
Contract Number N00039-78-G-0160 (Order 002)

Internal Report Number P010-7905-10

Deliverable Number 003

A NORMATIVE COST-BENEFIT ANALYSIS

OF THE SYSTEMATIC DESIGN METHODOLOGY

Technical Report #10

S.L. Huff

May 1979

Principal Investigator:

Prof. S.E. Madnick

Prepared for:

Naval Electronic Systems Command
Washington, D.C.

SECURITY CLASSIFICATION OF THIS PAGE (07ieon Dt)za Fotered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER .2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report #10

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

A Normative Cost-Benefit Analysis of the
Systematic Design Methodology

6. PERFORMING ORG. REPORT NUMBER
P010-7905-10

7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(a)

S. L. Huff
N00039-78-G-0160

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Center For Information Systems Research
Sloan School of Management, MIT

11. CONC1fRI c 9IAE ANDUMSS 12. REPORT DATE

Naval Electronic Systems Command Ma. NUy197F9PAGES
65

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

15. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

SO. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Software architectural design; problem design structuring; normative
cost-benefit analysis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Complex design problems are characterized by a multitude of competing
requirements. System designers frequently find the scope of the problem
beyond their conceptual abilities, and attempt to cope with this difficulty
by decomposing the original design problem into smaller, more manageable
sub-problems. Functional requirements form a key interface between the users
of a system and its designers. In this research effort, a systematic approach
has been proposed for the decomposition of the overall set of functional

DD F N 73 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE ("on Data Entered)

_t~rAi4ITY CLASSIFICATION OF THIS PAGE(When Date Enterod)

requirements into sub-problems to form a design structure that will exhibit
the key characteristics of good design: strong coupling within sub-problem
and weak coupling between them.

Recent work in the Systematic Design Methodology project has led to
certain extenstion to the basic representational model used therein.
This report presents a normative cost-benefit analysis of the SDM. The
Systematic Design Methodology is a decision support methodology for aiding
a software designer in determining an optimal structuring of a system's
functional requirements. A model-oriented, normative cost/benefit analysis
of the SDM is presented here. A set of three sub-models, pertaining to
specification impact, procedural design impact, and maintenance/modificatio
impact, are derived. These models attempt to capture, in functional form,
the important quantifiable effects - both positive and megative - that
ought to occur as a result of developing a system based o an optimal
partitioning of requirements.

A numerical example is also discussed to better illustrate the kinds
of results predicted by themodels, in a realistic design scenario.

SECURITY CLASSIFICATION OF THIS PAGE(hen Data Entered)

PREFACE

The Center for Information Systems Research (CISR) is a
research center of the M.I.T. Sloan School of Management.
It consists of a group of management information systems
specialists, including faculty members, full-time research
staff, and student research assistants. The Center's general
research thrust is to devise better means for designing,
implementing, and maintaining application software,
information systems, and decision support systems.

Within the context of the research effort sponsored by
the Naval Electronics Systems Command under contract
N00039-78-G-0160, CISR has proposed to conduct basic
research on a systematic approach to the early phases of
complex systems design. The main goal of this work is the
'development of a well-defined methodology to fill the gap
between system requirements specification and detailed
system design.

The research being performed under this contract builds
directly upon results stemming from previous research
carried out under contract N00039-77-C-0255. The main
results of that work include a basic scheme for modelling a
set of design problem requirements, techniques for
decomposing the requirements set to form a design structure,
and guidelines for using the methodology developed from
experience gained in testing it on a specific, realistic
design problem.

The present study aims to extend and enhance the
previous work, primarily through efforts in the-following
areas:

1) additional testing of both the basic methodology,
and proposed extensions, through application to other
realistic design problems;

2) investigation of alternative methods for effectively
coupling this methodology together with the preceding
and following activities in the systems analysis and
design cycle;

3) extensions of the earlier representational scheme to
allow modelling of additional design-relevant
information;

4) development of appropriate graph decomposition
techniques and software support tools for testing out
the proposed extensions.

In this report, a cost-benefit analysis of the new techniques
proposed in the SDM is carried out. 'Three models are developed
which attempt to capture, in functional form, the important
quantifiable effects that ought to occur as a result of developing
a system based on an optimal partitioning of requirements. Some
numerical examples are carried out to illustrate the kind of
results predicted by the models in a realistic design scenario.

EXECUTIVE SUMMARY

Complex design problems are characterized by a multiple
of competing requirements. System designers frequently find
the scope 'of the problem beyond their conceputal abilities,
and attempt to cope with this difficulty by decomposing the
original design problem into esmaller, more manageable sub-
problems. Functional requirements forniL a key interface between
the users of a system and its designers. In this research
effort, a systematic approach has been proposed for the
decomposition of the overall set o- functional requirements
into sub-problems to form a design structure that will exhibit
the key characteristics of good design: strong coupling within
sub-problems, and weal coupling between them.

Recent work in the Systematic Design Methodology project
has led to certain extensions to the basic representational
model used therein. This report presents a model-oriented
normative cost-benefit of the Systematic Design Methodology.
A set of three sub-models, pertaining to specification impact,
procedural design impact, and maintenance/modification impact,
are derived. These models attempt to capture, in functional
form, the important quantifiable effects - both positive and
negative - that ought to occur as a result of developing a
system based on an optimal partitioning of requirements.

A numerical example is also discussed to better illustrate
the kinds of results predicted by the models, in a realistic
design scenario.

*I1i

TABLE OF CONTENTS

1. Introduction

1.1 Background and Related Work

1.2 Evaluating Design Methodologies .

1.3 Approach to be Taken

2. A System Specification Impact Model .

3. A System Procedural Development Impact Model

3.1 SDM Operational Aspects

3.2 Model Formulation

4. A System Maintenance/Modification Impact Model

5. An Illustration

5.1 Recapitulation

5.2 Example Calculation...........................

5.2.1 Specification Impact

5.2.2 Procedural Development Impact

5.2.3 Modification/maintenance Impact

5.3 Summary of Illustration

6. Conclusions.......................

REFERENCES

1

2

6

8

10

24

25

26

33

47

47

48

48

51

56

60

62

63

..0

..0 0

-1 -

1. Introduction.

The Systematic Design Mrthodology (SDM) is a decision

support-oriented methodology for aiding a software designer

in determining a good design architecture, or preliminary

structuring, of the functional requirements for the system

under design. Various aspects of the methodology itself

have been described elsewhere ((Andreu 78), (Huff and

Madnick 78ab), (Huff 79)).

In this report, an analysis of the economic impact of

SDM is presented. This analysis is embodied in a normative,

conceptual cost/benefit model (actually, a set of three

"sub-models"). The model attempts to represent, in

functional form, the important quantifiable results - both

positive and negative - that would be extected to occur as a

result of adopting and using SDM in software design

projects.

Three major categories of beneficial impact are

examined:

a) system improvements resulting from more accurate and
appropriate requirements definition;

b) reduced time and cost for detailed design and
implementation ("procedural design") resulting from
lower communication and control overhead achievable
through an improved system partitioning;

c) reduced cost for making later modifications to the
final system, resulting from reduced inter-module
"ripple effect."

- 2 -

The major category of detremental impact addressed here

is that of costs (essentially staff time) related to the

carrying out of the SDM activities that would not otherwise

have to be carried out.

While there are potentially many other categories of

costs and benefits that might be attributable to the use of

a design methodology such as SDM, it is believed that those

identified above effectively capture the first-order impact.

Other potential impacts are either so intangible as to be

unmodellable quantitatively (e.g., the psychological impact

of the methodology upon the system designers), or are of a

marginal magnitude relative to the above categories (e.g.,

the impact of SDM on the code debugging process).

Calculations for a hypothetical but realistic example

are carried out to illustrate the nature of the model

further.

