
DATA CONNECTIVITY FOR
THE COMPOSITE INFORMATION SYSTEM/

TOOL KIT

TOON KING WONG

WP # CIS-89-03June 1989

Data Connectivity for
the Composite Information System/ Tool Kit

Toon King Wong

Bachelor of Science Thesis in Computer Science and Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139

WP# CIS-89-03

ABSTRACT

The Composite Information/ Tool Kit (CIS/TK) is a prototype being developed at
the MIT Sloan School of Management for providing connectivity among information
systems. At the core of CIS/TK is a distributed database management system called
MERGE.

MERGE provides a uniform interface for retrieving and combining data from
pre-existing, heterogeneous databases. This is achieved without any additions to the
databases or its related programs. Through a global schema, the user is presented
with an integrated view of the data. Data is referenced using a common query
language called the Global Retrieval Language (GRL). A global query processor
executes GRL, and is reponsible for retrieving data from local databases and merging
data. MERGE also provides facilities for interfacing with modules whch can handle
data reconciliation.

This thesis describes the design and implementation of MERGE. An application
for demonstrating MERGE, the Placement Assistant System, is also presented.

KEYWORDS AND PHASES: distributed database management systems, information
systems, query processing.

ACKNOWLEDGEMENTS: Thesis advisor: Stuart Madnick; with assistance from the
CIS/TK Research Group. Supported in part by the MIT International Financial
Services Research Center, Reuters, AT&T, and LCS/IBM.

Table of Contents

1 Introduction .. 4
1.1 Background - The CIS/TK Project..4
1.2 Data Connectivity for CIS/TK.. 5
1.3 Goals of Thesis .. 5
1.4 Overview of Thesis ... 5

2 Related Research... 7
2.1 Approaches to Integration... 7
2.2 Issues in Heterogeneous Distributed Systems .. 7
2.3 MERGE as a Foundation for Semantic Connectivity ... 8

3 Overview of M ERGE... 9
3.1 Data Connectivity for CIS/TK...9

3.1.1 The Local Query Processor..9
3.1.2 The Global QueryProcessor.. 9
3.1.3 The Application Query Processor ... 9

3.2 Structure and Data Representation .. 11
3.3 Data Reconciliation..11

3.3.1 Types of Data Conflicts... 12
3.3.2 Resolving Conflicts in MERGE .. 12

3.4 Implementation Environment...13
3.5 Improvement to Prototype...13

4 Local Query Processing ... 14
4.1 Retrieving Data Through the LQP.. 14

5 The M ERGE Data M odel... 16
5.1 TheGlobal Schema... 16

5.1.1 Issues in Schema Integration .. 16
5.1.2 An Overview of the Schema Definition Language...................................... 20

5.2 The Data Catalog... 23
5.2.1 Representing Synonyms.. 23

5.3 The Global Retrieval Language.. 25
5.3.1 GRL Design Issues... 26
5.3.2 An Overview of GRL.. 27

6 Global Query Processing ... 28
6.1 Overview of the GQP Architecture .. 28
6.2 Issues in Global Query Processing .. 30

6.2.1 Automatic Database Selection... 30
6.2.2 Join Strategy... 31
6.2.3 Local DBMS Optimizations.. 31
6.2.4 Interfacing for Data Reconciliation... 32

6.3 The Query Parser: How it W orks .. 34
6.3.1 Stage 1: Error Checking .. 34
6.3.2 Stage 2: Query Expansion... 34
6.3.3 Stage 3: Creating an Access Plan .. 35
6.3.4 Stage 4: Query Enhancing... 38

6.4 Query Router. How it W orks... 40
6.3.1 The Access Path Router...42
6.3.2 Global Convert..42
6.3.3 Insert Constraints... 43
6.3.4 Combine .4...3.. 3

6.3.5 Format .. 43

7 Application: Placement Assistant System ... 44
7.1 Implementation Scenario... 44
7.2 Sample Session... 45

8 Conclusion .. 52
8.1 Insights .. 52
8.2 Future W ork .. 77

References ... 54

Appendices
Appendix A.1 - Schema Definition for PAS.. 56
Appendix B.1 - Global Retrieval Language.. 58
Appendix B.2 - Schema Definition Language... 59
Appendix C.1 - GQP V3.0 Code.. 61
Appendix C.2 - Schema Definition Language Code...104
Appendix C.3 - Global Query Language Code..117
Appendix C.3 - Intermediate Query Language Code...121

Data Connectivity for the Composite
Information System/ Tool Kit

1 INTRODUCTION

The Composite Information System / Tool Kit (CIS/TK) is a prototype being developed at the MIT Sloan
School of Management for providing connectivity among information systems. At the core of CISffK is a
distributed database management system called MERGE.

