresses, and
descriptions of facilities. It is one example of the
documents served by a Web hotel guide for the city
of Amsterdam. This Web service has been wrapped
with the COIN Web wrappers, and is now accessible
as a relational database exporting the relation “h-
ams”, which contains attributes such as Name, the
name of the hotel, Single, the rate for a single room,
or Double, the rate for a double room. A wealthy
user can now look for hotels whose rates for single
rooms are higher than 250 Dutch Guilder. Table 1
shows an example of a query in SQL and its results as
processed and presented by the COIN Web wrappers.

Web wrappers can either be specific programs de-

select Name, Single from h-ams where Single>250;
as of Tue Aug 26 12:34:12 1997; cols=2,rows=7

Name Single
Amstel InterContinental 725
Amsterdam Renaissance 332
De I’Europe 475
Golden Tulip Barbizon Centre | 375
Grand Hotel Krasnapolsky 350
Hilton Amsterdam 360
Holiday Inn Crown Plaza 345

Table 1: Query Results (as returned by the COIN
wrappers Web query interface)

signed and implemented for interfacing a specific set
of documents, or generic components intended to be
reused for a variety of sets of documents. For spe-
cific wrappers, the patterns to be identified are gen-
erally defined once and for all, and the data extrac-
tion procedure is an optimal implementation of the
matching of these patterns. For generic wrappers,
the patterns are parameters in a specification. The
specification is a declaration of what data need to be
extracted, how it can be extracted, and how it should
be re-structured and presented.

Figure 2 shows the architecture of the Disco
[ABLS97] and COIN [BL97] generic Web wrappers.
Queries are submitted to the wrapper interface.
They are formulated in the wrapper query language
(Object-relational algebra for Disco, SQL for COIN).
The query is compiled, together with the relevant
specifications (the specifications of the documents
needed to answer the query). The planner/optimizer
generates an execution plan. The plan is executed by
the executioner. The plan describes what documents
need to be retrieved by the network access compo-
nent, which patterns need to be matched from indi-
vidual documents by the pattern matching compo-
nent, and how individual data need to be combined
and presented.

3 Pattern Matching

3.1 Example

The basic wrapping problem is the definition of pat-
terns which can be used to automatically and effi-
ciently identify and extract data from the documents.
The Web service we consider in our running example
serves HTML pages. An excerpt of the source code
for the HTML document 1 is presented in figure 3. A
list of hotels with rates, addresses, and descriptions
of facilities is presented on a single page in an HTML
table.

A simple piece of data to extract is, for instance,

Query Results

\

) Interface
| 4
Query

Compiler/
Interpreter

I

Planner/
Optimizer ™

A Pattern Matching

Executioner

Network Access

Specification

Compiler/
Interpreter
J l ‘

Web Documents

Specifications

Figure 2: Generic Web Wrapper Architecture

the name of the hotels in the list. Taking advantage
of the text formatting, namely of the HTML tags,
we decide to rely on the fact that hotel names are
always between and tags. We
also make sure that any text in such a block is a hotel
name. As it is the case, a simple regular expression’
matches the hotel names and tags and stores them
in variables, called back references.

For instance the following is a Perl program that
returns the list of hotel names as specified above ($d
is a string that contains the source code of the HTML
document):

<1> @r = ($d =" /(.*7)<\/STRONG>/sg);
<2> foreach $e (Qr)
<3>{print $e; print "\n";}

The string is matched with the regular expression
on line <1>2. For each succesfully matched substring,
the portion corresponding to a part of the regular ex-
pression in parenthesis is stored in a variable, called a
back reference. Several matches are obtained by the
option s and g on line <1> indicating that the string
is to be treated as a single sequence (as opposed to

1We use the Perl regular expression syntax unless otherwise
specified

2% and ”*7” are, respectiveley, the greedy and lazy iter-
ation quantifiers. For instance, ”.*?” at the begining or at the
end of a regular expression matches nothing and is therefore
useless. For instance, ”.*” at the beginning or at the end of a
regular expressions matches as much as possible, and therefore
limits the number of matches to at most one.