1.1 Background and Related Work.

A number of authors have stressed the shifting nature

of the economics of computer-based systems (e.g., Dolotta,

et.- al. 76). While the cost of computer hardware, notably

logic and memory, continues to fall at a rate exceeding 20%

per year, costs of software development are moving in the

opposite direction, nearly as fast (Wasserman, et. al. 78).

The dramatic decrease in hardware costs is related to the

steep learning curve for micro-circuit fabrication

---3 -

techniques, and to the economics of mass production. The

very first Intel 8080 microprocessor "cost" about $400

million, but the second and subsequent copies only cost

about $0.27!

In contrast, productivity improvements in the systems

design and programming fields have come much more slowly.

The central objective of the ten-year-old software

engineering field is to develop new ways of "manufacturing"

computer software systems that will make possible

productivity gains comparable to those being achieved in the

hardware side of the industry. Nonetheless, Boehm's

analysis of software production for the Air Force (Boehm 73)

indicates that typical software costs for major systems may

approach 90% of the total system (hardware plus software)

cost in the near future, as shown in Figure 1.1.

While progress in software engineering has been

considerably less dramatic than in the hardware area, some

important advances have occurred. There is also a

substantial body of reserach presently under way. An

important outgrowth of these facts, not yet widely

recognised, is the need for software "research on research":

for the development of methodologies, models, techniques,

etc. for evaluating the successfulness of the various new

approaches to software design and development. It is this

need that the present study addresses.

The literature pertaining directly to evaluation of

software design/development is almost nonexistant. However,

- .- 4-

Percent of
Total Costs

Hardware

Software

1955 1970

Year

Figure 1.1

source: (Boehm 73)

100

75

50

25

1985

- 5 -

some studies have been reported in related areas. Probably

the most frequent target of attention has been productivity

levels within the programming and system development

activities. Key studies include those of Aron (Aron 70),

Wolverton (Wolverton 74), Putnam (Putnam 78), and Walston

and Felix (Walston and Felix 77). These studies have

basically addressed two main concerns:

a) what is programmer (developer) productivity, and how
ought it be measured?

b) what factors influence productivity, and how?

Walston and Felix, for example, have identified and ranked

29 different influencing factors, using as a productivity

index the ratio delivered source lines of code to total

effort in man-months.

Another set of studies have addressed the system

development cycle. Many of these studies present normative

frameworks, extracted from the authors' experience; for

example, (Cooper 78), and (Cave and Salisbury 78). Others

have developed models of the system development process, and

use them to try to better understand the effects of various

parameters on the process, and to serve as the basis for

process planning and control methodologies (e.g.,

Putnam 78).

A few other studies address specific stages of the

system development cycle - for example, software testing

(Bate and Ligler 78), or system maintenance (Lientz,

- 6 -

et. al. 77). Most of these st'udies also attempt to identify

the important independent and dependent variables of the*

associated process, to develop models relating the sets of

variables, and to analyze the models so as to gain further

Insight into the nature of the process.

1.2 Evaluating Design Methodologies.

As stated earlier, there is a conspictuous void in this

literature, namely, studies of the economic and other

impacts that system design procedures have on the

development cycle, as well as upon the containing

organization. A number of new ideas about how to design

software effectively, including development of new

conceptual frameworks, methodologies, and tools for design,

have recently appeared. Examples of these include:

- Structured Design (Stevens et. al. 74)

- HIPO (Stay 76)

- SREM (Davis & Vick 77)

- PSL/PSA (Teichroew & Bastarache 75)

- SADT (Ross & Schomann 77).

Most of these schemes are quite new, however, and there has

been almost no effectiveness, or cost/benefit, evaluation

studies reported for them. Reasons for this include:

- the newness of the methodologies themselves - there
simply hasn't been time yet to undertake serious
evaluation;

- 7 -

- the problem of what to evaluate - i.e.,. measurement
of software design

- the question of how to evaluate - whether via models,
empirical testing, user attitude survejs, or other
means.

Particular questions depend uron the scheme being

evaluated. However, speaking generally, there are two main

approaches that may be taken to design methodology

evaluation: normative, and descriptive. The normative

approach may be described as follows. In theory, a design

methodology X should result in certain kinds of design and

related improvements, and incur certain costs. The

normative evaluation task involves developing theoretical

models of the benefit and cost impacts of the methodology,

then to explore the methodology's potential impact on the

system life cycle economics using the models.

The descriptive approach, in contrast, is concerned

with observing and studing the 'actual use of methodology X.

In other words, a real (or possibly experimental) system

design group using the methodology would be monitored by the

evaluator, with the objective of isolating practical

benefits and costs. Much of the gathered data would

presumably be subjective, based on opinions and judgments of

either the designers, the evaluator, or both. Evaluation

analysis would also be subjective ("it seemed to be

easier ... "), but might also involve standard statistical

testing techniques.

-8-

A major difficulty with descriptive evaluation would be

the fact that such studies should be longitudinal over the

entire system life cycle (typically, ten years or more), as

an important potential benefit of most design methodologies

should be easier or better maintenance/modification

activities. This effect would not be observable during the

main development phase. Consequently the time to conduct a

complete study would be rather extensive, and the costs

quite high. This, of course, is yet another reason for the

absence of such studies.

One other difficult issue regarding evaluation regards

the appropriate base case. For instance, ought design

methodology X be evaluated against the use of no formal

methodology, or against the use of some other methodology Y.

In the best possible world, multiple pairwise comparisons

would be carried out, between X and each other appropriate

"competitor" methodology. This approach is, clearly, far

too expensive and resource-consuming for all but the

wealthiest of organizations (e.g., the U. S. Department of

Defense) to pursue.

1.3 Approach to be Taken.

The present study, being exploratory, takes the

normative approach, and addresses the "null" base case.

That is, the objective of this report is to identify and

model the key benefit and cost issues that ought to arise as

a result of using the Systematic Design Methodology.

- 9 -

Evaluations are made against t'he "no methodology" case as a

base.

The key arguments and results of this analysis are

presented in the next three sections. Each section

addresses a different aspect of system design and

development that the Systematic Design Methodology impacts.

In each case, verbal arguments describing the nature of, and

resources underlying, the impact category are given. Then

the key effects in each case are represented in a functional

model. This gives rise to three different sub-models.

Section 5 is devoted to "pulling together" the sub-models,

and addresses the ways in which they interrelate. Also, a

brief hypothetical example illustrating an application of

the models is given there. Section 6 contains concluding

comments.

2. A System Specification Impact Model.

A common refrain from system developers, when asked why

their systems are late, over budget, or even complete

failures, L.as been that they were unable to secure adequate

user participation in the development process. In fact, a

survey of over 100 implementation success factor studies by

Ginsberg found "user participation" to be the single

universal factor (Ginsberg 74).

While there are many reasons why user participation is

important in system development, perhaps the most important

reason concerns system requirements correctness and

completeness. The manifold difficulty of eliciting a user's

complete set of requirements for a target system has been

commented upon and studied by a number of researchers (e.g.,

Bell and Thayer 76). Others, such as Boehm, have argued

strongly that not enough time is spent during the initial

requirements elicitation and verification phase of the

development process. Boehm calculates that there might be

as much as a threefold return to extra effort expended

during the early requirements analysis activities

(Boehm 74).

One of the important impacts of SDM concerns

requirements definition. SDM is "driven" by the set of

system functional requirements; they play an even more

central and crucial role in the SDM than in the usual system

- 10 -

- 11 -

development process. This comes about for three different

reasons:

a) the need to develop r',quirements in statement form,
which meet the SDM criteria (unifunctionality,
implementation independence, common level of
abstraction; see (Huff and Madnick 78a));

b) performance of interdependency analysis;

c) interpretation of a partitioning of requirements as
a system architecture (Andreu 78).