MERGE provides a uniform interface for retrieving and combining data from pre-existing, heterogeneous
databases as if the data came from a single virtual database. This is achieved without any additions to the
databases or its related programs. Through a global schema, the user is presented with an integrated view of
the data. Data is referenced using a common query language called the Global Retrieval Language (GRL--
pronounced girl). A global query processor executes GRL, and is responsible for retrieving data from local
databases and merging data. In addition, MERGE provides facilities for interfacing with modules which can
handle data reconciliation.

This thesis describes the design and implementation of MERGE. An application for demonstrating
MERGE, the Placement Assistant System, is also presented.

1.1 Background - The CIS/TK Project

With the increasing use of computer-based information systems, the difficulty of combining information
and data from various sources is becoming more apparent and has triggered large research efforts toward
integrating information systems. We refer to this class of studies and systems as Composite Information
Systems.

The CIS/TK project includes a prototype system being developed at MIT using a combination of artificial
intelligence, networking and database technology to support connectivity among information systems.

Several issues in realizing connectivity were identified in previous work [MAD 88-1], the technical issues
being divided into three levels: physical connectivity, data connectivity and semantic connectivity as
represented in Figure 1.1

Semantic Connectivity

Data Connectivity

Physical Connectivity

Figure 1.1 Three Levels of Connectivity

Physical connectivity refers to the ability to physically link and access information systems. However,
getting the data is only the first step. In order to be useful, the data has to be merged and formatted into a
manageable form. This ability is referred to as data connectivity. Data from multiple and different sources
often have data conflicts such as contradiction, ambiguity and incompleteness. Semantic connectivity refers
to the ability to reconcile these inconsistencies using knowledge captured from the user about the
assumptions underlying the data.

The goal of CIS/TK is to develop tools and techniques to support the entire spectrum of connectivity, with
a focus on semantic connectivity. The CIS/TK approach [MAD 88-2] explicitly allows for the coexistence
and usage of a variety of information systems while preserving their local autonomy. These information
systems are typically independently developed, hard to modify, and contain data that is dynamically
changing.

1.2 Data Connectivity for CIS/TK

Recent developments in CIS/TK have aimed at developing an integrated system for the MIT Sloan School
Student Placement Office, allowing integrated access to several databases as Figure 1.2 shows [WAN 88-1].
This thesis focuses on providing data connectivity among the databases; allowing users to access and
combine data from the various dissimilar databases as if the data came from a single virtual database. In
addition, although this thesis does not explicitly address issues involved in providing application
development mechanisms like expert systems, and knowledge base management systems for resolving
semantic conflicts, one of the major objectives is to provide an environment and foundation with which
research in semantic connectivity can be investigated.

1.3 Gonials of Thesis

In order to provide data connectivity for CIS/TK, MERGE must achieve the following goals:

(a) Provide a common data model for viewing the underlying data,
(b) Provide facilities for processing a common query language, and
(c) Serve as a foundation for semantic connectivity research.

In addition, an application called the Placement Assistant System was developed to demonstrate the
feasibility of MERGE.

1.4 Overview of Theisn

The focus of this thesis is in the design of a distributed database management system for CIS/TK.

In Chapter 2, we present some related work in distributed database management systems, and present the
approach we adopted in developing MERGE.

In Chapter 3, we present an overview of the MERGE architecture and also some of the major design
considerations in developing the system.

In Chapter 4, we present an overview of the Local Query Processor, which provides a uniform method of
retrieving data from dissimilar databases.

In Chapter 5, we present the MERGE Data Model, which presents a single, integrated view of the
underlying data.

In Chapter 6, we present the Global Query Processor, a facility for processing the common query language
GRL.

In Chapter 7, we describe an application, called the Placement Assistant System, to demonstrate the
feasibility of MERGE.

Finally, in Chapter 8, we present our conclusions about the design of MERGE and suggests some future
work.

MIT
MANAGEMENT Ii
r SCHOOL'S INTRVEWS DATALINE

STUDENT
DATABASE

SELECT QUERY: I

4'4- FIND COMPANIES INTERVIEWING AT SLOAN FROM SPECIFIC
INDUSTRY AND ALUMNI/STUDENTS FROM THESE COMPANIES

ENTER INDUSTRY SELECTED: AUTO MANUFACTURERS

- - - 'CHRYSLER - FEBRUARY 4, 1988

ALUMNI: THOMAS SMITH, SM 1973 -
JIM JOSEPH, SM 1974 I
JANE SIMPSON, SM 1966 I

L.- i *CURRENT STUDENTS: I
BILL JONES I

RECENT FINANCIALS (from LP. Sharporsdosure): 4---- - J
1986 1987

SALES ($1OOM) 226 263
PROFITS($M) 3,951 4,975

RECENT NEWS (fromReuters'TextLIne): 4--m-m-m-m
Chrysler Announces New Eagle
Line of Autos

I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-- I

Figure 1.2 Connectivity for the MIT Management School's Placement Office

2 RELATED RESEARCH

Systems that provide data connectivity between databases are generally categorized as distributed database
management systems. A large part of this thesis draws upon work done in this area, in particular the
Multibase system [ROS 82].