<TR><TD WIDTH="450" COLSPAN="8">

<IMG WIDTH="444" HEIGHT="3" vspace="15"
ALT="line" SRC="streep.gif'>

Condette

</TD></TR>

<TR><TD WIDTH="25">
</TD>

<TD WIDTH="425" COLSPAN="7">

Dijsselhofplantsoen 7

1077 BJ Amsterdam

telephone: +31 (0)20-6642121

fax: +31 (0)20-6799356

98 rooms

price single room: FL 225,00/395,00

price double room: FL 275,00/495,00

Figure 3: Sample Web Page (Excerpt of the HTML
Source)

a sequence of lines), and that matching should be
iterated, respectively. The list of back references is
stored in the array @r. The loop (line <2>) prints the
values in the cells of the array (line <3>). A Similar
program can be written in Prolog, for instance, with
a Definite Clause Grammar (DCG) (taking its input
from a list of characters):

hotel_name (Name) --> anything(_),
[ll<’| s I|S'I s |IT|| , ||R|| s "Oll y "N'l , "G" , ||>"] s
anything(Name),
["(Il s Il/ll , IIS" y VlT" , "R'I R |l0" . IIN" , llGlI , ">'l] .
anything([1) --> [].
anything ([XIL] --> [X], anything(L).

The use of pattern matching as opposed to a com-
plete parsing of the document introduce a form of
robustness in our specification. Indeed, other parts
of the document, which can be free text, will have
little impact on the extraction as long as they do not
contain a matching string. Therefore they can vary
without compromising the behaviour of the wrapper.

In order to extract additional data about the indi-
vidual hotels, for instance, the name, together with
the (low and high) rates for single and double rooms,
we need to use a more complex pattern with three
back references. In Perl, the pattern could look like:

 (. *7)<\/STRONG>. %7\
single room: FL (.*7)/(.*?)
\n\
price double room: FL (.*7)/(.*7)

As we use more complex expressions, relying on
more elements in the structure of the document to
anchor our patterns, the robustness of the specifica-
tion decreases.

Regular expressions seem to be a good candidate
for a pattern specification language. However, as

we shall see, we need to understand their expres-
sive power to decide wether they fit our needs in
a sufficient number of situations. It must be clear,
for instance, that a regular expression cannot under-
stand the notion of nested blocks. In addition, we
should not be confused by the fact that ,
 is an HTML block. Indeed, only a partic-
ular control of the backtracking in the pattern match-
ing of our Perl program (part of it is expressed by the
? after the *) will prevent the matching of substrings
of the form .<\/STRONG>.<\/STRONG>. A
regular expression language with negation (regular
sets are closed under difference) could be used to ex-
clude the <\/STRONG> sequence from the innermost
match.

In summary, the pattern description language
needs to allow the synthetic (concise and intuitive)
and declarative expression of the patterns. It needs
to be expressive enough to cover a satisfying class of
patterns. Together with its robustness these qualita-
tive properties will allow to handle documents whose
content vary and will ease the maintenance of wrap-
pers. Wrappers are most likely to be used as just-
on-time services for the extraction of data. The ex-
traction process needs to be efficient and avoid the
pitfall of combinatorial complexity of the general pat-
tern matching problem. As we shall see, this issue is
mainly related to the control of backtracking.

Several tools and languages provide support for
parsing and pattern matching®. Several unix com-
mands such as grep, or ls, and many text ed-
itors, such as ed, or emacs support find- or
replace-functions based on regular expressions pat-
tern matching. SNOBOL4*, Perl, or Python provide
a native support for regular expressions and pat-
tern matching. Regular expression pattern match-
ing tools are announced for JavaScript. C (with
its compiler-compiler tools Lex, Flex, Yacc, and Bi-
son, or regular expression libraries such as the gnu
regex),and Java (with JLex, Jacc, or regular expres-
sion libraries) also provide the necessary support for
standard parsing and pattern matching. However,
these tools do not offer the necessary flexibility in
the control of the backtracking and are not as easily
customizable as Prolog DCG. In the next sections we
will study pattern matching from the point of view
of its implementation with Prolog DCG.