Each of these are key activities within the Systematic

Design Methodology. In carrying out each activity, the

attention of the user and system developer are jointly

focussed, in a relatively rigorous, structured way, upon the

user-level (non-procedural) functional specifications of the

target system. It is through this "forced," structured

focussing of attention brought about by the need to carry

out the steps of the methodology that missing requirements

are identified, requirement inconsistencies spotted and

resolved, and requirement statement errors discovered and

corrected.

There is nothing magical about why this should occur.

In essence, any approach that necessitates a careful, step-

by-step analysis of requirements in such a structured

fashion ought to achieve many of these same results. Within

the SDM specifically, however, the interdependency analysis

phase, and the partitioning interpretation phase, both

direct extra light upon the kinds of problems that are

- 12 -

frequently observed to occur in this work. Interdependency

analysis requires the designer (and user, to a lesser

extent) to examine requirement reinforcements and tradeoffs

on a pairwise basis, thereby bringing to light requirement

inconsistencies and errors that might be overlooked if

attention ihere not directed to such a specific detail level.

Architectural design generation involves a general

"reasonableness" assessment of the various groupings of

requirements produced by the SDM graph decomposition, and

experience has shown that it also helps to highlight missing

requirements and requirement errors (Andreu 78).

Prior to presenting the impact model for requirements

specification, certain underlying assumptions should be

discussed.

Assumption 1. The requirements analysis and assessment

activity transpires in a series of identifiable "passes."

This assumption is borne out empirically, and also through a

consideration of the SDM operational mechanisms. For

example, a typical SDM-oriented development effort might

follow the passes shown in Table 2.1.

Assumption 2. The various "passes" tend to be roughly

equal in terms of expented effort, because of the tendancy

of people to set a series of fairly easily reachable short-

term goals for their work. From this it follows that each

pass would require roughly the same amount of elapsed time.

Time is a more appropriate metric than effort (e.g., man-

days), as the requirement assessment tasks tend to be

- 13 -

PASS ACTIVITY

1 Initial problem discussion.

2 Formal expresison of initial requirements.

3 Assessment of initial requirements, and
generation of revised requirements.

4 Initial interdependency analysis - identification
of additional errors and inconsistencies.

5 Discussion and generation of revised requirements.

6 Interdependency analysis, decomposition, and
determination of initial architecture - discovery
of more errors, missing requirements, etc.

7 Final revision to requirements.

Table 2.1

- 14 -

somewhat insensitive to effort level. The key.reason for

this is that preliminary design is almost always the product

of a small number of individuals, frequently a single

designer. To the extent that.most design-related decisions

must "funnel" through a very small cadre, adding additional

help doesn't speed things up very :.uch.

Assumption 3. Conceptually at least, there exists from

the outset a "perfect" requirements specification - one that

specifies all those requirements desired by the system's

eventual users, contains no errors, is completely

consistent, etc. At any point in time, this perfect set of

requirements may be factored into three subsets: a set of

recognised requirements, a set of unrecognised by "knowable"

requirements, and a set of unrecognised and "unknowable"

requirements. The first set includes those requirements

that have been correctly elicited. The second set includes

requirements waiting to be elicited (if the designers or

users could only think of them, they would recognise them as

necessary), as well as requirements corrections to

previously elicited but incorrect requirements. The third

set includes those requirements and corrections that at this

time would not be recognised as such even if they were

brought to light.

Assumption 4. During requirements analysis step i (see

Table 2.1), some proportion pe of the remaining knowable

requirements "errors" is detected. Here, "errors" should be

interpreted broadly, to include incorrect statements,

- 15 -

inconsistencies, missing requirements, etc.

The argument for proportional (as opposed to, say,

linear) error discovery rate follows from empirical

observation: Bell and Thayer's experiments indicate that,

essentially no matter how long and hard requirements are

contemplated, there will always be some remaining errors.

Error decline seems to be inherently an asymptotically

decreasing function of time (i.e., of number of "passes").

Also, the "satisficing" phenomenon first explored by Cyert

and March (Cyert and March 64) supports this argument. They

pointed out and supported the fact that people generally do

not strive for the "very best" in what they do, but rather

generally work hard enough at a given task to obtain

"satisfactory" results, then.rest awhile. In the present

context, for instance, a system designer would probably not

(during a given pass) seek to determine every last

specification error, but rather, having unearthed a certain

quantity of such errors, would relax the intensity of his

analysis. A "satisfactory" result during each succeeding

pass would include a smaller number of specification errors

detected than during the preceding pass, which is consistent

with the assumption of some proportion of errors detected

each pass.

It will be assumed for simplicity that the proportion pe

for pass i is more or less constant from one pass to

another. .We will then take pe as the common proportion of

remaining errors turned up during each pass. The nature of

- -~16 -

this parameter could be studied empirically in particular

design situations.

We may now construct a model of requirements error

reduction based on the foregoing assumptions. We let

Ek0 = the initial level of knowable

specification errors, and

pe = the proportion of errors detected

each pass,

then at the end of pass 1 an additional PeEko errors will

have been determined. Remaining errors are now EkO(lpe).

Similarly, at the end of pass 2, remaining errors will be

Eko (lPe)2. In general, at then end of pass i, there will

be E (1-e knowable errors remaining.

Now if we take the unit of time to be days, and assume

each pass takes about dr days, then we may write

Ek(t) = Ek0(l~Pe) rt

where Ek(t) = the number of knowable errors

in the requirements specification at

time t.

To complete the error reduction model, a few additional

. - 17 -

definitions are required. Let

E = the (constant) number of unknowable
u

requirements errors;

sr = the average staffing level (both users

and system analysts) incurred during

the requirements analysis and

preliminary design phase;

c = the average daily cost per staff member
r

employed in this activity (in dollars

per man-day);

c = the average cost per error still

remaining in the requirements set.

The final item, c , would probably be difficult to determine

directly in practice, although reasonable surrogates are

available. Boehm, for instance, has indicated that the cost

of fixing errors after a system has been built to run as

high as $4000 per line of code. Rough estimates of ce could

be obtained empirically by asking users what they would pay

for various functions determined to be necessary after the

fact.

Using the foregoing terminology, three equations may be

written.

-18 -

(1) Cost of remaining errors at time t:

CE(t) . c [E + EkO (pe)drt

(2) Accumulated cost

analysis at time t:

of staff devoted to SDM

Cs(t) = Crsrt

(3) Total cost (cost of remaining specification

errors plus cost of staff time)

CT(t) = CE(t) + Cs(t)

A sketch of these curves is given in Figure 2.1.

From this it is possible to define the optimal amount

of time, t*, that ought to be devoted to requirements

analysis:

Total cost CT(t) = CE(t) + Cs(t)

e cE + EkO (l~pe) r] + sr cr t

Applying calculus,

dC(t) dt
S = ceEk e) r ln(l-p) + s c = 0

dt e r r

... (2.2)

... (2.3)

- 19 -

Cost

c Ee kO

EW

c E
e u

E EkO (p) r

t=t* Time
(days)

Figure 2.1

20 -

Solve for t :

-s rcr
in d c 1E (l-pr e kO e

t*=
d ln(1 - pe)

The location of t is also shown in Figure 2.1.

A reasonable question at this point would be, why we

choose to include only the foregoing specification error

reduction cost factor in the optimization calculation. The

answer is that it is the only payoff factor of the three

sub-models being considered here that is significantly time-

dependent. Put differently, assuming SDM is used at all,

the payoffs to be discussed in Sections 3 and 4 will, in

theory, occur. Only the payoff due to specification quality

improvement depends, to an important extent, on how much

time is spent on the requirements analysis activity.

The error reduction sub-model may be used to show how

SDM would improve the requirements analysis phase. In

general, the problem with requirements analysis has been

that, due to its unstructured nature and due to a lack of

user participation, far too little time is usually spent on

it In the course of a typical systems development project.