2.1 Apprnaches to Integration

Depending on the application and the constraints, there are several approaches to the development of
distributed database systems. However, most of these systems can be broadly distinguished on two aspects:
heterogenuity and control [DEE 82].

Heterogeo Vs Homog
Homogeneous systems support one data model and one manipulation language. Unfortunately, these
systems cannot meet the objectives of most organizations who use many types of computers with different
data models and multiple data manipulation languages.

To meet such objectives, it is necessary to use a heterogeneous system. Heterogeneous distributed
databases access and manipulate information maintained in existing, distributed, heterogeneous DBMSs
through a single uniform interface. This is accomplished without changing existing database systems and
without disturbing local operations.

Centralized vs Decentalized
In a centralized system, all global processing is controlled by a central computer. The disadvantage of this
approach is that it creates a bottleneck and reduces the stability of the system, since the failure of the central
computer disables the distributed database system.

In a decentralized system, each node keeps a copy of the distributed database system, each supervising the
global transactions submitted from it. The system is more stable, since the breakdown of a single node
does not disable the whole distributed system. However, the exercise of controls and the preservation of
consistency is more difficult.

For MERGE, we opted for a centralized, heterogeneous system. The main reason is because Merge is
designed to support different databases which are not wholly under the control of any one organization. In
MERGE, all components of the distributed DBMS reside on the central computer. No additions or changes
to the local databases or their host systems are required.

2.2 Issues in Hetero-eneous Distributed Systems

The major issues faced in developing Distributed Heterogeneous Database Management Systems
(DHDBMS) include [BHA 87]:

(a) Developing a Common Data Model,
(b) Providing facilities for Query Processing,
(c) Incorporating Distributed Transaction Management Routines, and
(d) Developing Authorization and Control Data Security Procedures.

Since MERGE is presently designed to perform retrieval-only operations, the problems of transaction
control, and data security are not major factors. Instead, this thesis only focuses on the issues of
developing a common data model and providing facilities for query processing.

(a) Common Data Model
The goal of a common data model is to capture the entire meaning of the underlying data. In order to

achieve this, it has to resolve data conflicts resulting from the integration of different systems and dissimilar
data models.

Data conflicts can be distinguished into two types: structural and semantic. Structural conflicts include
differences in data models and differences in implementation of the local databases. Semantic conflicts

include differences in naming, data representation, and data scaling. Most work in DHDBMS address the
resolution of structural conflicts. However, very few aim at resolving semantic conflicts.

As with most DHDBMS, MERGE adopts a three schema approach in data integration: a conceptual
schema, an internal schema, and an external schema. A conceptual schema defines all the data in the
environment, which is mapped to many underlying file and DBMS structures; referred to as the internal
schema. The conceptual schema is also mapped to many user views; which is referred to as the external
schema. The use of multiple schemas and the mappings between them serves as the mechanism for
providing transparency across dissimilar systems and architectures.

(b) OUer Prosn
Query processing and optimization are complicated by the following factors:

(a) Multiple sources for data,
(b) Different local processing capabilities at the local database management systems,
(c) Different communication costs, and
(d) Variable speeds of communication links.

Most DHDBMS have optimizations for more efficient query processing. These strategies include various
join strategies, submitting subqueries to DBMS in parallel, parcelling out as much computation to
individual DBMS, and selecting access paths which provide optimal returns in communication costs and
speed.

In MERGE, the query processing facilities provide a uniform interface for retrieving data from various
DBMS. Presently, optimizations in the query processor are relatively simple and are focused only on
retrieving data in a reasonable space of time. Optimizations include the automatic creation and selection of
access paths using a changeable set of rules, and a join strategy aimed at narrowing the search space.

2.3 MERGE as a Foundation for Semantic Connectivity

As described in the previous sections, the issues involved in designing MERGE are similar to the problems
found in developing distributed database management systems. However, what distinguishes MERGE from
these systems is the fact that it is intended to serve as the foundation for further work in semantic
connectivity.

This major objective has influenced us in the various stages in the design of MERGE and CIS/TK.
MERGE must be extensible and provide interfaces to tools that can resolve semantic conflicts in the data.
Several such tools proposed include inter-database instance identification [HOR 88], translation facilities
for resolving scale conflicts [MCC 88] and concept inferencing [WAN 88-2]. In contrast, most work in
distributed database management systems ends at the data connectivity level [NEU 82] [LIN87].