3.2 Back to the Basics

A formal language [HU69] L is a set of words,
i.e. sequences of letters or tokens, from an alpha-

3 A practical survey of regular expression pattern matching
in standard tools and languages can be found in [Fri97]

4SNOBOL was the first language to provide regular expres-
sion pattern macthing and backtracking {GPI71]!

bet A (the empty sequence is noted €). A lan-
guage described in extension, by the enumeration of
its elements, is of little practical use. Instead, lan-
guages can be described by generators or recognizers.
A generator, for instance a grammar, is a device
which describes the constructions of the words of the
language. A recognizer is a device which, given a
word of the language, answers the boolean question
wether the words belongs to the language. In ad-
dition, a transducer is a device which translates a
word of the language into a structure (e.g. compilers
are transducers).

If a string s is a sequence of elements of the al-
phabet A, string pattern matching can be formally
defined by the recognition of word w of a formal lan-
guage L as a prefix of the string. If . stands for the
language of words composed of a single element of A,
Lx for the language of sequences composed by con-
catenation of any number of words of L, and L, L, for
the language of sequences composed by the concate-
nation of any pair of words of Ly and L, respectively,
then the matching of a pattern L is the recognition
of the language . * L as a prefix of the string s.

A grammar, or generative grammar, is mainly a set
of productions rules (grammar rules) whose left and
right-end side are composed of non-terminal sym-
bols (variables) and terminals (letters or tokens).
Chomsky has proposed a four layer hierarchy of lan-
guages corresponding to four syntactically caracteri-
zable sets of grammars: the type 0languages (almost
anything), the context sensitive languages (e.g. Swiss
German, cf. [GM89], or a™b™c"), the context free
languages (e.g. block languages, most programming
languages), and the regular languages (language gen-
erated by regular expressions).

There are three main categories of recognizers: au-
tomata and machines, transition network, and defi-
nite clause grammars. In all categories we find a one
to one mapping between types of recognizers, lan-
guage classes in the Chomsky hierarchy, and gram-
mar types. The recognizers as automatic devices or
decision procedure give a framework to study not
only how to implement parsers for a language but
also for studying the inherent complexity of a lan-
guage and therefore the cost of its parsing. DCG
is a powerful formalism: DCG have the syntax of
generative grammars but they correspond to Prolog
programs which can serve as both generators and rec-
ognizers. In addition, the adjunction of arguments
to the grammar terms allows the DCG to implement
transducers.

A simple way to implement a generic pattern
matcher for any language L using DCG is given in
[O’K90):

match(Pattern) --> Pattern | ([_], match(Patterm)).

The pattern Pattern is to be replaced by the ac-
tual root of the DCG recognizing the language L.

Unfortunately, the problem of matching a pattern
is combinatorial by nature when its output is all the
matching substrings and their respective positions.
For regular expressions it is quadratic. For instance,
matching the regular expression a+ in a string of n

a can be done in about i"zlﬂl different ways. If the
question compels a boolean answer: “does there ex-
ist a match?”, the complexity can be dramatically
reduced by only looking for the first match. This is
however not satisfactory if the goal of the matching
is to return back references. A usual compromise is
to look for matching substrings which do not over-
lap: if s is a sequence composed of two strings s;
and sy, § = 8182, and 8; is a word of the language
.* L, the matching is recursively iterated on sy. This
standard behaviour of string pattern matching algo-
rithm corresponds to the following Prolog program
(which becomes slightly more complicated if we add
provision for the management of back references):

matches(P) --> match(P),!,result(P).
result(P) --> 0.
result(P) --> matches(P).

In regular expressions, there are two other sources
of non determinism: the alternation () and the iter-
ation *. The non determinism of these constructs is
absolutely clear when the expressions are translated
into DCG rules; It correspond to backtracking op-
portunities. For instance, an alternation of the form
a|b becomes:

pattern --> [a] | [b].

An iteration of the form ax*, resp. ax?, becomes
the following DCG greedy_star, resp. lazy_star:

greedy_star --> ([a], greedy_star) | [J.
lazy_star --—> [1 | ([], lazy_star).