In such cases, the model's operating point would lie well to

the left of the optimal point t* for CT(t). As shown in

Figure 2.1 SDM, by structuring the requirements analysis

activity and necessitating additional user input, would tend

to move the operating point rightward. The value CT(t*)

- 21 -

specifies a lower bound on the associated cost reduction

forthcoming through better preliminary system specification.

The effective dollar benefit from the requirements

analysis model may be expressed as

d t
BT(t) = ce Q (1 (1 -7e) r)...(2.4)

This is just the reflection and shift of the cost-of-

knowable-errors curve from Figure 2.1. The earlier analysis

may be confirmed by noting that the optimal operating point

t* must occur at the point where marginal cost equals

marginal benefit. From before, the marginal cost is just

Srcre Also, the marginal benefit, from (2.4), is

dB r(t) d t
dt = ceEk0(Pe)r dr ln(l-pe).

Equating these two functions leads to the same result for t*

obtained earlier.

The value of net benefit provided by SDM depends on the

actual pre- and post-SDM operating points as well as values

of the other parameters. In general, at operating point t,

the net benefit will be

NB(t) = BT(t) - CS(t)

d t
= ceEk0 e) r) - crSrt

- 22 -

Finally, if we assume that -SDM application moves the

operating point from t' to t, the net improvement in cost

will be:

U(t' ,t) = NB(t) - NB(t')

d t
SCeEFk0 ((Pe) r

+ Crsr(t' - t)

-p d. t
- e1p) r]

These relationships are sketched in Figure 2.2ab.

- 23 -

Costs

cEkce EkO

Net
Benefit

m - -

t
t=t*

(marginal cost =
marginal benefit)

Figure 2.2(a)

At
net benefit to additional analysis time

Figure 2.2(b)

Time

Time

- 24 -

3. A System Procedural Development Impact Model.

The second major area of SDM impact concerns the time

required to carry out the procedural development (detailed

design, pr.gramming, and testing) phase of the system life

cycle. As a number of authors (e.g., Brooks 75, Scott and

Simmons 75) have pointed out, a major impediment to these

activities is the need for substantial coordination and

communication among the various individuals and groups of

people involved. Indeed, Brooks has cited this need as the

reason why "men and months are not interchangable" in system

procedural development activities.

There are two primary costs that arise as the need for

coordination and communication grows:

a) the cost of additional time that the development
staff must spend in these activities, which detracts
from productive development;

b) the cost of additional layer (s) of project
management overhead needed to organize and manage
the inter-group coordination and flows of
communication.

An example of (a) would be the time spent in intra-group

meetings devoted to ironing out issues and misunderstandings

that arise from interdependencies between the various tasks.

An example of (b) would be the resources consumed in that

portion of-the formal project management process devoted to

managing intra-group issues (e.g., designing a properly

- 25 -

sequenced module testing plan).

In order to see how the Systematic Design Methodology

affects the communication and coordination costs of system

procedural development, we briefly review some central

operational aspects of SDM.

3.1 SDM Operational Aspects.

In its graph partitioning procedure, SDM groups

together system functional requirements in such a way as to

produce weakly connected system modules. The partitioning

objective function, M, consists of a difference between two.

ter.ms:

= S - C,

where S is the sum of the partitioned subgraphs' internal

strengths, and C is the sum of the- coupling between

subgraphs. More specifically,

n

S =S

i=1
n-1 n

C =C

Si is the strength of module i, and C is the coupling

between modules i and j. These terms are, in turn, defined

out of the requirements graph, and basically involve the

normalized richness and strength of the requirement links

within a module, and between modules, respectively (see

(Huff 79) for more details). While seeking to maximize M is

- 26 -

not exactly the same as minimizing i.nter-module.coupling,

the effects are closely related. Identifying modules of

high strength tends to arrange requirements that are richly

and strongly interconnected together in the same module. In

a sense, this is the "dual" objective to minimizing

coupling, i.e., to arrange modules so as to minimize

interconnectedness between them. Maximizing S and

minimizing C thus both drive toward reducing inter-module

complexity, in one case by "lumping" complexity inside

module boundaries, in the other case by drawing module

boundaries so as to keep at a minimum the extent of

complexity that is "generated" as a result of the module

creation process itself.

3.2 Model Formulation.

Now, we can generalize the notion of a good

requirements partition in order to develop a model of the

communication/coordination cost impact. We define a

variable D as the density of module interconnectedness. A

practical measure of D could be the value of system

coupling, C, as discussed above. Clearly, the impact of D

upon the two factors identified is direct: that is, as D

increases, each of these factors will increase also. The

graph in Figure 3.1 shows a hypothetical set of curves that

depict these relationships.

The first function, relating interconnection density to

additional "non-productive" staff time, is illustrated as a

- 27 -

nonlinear function that "blows' up" at a certain high level

of density. As interconnection density D increases, a

larger and larger proportion of staff time must be devoted

to the coordination and communication functions, thereby

shrinking the time available for productive development

(given some: initial timetable) toward zero. Conceptually at

least, there exists some (high) level of problem complexity,

embodied as a large D value, such that the coordination and

communication needs among system development staff use up

essentially all available time.

Evidence for this phenomenon is cited by Haney

(Haney 76) in the context of development and maintenance of

a Honeywell operating system, and by Belady and Lehman, in

the context of the IBM OS/360 operating system (Belady and

Lehman 76).

There is an interesting parallel between the

asymptotically growing need for coordination and

coiiuriicattion discussed above, and the phenomenon of

"thrashing" in a demand-paged virtual memory system. In the

latter case, a "high D value" would correspond to a lower

level of reference locality for a given set of active

processes. A process with a low level of reference locality

is essentially one in which the various sub-parts are

"tightly interconnected" (in terms of execution references

over time), much like a tightly interconnected set of

modules in.a system architecture that exhibits high D. As

locality decreases (D increases) , the system overhead costs

- 28 -

rise in a distinctly nonlinear, accelerating fashion,

similar to that suggested by Figure 3.1.

In contrast to the first function, the relationship

between extra development management overhead and D is

hypothesized to be one of linear growth. The evidence for

this comes indirectly, from researc.hers such as Wolverton

(Wolverton 78), who suggest that such overhead grows

linearly with project size. While D does not necessarily

purport to measure size directly, it is reasonable to argue

at a first approximation that a doubling of

interconnectedness complexity should demand more or less

proportionally equivalent management response to that

demanded from the size doubling. For example, it requires

some, but not a disproportionate amount, of additional

project management time to convene a meeting for four team

heads as between two, or to send design change documentation

to four teams as compared to two.

A simple functional form that may be used to describe

the first relationship is

S (D) = KP/(D* - D)

where D* = the density value at which

useful staff work becomes impossible,

Kp = a situationally dependent parameter,

- 29 -

Sp(D) = total' staff time required for

nonproductive work resulting from a level

D of logical dependence among design

sub-problems (measured in man-days).

Similarly, the functional form for additional project

management overhead may be expressed as

M (D) = pD

where L= a situationally dependent parameter,

and Mp(D) = extra project management time in

procedural development necessitated by

a level D of logical dependence among

design sub-problems (man-days).

It is not suggested that these functions S (D) andp

M (D) are fully representative for all values of D. In

particular, D values outside the range [0,D] are clearly

inapplicable in this model. But even within this range,

there exists a smaller "relevant range" within which the

functions - especially the first - ar-e really hypothesized

to hold. This restricted relevant range is typified in

Figure 3.1 with dashed lines.