3 OVERVIEW OF MERGE

This chapter provides an overall view of the MERGE architecture and also discusses some of the major
design considerations in the development of MERGE. The intent of MERGE is to lay the foundation for
further research in connectivity, in particular, research in semantic connectivity. Through a global query,
MERGE will provide the ability to retrieve data from disparate databases as if the data came from a single
database, and thus allow researchers to concentrate on the more challenging issues found in data
reconciliation. As the CIS/TK project is one that is continuously evolving, the ability to extend the
components within CIS/TK without major modifications is a critical design goal. This key goal strongly
influenced us at all stages in the development of MERGE.

In this chapter, we first present the overall architecture of CIS/TK and its relation to MERGE. Then we
address some of the problems faced in representing a single, integrated view of the data. In Section 3.3, we
describe some of the different types of problems in data reconciliation. Then in Section 3.4, we describe
the implementation environment of CIS/TI and MERGE. Lastly, we describe some of the major problems
found in the previous prototype of CIS/IK, and how MERGE intends to solve these problems.

3.1 Data Connectivity for CIS/TK

A key component within the CIS/TK system is the query processing facility which controls the execution
of queries. The query processing architecture [HOR 88-2] is divided into three levels, each level providing
some aspect of connectivity. Figure 3.1 shows the query processing architecture of CIS/TK and how
MERGE is related to the various components within CIS/TK. In the following sections, we briefly
describe the various levels of the query processing architecture.

3.1.1 The Local Oe Processor

The lowest level of the query processing architecture is the Local Query Processors (LQP), which provide
physical connectivity to various local DBMS. Each LQP handles communications to a single local
database and with the computer on which the database resides. The LQP provides a uniform interface for the
GQP to access dissimilar databases, handling the particularities of each local DBMS and its host system.

3.1.2 'Ihe Global O0er Processor

The middle level is the Global Query Processor (GQP), which provides data connectivity through a global
query language and a common data model. The GQP is responsible for parsing a global query and routing
the subqueries to the appropriate LQPs' for data retrieval. After the LQPs return the data, it is combined and
returned to the AQP level.

A major component of MERGE is the GQP. In our version of MERGE, the GQP is further divided into a
parser module and a router module.

3.1.3 The Application Query Processor

The top level is the Application Query Processor (AQP), which provides for semantic connectivity by
using the domain of the application to resolve conflicts found in the data. The AQP is responsible for
mapping the application query into an equivalent global query for retrieving data. Presently, the AQP level
is still a subject of initial research, so we will not describe it further.

Of these three levels of query processing, MERGE implements the middle level which includes a global
query processor and its associated data model. These components will be further described in Chapters 5 and
6.

CIS/TK

APPLICA- AQP
TION

MODEL

Global Mre
Query Mre

PARSER

MERGE
DATA Access I

MODEL Plan GQP

ROUTER

Abstract Formatted Abstract

DaaI I

QueryDataQuery

LQP LQP

Raw
Data

Local LCal
DBMS DBMS
Query Query

LOCAL LOCAL
DBMS DBMS

Figure 3.1 The CIS/fK Architecture and MERGE

3.2 Structure and Data Renresentation

Representating a single, integrated view of all the data in a distributed database system is especially
challenging because of the dissimilar structures adopted by each local DBMS. As with most other
DDBMS, CIS[IK adopts a three-schema architecture for representing data, as shown in Figure 3.2. The
internal schemas are created by the local DBMS and are assumed to be pre-existing. Merge implements the
middle schema, that is the data model, which represents a single, integrated view of the data. The
application model is implemented at the AQP level, and represents a subset of the data necessary for a
particular application. The application model may also represent data not explicitly available in the
underlying databases, but which may be derived or deduced from that data.

Figure 3.2 The CIS/rK Three-schema Architecture

In MERGE, the structural properties of the data are distinguished from the semantic properties of the data.
In the data model, the structural properties of data including attribute names and relationship between
tables are represented by a global schema. On the other hand, the semantic properties of data including
synonyms and translations between different data representations are a data catalog.

The main reason for separating the structural properties from the semantic properties is because in the near
future, we would like to extend and enhance the semantic representation capabilities of our data model to
incorporate schemes to represent conflicts in inter-database identification and better schemes for representing
synonyms and translations. An integrated representation scheme would make these extensions harder to
achieve.

3.3 Data Reconciliation

Combining data from disparate sources is difficult because the data are often found in different formats, and
different representations and is usually contradictory and incomplete. In order to combine data, MERGE
provides certain necessary data reconciliations.