There are three main techniques to reduce the non-
determinism of a DCG: indexing, elimination of the
e-transitions, and state combination. Indexing con-
sists in preventing the DCG from backtracking on
the reading of input. For instance, the DCG for alb
can be rewritten:

pattern --> [X], pattern(X).
pattern(a) --> [J.
pattern(b) --> [].

e-transitions do not read any token from the in-
put. They only indicate possible continuations. For
instance, in the DCG given in the next section for the
automaton on figure 4, states state2 and state5 can
be merged. Finally, by combining states which have
the same input one can reduce the non-determinism,
and eventually eliminate it for regular languages.
The drawback is the possible combinatorial growth
of the number of states as new states are created
from the power set of the original set of states.

It is possible to use DCG to implement efficiently
generators, recognizers, and transducers. Regular
expressions can be optimized and compiled into ef-
ficient DCG. We shall use these devices for imple-
menting pattern matching tools in Prolog.

4 Prototyping Generic Wrap-
pers In Prolog

The Disco and the COIN projects are sharing a
Prolog-based prototyping platform for the experi-
mentation and testing of Web wrappers. The plat-
form is implemented in ECL'PS¢ Prolog. The Web
wrapper prototyping environment follows the gen-
eral wrapper architecture illustrated in figure 2.
The query compiler, the planner optimizer and the
relational operators of the executioner have been
adapted from the COIN mediator components. An
overview of the design and Prolog implementation of
these components is given in [BFM*97]. The net-
work communication layer of the executioner, neces-
sary to access documents over the World Wide Web
is build from the authors ECLiPSe HTTP library
[BB96].

Of interest in this paper are the libraries devel-
oped for the compilation and execution of pattern de-
scription language. These libraries implement stan-
dard algorithms for the construction, optimization,
and simulation of regular expressions. The regular
expressions are transformed into Finite State Au-
tomata, the automata are optimized and compiled
into DCG. The DCG can be combined with non reg-
ular parsers.

A Finite State Automaton is encoded as a DCG.
For instance, the automaton of figure 4, represent-
ing the regular expression a(alab)=*a, corresponds
to (e.g.) the following DCG:

state0 --> [a], statel.

statel ~-> state3 | state5 | ([a], state2).
state2 --> state5.

state3 --> [a], state4.

state4 --> [b],state5.

state5 --> statel | ([al, state6).

state6 --> [].

A procedure compiles the regular expression into
the DCG representation. Various procedures can the
be applied to optimize the automaton: elimination
of the e-transitions, elimination of redundant or in-
accessible states, determinization. Finally, the au-
tomaton is given a name and is compiled as a DCG.

Most importantly, we allow the token classes used
in the regular expressions to correspond to other
DCG. This simple mechanism enables the combina-
tion of regular and non regular parsers into regular

Figure 4: Finite State Automaton

expressions. It also enables the re-use of existing tok-
enizers (e.g. a tokenizer for HTML) by modularizing
the code.

Finally, although we have concentrated on string
pattern matching, we would like to remark that
a simple modification of the input stream of
the DCG allows to manipulate Directed Acyclic
Graphs (DAGs). Let us assume, for instance, that
the DAG composed of the two paths abcd and
aefd is represented by the nested list structure
[a, [[b,c]l,[e,£11,d]. We only need to trivially
modify the ’C’/3 procedure in order for the DCG
to parse paths in the DAG. Such a simple extension
can be very useful for Web documents as argued in
[PK95]. The nested structure can not only represent
itemized lists or tables but also acyclic networks of
hypertext documents linked by their hyperlinks.

5 Commercial and Prototype
Wrappers

In this section we present five different Web wrap-
pers. They are representative of three different ap-
proaches. EdgarScan is a specialized wrapper de-
signed, programmed and tuned for specific docu-
ments of a specific application. The COIN and the
Disco Web wrappers are generic wrappers. They
compromise with the expressive power of the speci-
fication language to protect its declarativeness and
minimize the programming task. TSIMMIS, and
OnDisplay combine the declarative specifications
with programming hooks to create a wrapper devel-
opment environment. In fact many more projects
(e.g [CBC97, KNNM96]) are developing wrapper de-
velopment environemnts as a set of libraries for re-
trieving, parsing, and extracting data from docu-
ments. The set of ECLiPSe tools we have developed
for the prototyping of wrappers fall into the latter
category.