The first-order impact of SDM on system procedural

development time may then be expressed in terms of these

- 30 -

Staff time
to Coord./
Commun.
Overhead

(man-days)

Development
Staff Overhead

S (D)relevant

relevant
range

D* Module
coupling
density, D

Figure 3.1

I

- 31 -

- functions. Basically, the effect of SDM is to reduce D for

a given project, relative to what it would be if SDM were

not used. Suppose the "without-SDM" density value if Do'

and the "with-SDM" value is DQDM < Do. Then the reduction

in additional staff time would be

AS = K -
P D*-D D* -DSDM

K D0 - DSDM

(D* - D0) (D* -DSDM)

and the reduction in additional project management time

would be

AMP =Kp(Do -DSDM

Then, ifC is the average staff cost per unit of time, and

CMp is average project management cost per unit of time, the

dollar impact of SDM on development may be expressed as

Ip (DO ' DM) = CSpASp + CMpAMP

A slightly different approach to measuring I would be

to estimate the percentage reduction in D that might occur

as a result of using SDM. If experiments were to indicate,

- 32 -

say, 100kg percent impact on D, then the impact. on costs of

using SDM could be written as

I (D 0 ,D) =
C K PD0 (1-k)
(D*-D 0)(D*-D) M

+ C L D (1-k) .
MpMO0 p

Finally, it may be appropriatL to rewrite this

expression based on DSDM rather than Do. If we let 100k; be

the percentage amount by which D would increase were SDM not

used (assuming, in fact, that it was used), then

DO= (I + kp)DSDM

and the cost impact expression becomes

C K k'D
- Sp p p SDM
(D*-(l+k')DsD) (D*-DsD)

+ 'CML (1+k')DD
Mp p p SDM*

An exercise applying the procedural development impact

model is given in Section 5.

- 33 -

4. A System Maintenance/Modification Impact Model.

The third major potential area of impact for the

Systematic Design Methodology concerns the cost of

maintaining - and, especially, modifying - large software

systems. The rapidly inflating costs of system

maintenance/modification have been commented upon by

numerous authors (e.g., (Boehm 75), (Yau 78)). The need to

devise ways of designing and constructing systems so as to

reduce the maintenance load and ease the costs of later

modification has been widely recognised. One study, for

example, has estimated the production cost of a software

product to be about $75 per line of code (LOC), while the

maintenance cost per LOC of the same system was estimated at

$4000 (Boehm 75). A variety of studies have indicated that

anywhere.from 40 to 80 percent of the original system

development cost are eventually spent on "simple"

maintenance for the system; when all post-implementation

work (including non-trivial modifications) is taken into

account the figure rises to 200 to 400 percent (Thayer 77;

Goetz 78). At any rate, while often exhibiting rather wide

variances, these studies unambiguously indicate that

software maintenance and modification functions are assuming

increasingly high profiles, and that good system design

practice must take this fact fully into account.

It is common practice to differentiate between

- 34 -

"maintenance" and "modification" of software systems. The

former term refers to the fairly large number of relatively

minor changes, bug fixes and improvements that may be made

to a software product following its initial release.

Examples include patches to fix minor errors, or the

addition of an extra report to a batch-oriented DP system.

In contrast, software modification generally refers to

more significant changes made to the system - changes that

usually entail some amount of redesign, and that impact most

or all of the system's users. Major changes are usually

undertaken to add significant new functions to the system,

or to improve the operation of a major portion of the

system. A prime example is a new release of a vendor's

operating system (e.g., IBM's OS/360).

For the purpose of assessing SDM's impact, we will

focus primarily on the modification function. More

precisely, we will be concerned with those changes to the

user-visible functions provided by a particular system -

changes which are of significant enough scope that impacts

on multiple system modules, or major components, are likely.

While arguments could be made that SDM would impact both

maintenance and modification costs, the latter impact is

almost certainly the more significant.

The primary cause of system modification is the

recognition on the part of the user clientele for changes to

the functions provided by the system, including such things

as addition of completely new functions, major enhancements

- 35 -

t.o present functions, important improvements in efficiency

(response time, turnaround time, etd.), availability,

reliability, etc., and changes to fix major system problems.

One primary mechanism through which system modifications

exert their apparently disproportionateiy high economic

impact is the rippling effect that such changes have on the

system. Changes to one system component very often result

in the need to make subsidiary changes to other modules.

The propagation of these indirect changes results in

telescoping of the effect of the original change: a single

change can cause other changes, which can in turn cause

still other changes, etc. When viewed in this way, the

possibility of an instability phe5nomenon - a single change

generating a never-ending sequence of subsidiary changes -

presents itself. In fact, evidence exists that such an

unstabe situation could occur, and may have been closely

approached in certain real-world systems (Haney 76; Belady

and Lehman 76).

Since the changes to be implemented are not known a

priori, it is not possible to model the change propagation

effect deterministically. However, some simple

probabilistic arguments provide considerable insight.

Consider two system modules, M. and M,. Using the SDM
1 J

framework, these modules are "linked" to the extent that the

requirements represented within one module are

interdependent with the requirements represented within the

other. The greater the number of such interdependency links

- 36 -

relative to the size of the module, the greater the

liklihood that a change to one or more of the requirements

in the first module will impact (cause a change in) the

other.

We define:

r . = the number of requirements represented in

Mi that link to requirements in Mj;

wi = the average weight on the requirement links

between modules Mi and M.

a = a scale parameter, discussed further below:

n = the number of requirements in Mi;

pij = the probability that a change to Mi

necessitates a change in Mj.

Then we propose that, to a first approximation,

p = ar w. /n (4.1)

This relationship presumes that most changes to a module are

directed toward a single functional requirement within that

module, rarely toward multiple requirements. It also

assumes that changes impact each contained requirement in an

- 37 -

equally likely manner. Of course, neither assumption can be

strictly true. For instance, certain requirements may be

more "central" than others, and thereby. stand a relatively

greater chance of being impacted. Nonetheles:, the

representation above is a reasonable fiist approximation to

the system maintenance error propagation phenomenon.

The expression for pigjincludes a scaling factor aig.

This factor mainly serves to quantify the effect that not

all changes to a function within a given module carry over

to other modules, even though its associated requirements

may have interdependencies to the other module. While

estimating each a individually would be difficult, it is

quite feasible to estimate an average value, say a, based on

the maintenance history for a given design group. Such an

approach is followed in the example of Section 5.

According to the above formulation, pij ; pji in

general. This is intuitively correct also: for example, if

n. > n., we would expect there to be a smaller liklihood of
2. 3

a change in M. impacting M. than vice versa.
1 J

From the above arguments, we can derive the "change

propagation liklihood matrix", P:

P = [p..]

The. (i,j)th entry in P is the probability that a change to

module i necessitates a further (new) change to module j.

The change propagation liklihood matrix can now be used to

- 38 -

study the cost impact of system modifications. Suppose at

some point in time a set of changes to the system is being

considered. Let

ai = the number of changes to

module i being considered.

The term a may be thought of as the number of known "bugs"

in module i at a point in time (where "bug" is to be broadly

interpreted - e.g., an incompletely implemented function

demanded by system users would be an example of a "bug").

Also let

A = [a , a2 , ... , a *

A is the vector of planned module changes; A will be termed

a "revision" to the system.

Now, the originally planned changes a,, a2 , ... , a
2 n

give rise to additional changes. If, for instance, there

are a. planned modifications to module j, this will generate

a jp expected number of changes to module 1, ajP2 changes

to module 2, and so forth. The overall expected impact of

the planned changes - the average number of "second-level"

changes - is simply the matrix product AP. The first

element of the row vector AP is the expected number of

second-level changes to module 1, etc.