3.3.1 Types of Data Conflicts

Conflicts in data can be distinguished as two types: syntax conflicts and semantic conflicts. Syntax
conflicts are obvious conflicts like differences in naming, formats, and scale representations. For example,
in a recruitment database shown in Figure 3.3, the same company may be called several different names,
like "Ford Motors" and "The Ford Motor Company". We refer to these similar names as synonyms.
Although they represent the same concept, they are spelled differently in the data. In contrast, semantic
conflicts are more subtle.

join on company names
not possible since different

naming conventions

Alumnidtb Recruitdtb
ss aname comp ...

Ford
Motors

Figure 3.3 An Example of Difference in Naming

Semantic conflicts include differences like contradiction, incompleteness and ambiguity which arise because
the local databases were independently developed, and often carry quite different assumptions about the data.
A good example is financial databases. Financial data like a company's revenue or net income are often
calculated based on the practices of the country where the company is located or incorporated. Thus, to
match the performance of two companies based on the revenue data may be misleading because of these
different assumptions for calculating revenue.

Unfortunatlely, it is not within the scope of this thesis to detail the different data conflicts found in the real
world, and the reader is referred to the works of [WAN 88-3], [PAG 89], which present interesting examples
found in the hotel and financial industry. Nevertheless, MERGE has been designed as a basis for future
more detailed research on semantic conflicts.

3.3.2 Resolving Conflicts in MERGE

Resolving syntax conflicts, although tedious, is not as difficult as resolving semantic conflicts. Resolving
semantic conflicts require an in-depth knowledge of the domain of the application and requires special tools
and techniques for the representation of the domain knowledge and for applying this knowledge to data
reconciliation. These issues are addressed at the AQP level with tools like the application model and
concept inferencing. At the GQP level, only syntactic conflicts are addressed like differences in naming,
formats and scale representations. In this version, we will only handle differences in naming.

company position industry city
The Ford
Motor
Compan

MERGE provides a data catalog system to represent synonyms, and interfaces to modules which make use
of the catalog for data reconciliation. The data catalog is further described in Chapter 5, and the interfaces
are described in Chapter 6.

By considering data reconciliation in the development of MERGE, it is possible to design an architecture
that can accomodate future extensions of facilities for data reconciliation.

3.4 Implementation Environment

CIS/TK is being developed on a UNIX platform to take advantage of its portability across disparate
hardware, its multi-tasking environment, and its communication capabilities to enable access to multiple
remote databases in concert. The kernel of CIS/TK is being developed using KOREL [LEV 87], an object-
oriented programming language developed in the Common Lisp environment.

Using KOREL, we are able to benefit from the features of the object-oriented paradigm [WEG 86] --
modularity, consistent interfaces and conceptual clarity. Because MERGE is designed to work within
CIS/rK, it is also developed using the object-oriented paradigm. However, for efficiency reasons, only the
major interfaces in MERGE use KOREL, the other components are developed in LISP, which unlike
KOREL, does not incur the extra cost of message-passing.

3.5 Improvement to Prototype

A preliminary prototype of CIS/IK was developed in previous work [WON 88]. Insights gained from the
prototype and from a financial application [PAG 89] were helpful in the design of MERGE.

At the global query processing level of the earlier prototype, there was general dissatisfaction with the
query language in its readability. In addition, selection of the numerous databases to satisfy a global query
had to be manually performed. This proved to be frustrating to users who were unfamiliar with the
underlying database configuration.

In MERGE, an improved SQL-like query language was developed. Since SQL [DAT 87] is fast emerging
as the de-facto standard for database query languages, users are likely to be more receptive to the new
query language. Also, an innovative database selection mechanism that automatically selects the databases
for a global query was developed. Another feature of the selection mechanism is that it relies on a set of
changeable parameters for determining the criteria for database selection, in contrast to most other optimized
mechanisms [ROS 82], where the criterias are imbedded within the mechanism itself, making it difficult to
change. These improvements are described further in Chapter 6.

At the conceptual schema level, several inconsistencies in the data model detracted users from a clear
understanding of the model. Some of these inconsistencies included differences in the representation of
relations and fragments. In the design of MERGE, these issues were addressed and are discussed in Chapter
5.

This chapter provided an overview of MERGE and the major design considerations in developing MERGE.
In the next chapter, before presenting the main components of MERGE, we provide an overview of how the
GQP can retrieve data through a Local Query Processor. Although the LQPs are not a focus of this thesis,
they provide the ability for MERGE to retrieve data from dissimilar databases on various host machines
through a common interface.

4 LOCAL OUERY PROCESSING

To access a database, the Global Query Processor relies on the Local Query Processor (LQP) to perform the
actual physical connection, and retrieval of data from the database host machine. Each database that is to
be accessed by CIS/TK must have an LQP. These LQPs reside on the CIS/rK host machine and not on the
database host machines. In this chapter, we provide a brief overview of how data retrievals can be
accomplished through the LQP. For a detailed description of how the various LQPs work, please refer to
[CHA 88], [GAN 89], [GER 891.