5.1 EdgarScan

EdgarScan [Fer97] is an application developped at
the Price Waterhouse Technology Centre for the ef-
ficient and accurate automatic parsing of financial

statements. In the United States, the Securities and
Exchange Commission (SEC) has made compulsary
for US corporation to file a variety of financial doc-
uments. This documents are stored and publicly
available in the EDGAR database. Guidelines for
what information is to be presented are stricter than
guidelines for how information should be presented.
The disparity of accounting practices and the speci-
ficity of each situation has prevented a structuration
that can easily be used to automatically process the
content of the filings. In these filings, accounting ta-
bles are structured summary of the main figures of
a company. They are of highest interest for the fi-
nancial analysts. Even 'in those tables, most data are
accompanied by footnotes in plain english comment-
ing on the definition of individual items, columns or
rows, and necessary for a correct interpretation of
the data. EdgarScan is specialized in the parsing
of accounting tables. It extracts (using a C regular
expression pattern matching library) and reconcile
(using Prolog-based expert system) the data in the
tables.

5.2 Centerstage

Centerstage [Ond97] is a commercial wrapper devel-
opment and deployment tool kit. It operates as a
Plug-in of the Internet Explorer. The kit not only
comprises tools for the wrapper definition but also
facilities to export data in a variety of desktop appli-
cations such as Excel, Word, etc. Additional server
and driver components allow to interface the result-
ing data with Web or ODBC front-end applications.
The wrapper definition and testing environment is
based on a rich point-and-click interface: the user
select the data to be extracted on a example Web-
page and composes a pattern “by example”. The
pattern is then compiled into a wrapper agent, i.e. a
JavaScript program which is able to extract the data.
The agent program can be further edited and refined
by the user. Our tests have shown that the pattern
matching technique used by Centerstage is similar to
the & la Perl regular expression pattern matching.

5.3 TSIMMIS

The Data model of the TSIMMIS mediation net-
work [GM95] is the Object Exchange Model (OEM).
OEM is a complex object model which allow the flex-
ible manipulation of complex data without the con-
straint of a rigid schema. The TSIMMIS wrappers
(in [Suc97]) extract OEM objects from Web docu-
ments. The specification consist in a sequence of
commands of the form [variables, source, pattern],
which indicate the construction of an OEM object
as the results of the matching of the pattern on the

source string. The variables can be used as sources
for other commands, implicitely defining a nested ob-
ject. The source can be the result of any primitive or
function of the underlying language (Python) which
produces a string (e.g. http-get, split). Interest-
ingly, the commands are similar to (regular) gram-
mar rules. The programmer can sometimes choose
between regular expressions pattern matching and
rule programming depending on the structure she
wants to confer to the OEM object. Unfortunately,
the semantics of the command language is not clearly
defined (e.g. w.r.t backtracking). The semantics of
the regular expression pattern matching is the one of
the implementation language Python.

54 COIN

The COIN web wrappers [BL97] provide a relational
interface to Web services. Web and ODBC front-
ends are available and used in COIN mediation pro-
totype [BGFT97].

The relational schema chosen by the wrapper de-
signer to be the interface of a particular service is de-
fined in terms of individual relations corresponding
to the data extracted from a set of documents de-
fined by the pattern of an HTTP message (method,
URL, object-body). The semantics of the relation
exported is defined under the Universal Relation con-
cept: attributes of the same name are the same.
When a query (in SQL) incomes, the wrapper creates
and executes a plan accessing the necessary pages.
A relation can be composed of both static and dy-
namic documents (e.g. document generated by cgi-
programs and accessible through forms) in a very
natural way (by automatically “filing the forms” with
data from the query or extracted from other pages),
making the COIN wrappers uniquely powerful.