The second-level changes themselves give rise to yet

- 39 -

additional changes, in a corresponding manner.. The expected

number of third-level changes to each module can be

calculated as

2
(AP)P = AP

Conceptually, this telescoping of module changes

continues ad infinitum. Mathematically, the total expected

number of changes to each module may be calculated by

summing the resulting infinite series,

T = A + AP + AP2 + AP3 +

= A(I + P + P2 + ..)...(4.2)

If all the eigenvalues of the matrix P are real and lie in

the range (-1,1), then a basic result in matrix algebra

(Strang 77) says that this matrix series converges, to the

value

T = A(I - P) (.3)

Essentially, expression (4.3) summarizes the ripple effects

that occur as a result of modifications to modules of a

large system.

This basic model of module connectivity can be now used

to model the impact of SDM on system maintenance. First of

all, the essential effect of SDM decomposition analysis is

- 40 -

to determine an optimal, or nearly optimal, decomposition of

the system requirements with respect to the decomposition

objective function, M. As discussed in Section 3, this

leads to requirements partitionings with minimal inter-

partition coupling.

We will assume that, as a first-order result, the

coupling between requirements represented within modules i

and j is reduced by a percentage 1006..% as a result of
1)

using SDM. Alternatively, the inter-module liklihood of

change propagation, p.., is changed to a new value

p = 6 .p. . Thus the new change propagation liklihood

matrix is then

6,Sp 1 d1n p ln

SDM

onlpnl --------. 6 nn nn

If we further assume for a moment the special case wherein

all 6i are equal to a common value 6 , then we have

PSDM - 6 p.

Now, if the series

I + P + P2 + (44)

converges, then so does the series

- 41 -

SDM SDM +

The proof of this follows.

Proof. Si-ice we assume that the first series converges, the

eigenvalues of P must all be real and lie in the range

(-1,1). Now, the eigenvalues of P are the values of A that

solve the equation

I P - Ai = 0 (4.6)

On the other hand, the eigenvalues of PSDM are solutions

to the equation

IPSDM ~ SDMII

6P - xSDM-I

= 0 , or

=0.

This is equivalent to

6(P - SDMI)1

I - yIi =P

= 0 , or

...(4.7)

where P = XASDM/ 8 . But equation (4.7) is identical to

A(= XSDM/6 ,or XSDM ~ 6

... (4.5)

(4.6) above. Consequently,

- 42 -

Since16|< 1 and|A| < 1, it follows that IASDMI < 1 . But

this is just the necessary and sufficient condition that

series (4.4) above converges.

Therebore it is clear that the effect of reducing all

the module change propagation liklihood values can only

serve to reduce the ripple effect and make the modification

process converge faster.

Now we define the average cost of making a change to

module i as c.. The vector of such costs is

C = (cl' c2 , c3 , ... , c

The total cost of all first-order changes may then be

expressed as

C = AC =a c + a c + ... + a c .
1 1 1 1 2 2 nfn

The value C1 may be viewed as the "optimistic" cost - i.e.,

the cost of carrying out a revision (set of changes) to a

software system under the (naive) assumption that P = 0.

Alternately, if the ripple effect is taken into

account, the total cost CT of the revision is expressed as

- 43 -

C =C + C + C +T 1 2 32
= AC + APC + AP C +

= A(I + P + P + ..)C

= A(I - P)~ 1C . . . (4.8)

This view of the cost of the revisIon A might be termed the

"realistic" cost, as opposed to the foregoing "optimistic"

cost, in that it takes into account the ripple effect.

Finally, the "realistic" cost of the revision A under

the assumption that SDM was employed would be

C (SDM) = A(I - P)~CT SDM

where P (pi (pij) as defined earl ier .
SDM iJ 1

Hence the cost reduction for the revision A that could

be attributed to SDM would be:

Cy - C T(SDM)

= A(I P)- C

= A [(I - P)~

= ABC

- A(I - PSDM C

- (I - P)~] CSDM

... (4.9)

where we define B = (I - P) - (I - PSDM '

Some insight can be gained into the nature of this

function by considering some special cases. Suppose the

change propagation liklihood value p was

- 44 -

P. if i = j, and

p.. =

0 otherwise.

Then a single modification made to any one module results in

a total number of expected changes to that module of

1 + p. + p2 + ... = I/(l - p.)
1 11

For instance, if there is a 10% chance of a change in

module i resulting in another change in the same module,

then p. = 0.10, and the expected number of changes resulting

from a single change to module i would be 1.1111... .

Now assume that there are n modules, and p., = p for
1)

all i,j . That is, the liklihood of change propagation

between any pair of modules if 100p%. Then a single

original.change to one module generates np expected second-

order changes, each of which generates another np expected

third-order changes, etc. The total number of changes is

then

I + np + (np) 2 + (np) 3 + ... = 1/(1 - np)

This expression reflects the impact of both change

propagation liklihood p and system size, in terms of number

of modules, n.

There is an asymptotic limit at the point np = 1, or

- 45 -

p = 1/n, as shown in Figure 4.1. This limit.represents the

point at which the system is large enough and interconnected

enough that a single change will ripple forever throughout

the system - the number of generated changes "blows up."

This blow-up phenomenon is closely related to the point

D = D* discussed in the Procedural Development Model of

Section 3.

The foregoing analysis indicates the large payoff to

reducing the degree of interconnection of a system's design,

even by a small amount. Haney (Haney 75) points out that

informal experiments with the Xerox Universal Timesharing

System showed each change to be causing approximately 10

additional changes. This system had about 22 major modules,

so that

1/(1 - np) = 1/(1 - 22p) = 10 + 1 = 1.

Hence p = 0.04 . If the interconnection propagation

liklihood could have been reduced by 25%, to p = 0.03, the

number of additional changes following a single change would

have dropped from 11 to 3! This would obviously lead to

substantial- savings in maintenance costs.

Additional illustration and siscussion of this and the

earlier models is given in the following section.

Total Changes

/ 1II
I

1/n
Change
propagation
liklihood

p

Figure 4.1

- 46 -

- ~47 -

- 5. An Illustration.

5.1 Recapitulation.-

In the previous three sections, three different models,

one for each of the major impact areas of the Systematic

Design Methodology, were described. To recap briefly, the

three areas are:

a) system specification - correctly .identifying and
stating as many of the "knowable" functional
requirements as possible, within the constraints of
time and manpower available;

b) system procedural development - carrying out the
detailed design, coding, and testing of the system,
together with the accompanying load of cdordination
and communication overhead among members of the
development team(s);

c) system maintenance/modification - making necessary
or requested alterations to the functions provided
by the system - correcting errors, adding new
functions, etc. - while simultaneously making sure
that all secondary, tertiary, etc. changes to other
system modules are also identified and carried out.

The three models developed in the previous sections are

different from each other in certain ways. For one thing,

the first two are deterministic, while the third contains

probabilistic elements. Also, in the first model, time is

the key independent variable, whereas in the second the

focus is on the density of module interconnectedness, and in

the third, the number of changes to be made to different

system modules together with the probabilities of change

propagation. All three models attempt to capture the

effects of the modelled independent variables and parameters

- 48 -

on cost - i.e., various components of cost are the dependent

variables in the different models.

5.2 Example Calculation.

In order to further illustrate the functioning of the

SDM impact models, a sample calculation for a hypothetical

system is presented in this section.

Consider a system design problem with the following

characteristics:

a) There are 200 functional requirements making up the
system's user-level functional specifications;

b) The preliminary design has factored the requirements
into 10 partitions, each containing an average of 20
requirements.

c) In the base case (pre-SDM) partitioning, on the
average, any given functional requirement is
interdependent with 10 other requirements. The
average interdependency strength factor is 0.60.

We will consider each of the three impact models in

turn.