4.1 Retrieving Data Through the LOP

The LQP provides a uniform method of connecting and retrieving data from various databases using a query
language called the Abstract Query Language. The basic structure of an AQL query is:

(send-message lqp :get-data (table (attl att2 ... atin)) conditions)

Figure 4.1 shows an LQP processing an AQL query to a SQL-based DBMS. The AQL query is translated
by the LQP into an SQL query and executed at the local DBMS. The raw data from the DBMS is
typically returned as a file, which the LQP reformats into a data list with the following format:

((attI att2 ... attn)
("vall" "val2" ... "val3") ... ("vall" "val2" "val3"))

where the first list contains the attribute names, and the rest of the list contains the values corresponding to
those attributes.

AQL QUERY:

(SEND-MESSAGE
LQPl:GET-DATA
COMPANYTBL (..

SQL QUERY:
SELECT COMPNAME
POSITION .. FROM..

Figure 4.1 Retri

DATA LIST:

((compname position ..)
("AT&T" "manager" ..)

RAW DATA:

eving Data Through The LQP

Presently, the databases supported by LQPs include several SQL databases on AT&T 3B2 UNIX
machines, and an IBM/RT XENIX machine. Also planned in the near future is the completion of two
LQPs to support retrievals from commercial financial databases, which are menu-based systems rather than
SQL-based systems.

5 THE MERGE DATA MODEL

The MERGE Data Model (MDM) serves as the conceptual basis for viewing the distributed database system
-- it provides a single, integrated view of the underlying data. The data model is implemented through three
components: a global schema, a data catalog, and a query language called the Global Retrieval Language
(GRL). These components are used by the Global Query Processor for processing a global query. For the
reasons mentioned in Chapter 2, data representation in the MDM distinguishes between the structural
properties and the semantic properties; the structural properties are represented by a global schema and the
semantic properties by a data catalog.

In this chapter, we discuss the problems in representing a single, integrated view of data in a multi-database
environment, and present how the global schema, the data catalog and the GRL address these issues.

5.1 The Global Schema

The objective of a global schema is to represent the structures and relationships in the underlying data. The
global schema uses an extended version of the Entity-Relationship (E-R) model [CHE 76] to describe these
structures, chosen because it is widely accepted in database design and simple to understand.

Figure 5.1(a) shows a simple global schema created to represent data available from two sources: a
recruiting company database and an alumni database. The underlying databases are shown in Figure 5.1(b).
The global schema has two entities: the alumni entity and the company entity. The alumni entity
represents all the data about alumni, and the company entity representes all the data about companies that
are recruiting. The entities are related on the relationship works Jor, which represents the fact that the
alumni information can be joined to the company information using the company names found in both the
recruit and alumni databases. We will describe this global schema further when we address the problems in
schema integration.

To provide a single integrated view of the data, the dissimilar schemas of the local databases have to be
integrated. In Section 5.1.1, we discuss the major issues that are faced in schema integration, and present
how the global schema addresses these problems. To implement a global schema, we found it necessary to
develop a schema definition language to describe the global schema. This is outlined in Section 5.1.2.

5.1.1 Issues in Schema Integration

Some of the major issues in schema integration include resolving problems in:

(a) attribute naming,
(b) attribute organization,
(c) fragmentation,
(d) multiple relations, and
(e) complex relations.

(a) Attribute Naming
In a multi-database environment, similar attributes are often found with different names. In order to present
a unified view of the data, similar attributes with different names have to be resolved.

In the global schema, this is handled by assigning a global attribute name to local attributes that represent
the same thing. For example, the company entity in our example has a global attribute called name. This
actually represents two local attributes found in the tables east companytb and west companytb, called
company and comp name respectively. As a convention, we will address global attributes and local
attribute in the following manner:

(entity attribute) - unique identifier for global attribute
(lqp table attribute) - unique identifier for a local attribute

Global
Schema:

position
industry
date

Works for

social sec
last-name
first-name
company
degree
position

1:n

cal
hema:

/A

East_ Wesit
companytb companytb

Figure 5.1(a) Simple Placement Global Schema

Databases:
Recniitdb
company position industry date

comp_name position indus date

West_
companytb

East
companytb

Companytb

Schooltb

Alumnidb
3 comp position

ss last-name first-name degree

Figure 5.1(b) Underlying Databases

Lo
Sc

Note that for the unique identifier for a local attribute, the LQP name is used instead of the database name.
This is because since each LQP is responsible for accessing one database, it is equivalent to the database
name for identification purposes. In addition, within MERGE, accessing data is through the LQPs, so this
provides a means of invoking the appropriate LQP for a local attribute. In our examples, we will assume
that the LQPs have the same names as the databases.