To each relation exported by a given site, corre-
spond a specification file. The file contains for each
set of documents patterns described in a simple reg-
ular expression language. The COIN pattern defini-
tion language is currently limited to plain regular ex-
pressions, however because it is simple, it allows the
very rapid development and maintainance of simple
but practical wrappers.

The COIN wrappers have been prototyped in Pro-
log and Perl, they are currently ported to Java.

5.5 Disco

Disco wrappers, called adapters, provide an object-
relational interface to programs, services and docu-
ments [ABLS97]. They are used in the Disco me-
diation prototype [TAB197]. The extraction of in-
formation from a semi structured document is per-
formed in the pattern matching component of the

Disco adapter. A stand-alone prototype, InfoExtrac-
tor (in [Suc97]), was developed to validate and refine
the Disco information extraction approach: a docu-
ment abstract model is used in which the document
is hierarchically partitioned into regions which con-
tain concepts of interest.

For each document, the configuration describes an
abstract model of the document, i.e the hierarchical
partitioning of the document into regions, concepts
and subconcepts. To a concept is associated a regular
expression and a set of weighted keywords. If the set
of keywords is not empty, the match is accepted only
if a function of the weights is above a given threshold.
This feature provides a unique combination of pat-
tern matching and information retrieval techniques
and increases the robustness of the wrappers. The
output of the pattern matching component is a tree
of concepts and subconcepts.

The Disco wrappers have been prototyped in Pro-
log and Perl, they are now implemented in Java.

6 Conclusion

We believe in and we will contribute to the de-
velopment of a network of Web wrappers offering
a structured access to semi-structured Web docu-
ments. The application domains which can benefit
by the just-on-time availability of data are numer-
ous. As an illustration of the potential, the directo-
ries and catalogs registered in the Yahoo thesaurus
already contain large amounts of useful information
for professional and individuals waiting to be auto-
matically integrated into decision support processes.

Although in many cases, ad-hoc solutions will need
to be programmed, we believe that a trade-off can be
found for the definition of a generic tool for the easy
development of Web wrappers. The generic Web
wrapper architecture we have described relies on a
pattern description language and on pattern match-
ing techniques. Prolog and Logic programming in
general, as platforms for the implementation of sym-
bolic manipulation programs, seemed to be a perfect
match. Indeed, ECL!PS® proved to be a very good
tool for the rapid prototyping and experimentation
of Web wrappers. However, to reach the efficiency re-
quirements of industrial strength code, designers and
programmers are needed who have high programing
skills [O’K90]. This is for instance the case for the
efficient immplementation of the parsing and pattern
matching algorithms. At this level of fine tuning,
the suitability of Prolog versus C or even Java is
questionned. Furthermore, some limitations of most
existing Prologs, such as the lack of support for con-
current programming, is a serious drawback for the
implementation of network applications. Neverthe-

less, as a rapid prototyping tool, Prolog brings a com-
petitive advantage in a situation where development
cycles are constantly shrinking due to the pressure of
competition in a global distribution infrastructure.

References

[ABLS97]

[ABP96)

[AK92]

[BB96]

[BFM*97]

[BGF*97]

[BL97)

[CBC97]

[Fer97]

[Fri97]

[GBMS97)

R. Amouroux, Ph. Bonnet, M. Lopez, and
D. Smith. The design and construction of
adapters for information mediation. (Sub-
mitted), 1997.

J.M. Andreoli, U. Borghoff, and R. Pareshi.
The constraint-based knowledge broker
model: Semantics, implementation, and
analysis. J. of Symbolic Computation, 1996.

Y. Arens and C. Knobloch. Planning and
reformulating queries for semantically mod-
elled multidatabase. In Proc. of the Intl.
Conf. on Information and Knowledge Man-
agement, 1992.

S. Bressan and Ph. Bonnet. The ECLiPSe
http library. In Proc. of the Intl. Conf. on
Indutrial Applications of Prolog, 1996.

S. Bressan, K. Fynn, S. Madnick, T. Pena,
and M. Siegel. Overview of the prolog imple-
mentation of the context interchange media-
tor. In Proc. of the Intl. Conf. on Practical
Applications of Prolog, 1997.