5.2.1 Specification Impact (Model 1).

To carry out computations using this model, we need

numerical values for the terms EkO, Eu, pe, dr, sr, cr, and

c . The following values will be taken as reasonable

estimates for present-day technology and salary scales:

- 49 -

PARAMETER

EkO

EU

pe

VALUE

50

20

0.2

d
r

S
r

c
r

c
e

With these

100

1000

values, the

UNITS

knowable errors (initial level)

unknowable errors

(unitless - proportion of

errors detected per pass)

days/pass

man-days/day (average staff

level)

dollars/man-day

dollars/error

equations for model 1 are

C (t)S

CE(t)

C~ (t)

= s c t = 2000t
r r

= ce[Eu + Ek - er t

= 1000[20 + 50(1 - 0 .2)3t]

C (t) + C (t)
S E

... (5.2)

... (5.3)

These three equations are sketched in Figure 5.1

Further calculations show the optimal time spent in SDM

analysis is -Srcr
1n[d c E ln(l-p

- r en[-p,]
dr mu[-p e

= 5.2 days .(... (5.4)

Costs

$.x 000

C T) = cEt) + C (t)

40

CE(t) =20000 +50000(0.8)3

30

U'

-20

C (t) =2000t

10

2 4 6 8 Time

t*= 5.2 (days)

- 51 -

Thus, approximately two SDM passes are suggested as best for

minimizing total cost (requirements errors plus staff time).

The optimal t value is also indicated on the sketch in

Figure 5.1.

The resulting cost of analysis plus remaining

requirements errors is calculated Ps approximately $ 2 6 7 0 0

at t = t*. The net improvement at t = t* as compared with

t = 0 (no SDM analysis done) is

I(0,t*) = ceO[1 (1-pe) drt] +cst

= 50000(.969) + 10400 = 58860

5.2.2 Procedural Development Impact (Model 2).

If we now turn to examine the second model for this

problem, we see that we need estimates for the following

terms: D*, KP, LP, DSDM, Do' Sp, and CMp. Consider first

the D terms. In Section 3 we did not constrain the units of

D specifically, but merely defined D to be a measure of

module interconnectedness. For the present purposes we will

take D to be the per-module sum of the interdependency

weights on all the external (inter-module) requirement

interdependencies. This is an intuitively easy value to

work with, and demands no further assumptions regarding the

structure of the requirements graph (e.g., module coupling

estimates).

- 52 -

Now, using the data given earlier, each of the ten

modules contains (an average of) 20 requirements. Each

requirement links to ten other extra-module requirements,

with an average link weight of 0.60. Therefore,

Do (20 requirements/modfule)x(10 links/requirement)x

(0.60 strength units/link).

= 120 (strength units/module)

For illustrative purposes, we will now assume that SDM

analysis produces a superior partitioning of the

requirements, and results in each requirement linking to six

other extra-module requirements, with an average link weight

of 0.40. Therefore

D = (20 req./module)x(6 links/req.)x
SDM

(0.4 strength units/link)

= 48 strength units/module.

Next, we need an estimate of D*. A possible approach

to estimating the complexity limit D* would be to consider

the worst possible case - i.e., the case in which every

requirement linked to every other extra-module requirement

with a maximum weight. This would give rise to a D* value

of (20)x(9x20)x(l) = 3600. However, such an extreme case is

clearly not representative of realistic settings. At issue

regarding D* is the question of how complex, in terms of

- 53 -

module interrelationships,-a r'eal design scenario needs to

be before essentially all useful effort ceases - i.e.,

before "thrashing" fully sets in. To draw on the virtual

memory analogy again, thrashing can completely bottle up a

virtual storage computer system long before the theoretical

worst case (a page fault, or multiple page faults, on every

new instruction - see (Madnick and Donovan 76, page 498))

occurs. Therefore, for present purposes let us assume that

the "thrashing" level of D is D* = 200. In other words, we

will assume here that, if inter-module complexity were

roughly twice as high as in the base design case, almost all

designer time would be spent in coordination and

communication, with little or no project headway possible.

To calculate the parameter Kp , we would need to

estimate the per-man project overhead under D = 0. This

corresponds to each module design being independent of all

others. Under such conditions, there would still be some

asilc level of general coordination and planning overhead to

be incurred. For argument's sake we take this to be 50 days

per man over the duration of the project.

Under this assumption, at D = 0, we have

S (0) = K/D* = 50 days/man, so

K = 50(200) = 10,000.
p

The units Qf K are (staff days/man)x(weight units/module).
p

Finally we will estimate L9 by assuming that under the

-54-

base case design about 100 project management man-days would

be required. Therefore,

L = 100/120 = 0.83
p

The units of L are (management days/man)x(modules/weight
p

unit).

We take the per-diem staff and project management costs

as before to be

C sp
CMP

= 100 dollars/man-day, and

= 150 dollars/man-day .

With the foregoing data, the model's equations are:

S (D) = Kp/(D* - D) = 10000/(200 - D)

...(5.4)

M (D) = L pD = 0.83D --- (5.5)

The cost impact curves for Model 2 are given in

Figure 5.2. The points D and D are indicated, as are
0 SDM

the associated cost impacts.

The cost savings under the foregoing assumptions and

- 55 -

M (D)+S (D)
p p

m m mm m -nw mm m .

total man-
day impact

(D)

M (D)

50 100, 150
DSDM

Do

assumed SDM impact on D

Figure 5.2

300

200

100

- 56 -

estimates turn out to be:

I = C S + C M - 100(10000) (120-48) + 150(.83) (120-48)
p Sp p Mp p (200-120) (200-48)

= 5921 + 8964 = $14,885

Therefore, use of the design methodology reduces impact of

development overhead under the given assumptions by about

15,000 dollars.

5.2.3 Modification/maintenance Impact (Model 3).

Now we turn to the third model, impact on

modificaLion/maintenance. This model, being probabilistic

and matrix-oriented, is computationally somewhat more

complex.

In the present case, if we consider a typical module

pair, using the information provided earlier, we find that

equation (4.1) becomes

p. . = a. .10(.6)/20 = (0.3)a. . ,i0j

Now we will estimate the a scale factor at 0.25, for all

i,j. Consequently we take each

p = (0.3)(0.25)a = 0.075 (i # j).

Also, we will estimate the on-diagonal probability to

- 57 -

be twice this value, 0.150.

P =

.15

.075

.075

.075

.15

.075

Thus the matrix P has the form:

.075

.075

.07 ..

.075

.075

.15

Of course, in a more realistic situation the P matrix would

be sparser; there would be a number of module pairs with no

interdependencies. The above calculation is quite

reasonable for illustrative purposes.

To continue the example, we will also estimate the

6-factors as

6 = 0.67

That is, we assume that partitioning the requirements via

SDM reduces the inter-module change propagation

probabilities by 1/3. Thus the new P matrix becomes:

PSDM

pSDM

= 0.67(P)

.10 .05 .0505

.05 .10 .0505

.05 .0510.05

- 58 -

A check shows that both P and.P SDM do have all their

eigenvalues in the (-1,1) range, so their series do

converge. The values of these matrices are given in

Table 5.1.

To complete the example using Model 3, let us assume

that each module will require two zignificant modifications

over the lifetime of the system. Therefore we let

A = [a1, a ... a 3
2' n. 4 = 12, 2, 2, ... , 2]

Also, we will assume that the average cost for modifying a

module is 1000 dollars, i.e.,

C = [c1 , c2 , ... , c]

Under these assumptions,

= [1000, 1000, ... , 1000]

the "optimistic" modification

cost is .

C = AC = $40,000

The "realistic" cost for the given revision is,

however,

CT = (I - P .

-$109j841

Hence the SDM modification cost reduction for this revision

- 59 -

0

.463

+ p 3
*0

.463

.463 1.544 .463

.463 .463

(a)

2
+ PSDM

3
+ PSDM

(P' ' 'SDM

1.170 .117

.117 1.170

.117 .117

Table 5.1

-
-l-

1.544 .463

.463

.463 1.544

I+ PSDM

.117

.117

..... .117

..... .117

.117 1.1701

- 60 -

would be

ABC

= 2(1000)1 B it

where B = (I

and 1 = [1

- P)1 - (I - P
0 SDM

1 1 ... 1] (10 elements).