(b) Attribute Organization
Attribute organization refers to the grouping of attributes in entities. Attribute organization is mostly
subjective; attributes are grouped into an entity because they represent a common concept. However, there
is one constraint in the global schema that has to be adhered to. For example, in the simple-placement
global schema, the entity alumni has attributes like major, degree and position; which are attributes
commonly associated with an alumni. One attribute that is not so clearly defined is (alumni company).
This attribute could also be placed in the company entity, since it is directly related to information about
companies. In fact, within the company entity, there is an equivalent attribute called (company name).
However, in our global schema, a decision was made not to merge these two attributes. There are two main
reasons for this choice.

In the global schema, in order to express a relationship between two entities, they must have at least one
similar attribute. In the relationship between the alumni and company entities this relationship is expressed
as:

(= (alumni company) (company name))

Another more important reason is that it provides a better view of the underlying data structures. The fact
that company name is represented in both entities implies that this attribute can be found in at least two
databases; the alumni and the recruiting database. This affords us a conceptually clearer view of the
underlying data.

(c) Fragmentation
There are basically two types of fragmentation found in databases: horizontal fragmentation and vertical
fragmentation. Vertical fragmentation is the separation of data by domain, for example in the recruiting
database, data about recruiting companies is divided into companies that are from the West Coast, and
companies that are from the East Coast. On the other hand, horizontal fragmentation is the separation of
data by attribute values, for example in the alumni database, the attributes for an alumni are divided between
two tables: school information like degree is found in schooltb, and the alumni's company information is
found in companytb.

In reality, resolving fragmentation is difficult because data is typically overlapped with both horizontal
and vertical fragments even within a single table. Most integration schemes do not addresss the issue of
overlapping fragments. In the global schema, we will address only non-overlapping fragmentation, leaving
the issue of overlapping fragmentation as future work.

In the global schema, the purpose is to integrate these fragments. We integrate fragments by expressing the
relationships that exist amongst the fragments. Vertical fragments are expressed as a merge, and horizontal
fragments are expressed as a concatenation. For example, to integrate the fragments in the alumni database
into a single entity called alumni, we have to express the following relationship between the tables found
in the alumni database:

(merge (alumnidb schooltb) (alumnidb companytb)
on (= (alumnidb schooltb ss) (alumnidb companytb ss)))

which means that in order to get data that spans across the tables (fragments) schoolib and companytb, we
need to merge those two tables on the social security local attribute, since the social security is the
common attribute between those two tables. In the above relation, the table schooltb is represented as
(alumnidb schooltb) so that we can uniquely identify the table that we are refering to.

To represent a vertical fragment, we use the idea of a concatenate. For example, to integrate the tables in
the recruiting database into a single entity called company, we express the following relationship:

(concatenate (recruitdb west_companytb)
(recruitdb eastcompanytb))

which means that in order to get all the companies represented by the company entity, we have to
concatenate the data found in west companytb to the data found in eastcompanytb.

(d) Multiple Relationships
There is usually more than one way to draw relations between data. For example, in the company and
alumni entities, the worksfor relationship expresses a join between the company names. However, there
is yet another possible join between those two entities; between (company position) and (alumni position).
A good representation scheme must be flexible enough to allow for the expression of multiple
relationships.

In the global schema, multiple relationships between entities can be expressed in a rather straightforward
manner. To express the join:

(= (company position) (alumni position)

we can draw another relation, same-position between the entities as shown in Figure 5.2.

Sameposition

1 : n

Expressing Multiple Relations in the Global Schema

(e) Complex Relationships
In some cases, the relationship between two tables is not simply a join between 2 attributes, but instead
involves several attributes. For example, consider a database containing the phone bills and the addresses
of telephone owners as shown in Figure 5.3. Each table is uniguely identified by the telephone number,
which is separated into two fields: area-code and 7digits. In order to join between the two tables to get all
information about a phone owner, the tables have to be joined on both the area-code and 7digits
attributes.

In previous prototypes of the global schema, complex relationships were not supported. However, in the
financial application built by [PAG 89], we found that such complex relationships commonly exist. In
this version, we have designed the global schema to support complex relationships between entities by
using the following predicate syntax:

Figure 5.2

Need to Join on
2 Attributes fron

Each Table

billtb '

area-code 7digits bill

617 2258262 20.00

addresstb

area-code 7digits address

617 2258262 545 Tech
Square

Figure 5.3 Complex Relation Between Tables

(and condi cond2)

For example, to represent the relationship between the two tables in the phone database, the following
expression is used:

(and (= (billtb area-code) (addresstb area-code))
(= (billtb 7digits) (addresstb 7digits))

Our solution for handling complex relationships touches only the surface of the problems found in
representing relationships. Other possible predicates could include the operator "or" and condition predicates
like ">" and "<". We leave the idea of creating a general set of relation operators that can accomodate
different types of relations as future work.