S. Bressan, C. Goh, K. Fynn, M. Jakobisiak,
K. Hussein, H. Kon, T. Lee, S. Madnick,
T. Pena, J. Qu, A. Shum, and M. Siegel.
The context interchange mediator prototype.
In Proc. of the ACM SIGMOD Intl. Conf.
on the Management of Data, 1997. (demo
track).

S. Bressan and T. Lee. Information brokering
on the world wide web. In Proc. of the Web-
net World Conference, 1997. (To be pub-
lished).

B. Chidlovskii, U. Borghoff, and P.-Y.
Chevalier. Towards sophisticated wrapping
of web-based information repositories. In
Proceedings of the 5th International RIAO
Conference, Montreal, Canada, 1997.

D. Ferguson. Parsing financial statements ef-
ficiently and accurately using ¢ and prolog.
In Proc. of the Intl. Conf. on Practical Ap-
plications of Prolog, 1997.

J. Friedl. Mastering Regular Ezpressions.
O'Reilly and Associates, Inc., 1997.

C. Goh, S. Bressan, S. Madnick, and
M. Siegel. Context interchange: New fea-
tures and formalisms for the intelligent in-
tegration of information. Technical Report
CISL WP97-03, MIT Sloan School of Man-
agement, 1997.

[GKD97]

(GM89]

[GM95]

[GPIT1]

[HU69)

[KNNMO96)

[LSK95]

[0°K90]

[Ond97]

[PGHY6]

[PK95]

[Suc97]

[TAB*97]

[TRV96]

[Wie92]

M. Genesereth, A. Keller, and O. Duschka.
Infomaster: An information integration sys-
tem. In Proc. of the ACM SIGMOD Intl.
Conf. on the Management of Data, 1997.
(demo track).

G. Gazdar and C. Mellish. Natural Language
Processing in Prolog. Addison Wesley, 1989.

H. Garcia-Molina. The TSIMMIS approach
to mediation: Data models and languages. In
Proc. of the Conf. on Nezt Generation Infor-
mation Technologies and Systems, 1995.

R. Griswold, J. Poage, and Plonsky. I. The
SNOBOLY programming Language. Prentice
Hall, 1971.

J. Hopcroft and J. Ullman. Formal languages
and their relation to automata. Addison-
Wesley, 1969.

Y. Kitamura, H. Nakanishi, T. Nozaki, and
T. Miura. Metaviewer and metacommander:
Applying www tools to genome informatics.

In 7th Workshop on Genome Informatics,
1996.

A. Levy, D. Srivastava, and T. Kirk. Data
mocdel and query evaluation in global infor-
mation systems. Journal of Intelligent Infor-
mation Systems, 1995.

R. O’Keefe. The Craft of Prolog. MIT Press,
1990.

Ondisplay. centerstage.
http://www.ondisplay.com, 1997.
Y. Papakonstantinou, A. Gupta, and

L. Haas. Capabilities-based query rewriting
in mediator systems. In Proc. of the Intl.
Conf. on Parallel and Distributed Informa-
tion Systems, 1996.

K. Park and D. Kim. String matching in
hypertext. In Proc. of the Symp. on Combi-
natorial Pattern Matching, 1995.

D. Suciu, editor. Proceedings of the
Workshop on Management of Semi-
structured Data, Tucson, Arizona, 1997.

http:/ /www.research.att.com/ suciu/workshop-

papers.html.

A. Tomasic, R. Amouroux, Ph. Bonnet,
0. Kapistskaia, H. Naacke, and L. Raschid.
The distributed information search compo-
nent (disco) and the world wide web. In Proc.
of the ACM SIGMOD Intl. Conf. on the
Management of Data, 1997. (demo track).

A. Tomasic, L. Raschid, and P. Valduriez.
Scaling heterogeneous database and the de-
sign of Disco. In Proc. of the 16th Intl. Conf.
on Distributed Computing Systems, 1996.

G. Wiederhold. Mediation in the architec-
ture of future information systems. Com-
puter, 23(3), 1992.