Calculations show that

ABC = 2(1000) 1 B It

= 2000 [1 1 ... 1] .375 .346 .346 .. .346

.346 .375 .346346

.346 .346 .346375J I

= 69841

By this estimate, SDM partitioning would lead to an

estimated cost savings over the modification life of the

system of nearly $70,000.

5.3 Summary of Illustration.

The results of the calculations in the foregoing

example are summarized in the table below.

- 61 -

ITEM

Optimal SDM Analysis Time

Cost of Analysi's (at t = t*)

Specification Error Reduction

Benefit (at t = t* , as

compared to t = 0)

Base Case Module Interconnected-

ness (DO)

SDM Module Interconnectedness (DSDM)

Development Benefit

Modification "Ripple Effect"

Benefit

Total SDM Benefit

Total SDM Cost

Net SDM Benefit (this example)

RESULT

5.2 days

$10,400

$58,860

120

48

$14 ,885

$69,841

$143,586

$10,400

$133,186

Table 5.2

- 62 -

6. Conclusions.

The models presented and discussed here are in many

ways crude and of limited scope. But, as we pointed out

earlier, there is no other published work on modelling the

impacts of design methodologies at all. This preliminary

effort at least illustrates the feasibility for improving

understanding of the economic potential of improved

functional design partitionings and other related aspects of

systems design.

A number of issues were raised but not completely

answered in this report. Some of the most important are:

- how to accurately determine the various parameters of
such models;

- how to better verify the correctness of the models'
functional forms;

- how to make effective use of such models - e.g., what
can be learned from sensitivity analysis or
parametric variation?

- how to improve the models - e.g., perhaps we ought to
be looking at different aspects; perhaps some of the
"second-order" effects are really more important than
they were assumed to be here.

These and other questions will be studied in future

investigations.

- 63 -

REFERENCES

Andreu, R.C., and S. E. Madnick: "Completing the
Requirements Set as a Means Towards Better Design
Frameworks: A Follow-up Exercise in Architectural Design",
Internal Report P010-01-06, MIT Sloan School of Management,
December 1977.

Andreu, R. C.: A Systematic Approach to the Desig and
Structuring of Complex Software Systems, PhD. Thesis,- Sloan
School of Management, M.I.T., Cambridge, Mass. 1978.

Aron, J.: "Estimating Resources for Large. Programming
Systems", in Buxton, J., and J. Randell (eds.): Software
Engineering Techniques, NATO Science Committee, Brussels,
1970.

Aron, J.: The Program Development Process - Part II: The
Development Team, preliminary draft version, Addi.son-Wesley
Publishers, June 1977.

Belady, L., and M. Lehman: "A Model of Large Program
Development," IBM Systems Journal, vol. 15, no. 3, 1976.

Bate, R., and G. Ligler: "An Approach to Software Testing:
Methodology and Tools," Proc. Third Conference on Software
Engineering, I.E.E.E. Publications, 1978.

Bell, T., and T. Thayer: "Software Requirements: Are They
Really a Problem?", Proc. 2nd Int. Conf. on Soft. Eng.,
1976.

Boehm, B.: "Software and Its Impact: A Quantitative
Assessment", Datamation, vol. 19, no. 5, May 1973.

Boehm, B.: "Some Steps Towards Formal and Automated Aids to
Software Analysis and Design", Information Processing 74,
North-Holland, 1974.

Brooks, F.: The Mythical Man-Month, Addison-Wesley, 1975.

Cave, W., and A. Salisbury: "Controlling the Software
Development Cycle - The Project Management Task," IEEE
Trans. on Soft. Eng., vol. 4, no. 4, July 1978.

Champine, G. A.: A Total Life Cycle Cost Model for a
Computer System, PhD Thesis, University of Minnesota, 1975.

Cooper, J.: "Corporate Level Software Management," IEEE
Trans. on Soft. Eng., vol. 4, no. 4, July 1978.

- 64 -

-Cyert, R., and J. March: A Behavioral Theory of the Firm,
Prentice-Hall, 1963.

Davis, C.,.and C. Vick: "The Software Development System",
IEEE Trans. Soft. Eng., vol. 3, no. 1, Jan. 1977.

Dolotta, T., et. al.: Data P::ocessing in 1980 - 1985,
Wiley-Interscience, 1976.

Ginsberg, M.: "A Detailed Look at Implementation Research,"
MIT Sloan School Center for Informa.cion Systems Research, WP
753-74, 1974.

Goetz, M.: "The Software Products Industry - Its Future and
Promise," Computerworld, In-Depth Report, October 17, 1978.

Haney, F.: "The Architecture of Software," Data Base, ACM
SIGBDP Newsletter, 1976.

Huff, S. L., and S. E. Madnick: "An Approach to the
Construction of Functional Requirement Statements for System
Architectural Design", Internal Report No. P010-7806-06,
Jun.e 1978(a).

Huff, S. L.,. and S. E. Madnick: "An Extended Model for a
Systematic Approach to the Design of Complex Systems",
Internal Report No. P010-7806-07, July 1978(b).

Huff, S.: "Decomposing Weighted Graphs Using the Interchange
Partitioning ATechnique," Technical Report 8, MIT Sloan
School of Management, January 1979(a).

Huff, S.; "Analysis Techniques for Use With the Extended SDM
Model," Technical Report 9, MIT.Sloan School of Management,
February 1979(b).

Kustanowitz, A.: "System Life Cycle Estimation," Proc. Third
Int. Conf. on Software Engineering, I.E.E.E. Publications,
1978.

Leintz, B. et. al.: "Characteristics of Application Software
Maintenance," Comm. of the ACM, vol. 21, no. 6, June 1978.

Madnick, S. E., and J. Donovan: Operating Systems, McGraw-
Hill 1975.

Pietrasanta, T.: "Resource Analysis of Computer Programming
System Development," in On The Management of Computer
Programming, G. Weinwurm (ed.), Auerbach Publishers, 1970.

Putnam, L.: "A General Empirical Solution to the Macro
Software Estimating and Sizing Problem," IEEE Trans. on
Soft. Eng., vol. 4, no. 4, July 1978.

- 65 -

Ross, D., and K. Schomann: "Structured Analysis for
Requirements Definition", IEEE Trans. Soft. Eng., vol. 3,.
no. 1, Jan. 1977.

Scott, R., and D. Simmons: "Predicting Program Development
Productivity - A Communications Model," Proc. First Nat.
Conf. on Soft. Esg., IEEE Publications, Sept 1975.

Stay, J. F.: "HIPO and Integrated Program Design", IBM
System Journal, vol. 5, no. 2, June 1976.

Stevens, J., et. al.: "Structured Design", IBM Systems
Journal, vol. 13, no. 2, April 1974.

Strang, G.: Linear Algebra and Its Applications, Academic
Press, 1977.

Teichroew, D., and M. Bastarache: "PSL Users' Manual",
ISDOS TR No. 98, March 1975.

Thayer, T.: "Understanding Software Through Empirical
Reliability Analysis," Proc. of the NCC, 1975.

Watson, C., and C. Felix: "Method of Program Measurement and
Estimation," IBM Systems Journal, vol. 16, no. 1, 1977.

Wasserman, T., et. al.: "Software Engineering: The Turning
Point", Computer, September 1978.

Wolverton, R.: "The Cost of Developing Large-Scale
Software," IEEE Trans. on Computers, vol. 23, no. 6, June
1974.

Yau, S., et. al.: "Ripple Effect Analysis of Software
Maintenance," Trans. Third Int. Conf. on Soft. Eng., IEEE
Publications, 1978.