5.1.2 An Overview of the Schema Definition Language

In the previous section, we have presented the global schema and how it addresses some of the major issues
in schema integration. In this chapter, we describe the language used to implement a global schema, called
the schema definition language. The E-R model has traditionally been used for conceptual schema design.
Presently, no standard language for implementing an E-R model schema exists. In MERGE, a schema
definition language has been developed for implementing the E-R model.

Using an object-oriented paradigm, entities and relationships may be viewed as objects. The schema
definition language allows for the creation of these entity and relationship objects. The schema definition
of the simple-placement global schema is shown in Figure 5.4 The following sections give an overview
of how to create entity and relation objects.

Creating a Global Schema
To create a global schema, the create-schema statement must be placed at the beginning of the file before
creating any entity or relation objects. The format used is:

(create-schema name)

Creating Entities
To create an entity, the create-entity statement is used. This statement has the following syntax:

(create-entity name
:attributes ((gatti loc ... locn) ;; gattn - global attribute name

;; locn - (lqp tb col)
(gattn loc1 ... locn))

:table-relations ((merge source] source2 ;; sourcen - (lqp tb)
on cond)

(concatenate source] source2)

The statement has two slots. The :attributes slot is used to assign global names for similar attributes
found in the local databases. The :table-relations slot is used to express relationships between various
fragments (tables) represented by the entity.

Creating Relations
To create a relation, the create-relation statement is used. Before creating relations between entities, the
entities must be created first because the create-relation statement checks for the existence of these entities
before creating a relation object. The basic syntax of the create-relation statement is:

(create-relation name
:entity-from entity
:entity-to entity
:join (= (entity att) (entity att))

The :entity-from and :entity-to slots specify which entities are being joined. The :join slot specifies the
attributes that are being joined on between the two entities.

This section has given a brief overview of the schema definition language. Please refer to Appendix B.2 for
a specification of the schema definition language.

;;;; This file implements the simple-placement global schema

place at beginning
;;; creates schema
(create-schema simple-placement)

;;; create company entity
(create-entity company

:attributes ((name (recruitdb westcoastb company)
(recruitdb eastcoasttb comp_name))

(position (recruitdb westcoasttb position)
(recruitdb eastcoasttb position))

(industry (recruitdb westcoasttb industry)
(recruitdb eastcoasttb industry))

(date (recruitdb west coasttb date)
(recruitdb eastcoasttb date)))

:table-relations ((concatenate (recruitdb west coasttb)
(recruitdb east coasttb))))

;;; create alumni entity
(create-entity alumni

:attributes ((socialsec (alumnidb companytb ss)
(alumnidb schooltb ss))

(last-name (alumnidb schooltb last-name))
(first-name (alumnidb schooltb first-name))
(company (alumnidb companytb comp))
(degree (alumnidb schooltb degree))
(position (alumnidb companytb position)))

:table-relations ((merge (alumnidb companytb)
(alumnitb schooltb)

on (= (alumnidb companytb ss)
(alumnidb schooltb ss))))

;; create works for relation
(create-relation works-for

:entity-from alumni
:entity-to company
:join (= (alumni company) (company name)))

Figure 5.4 Schema Definition for simple-placement Global Schema

5.2 The Data Catalog

The previous section presented how MERGE represents the structural properties found in the underlying
data. In this section, we introduce the data catalog, used to express the semantic properties of the data. In
this impementation, only one kind of semantic property is represented: synonyms.

5.2.1 Representing Synonyms

Synonyms are represented using a catalog that keeps a list of all synonyms for an attribute. For example,
the basic structure of a synonym catalog for the (company name) attribute is shown in Figure 5.5. The
first column contains the main attribute value, which serves as the unique identifier for the synonyms in
each row. For example, a main attribute is "IBM", which is a unique identifier for "I.B.M." and
"International Business Machines".

Figure 5.5 A Synonym Catalog for Company Names

Problems with One-level Scheme
However, there is a problem with this basic scheme. By representing synonyms at the global attribute
level, we assume that the synonyms are shared across all the local attributes represented by that global
attribute. For example, the global attribute (company name) represents two actual local attributes:
(recruitdb westcompanytb company) and (recruitdb eastcompanytb compname). By using the above
scheme for representing synonyms, both these local attributes are assumed to have, for example, "IBM" as
the main attribute for "International Business Machines" and "I.B.M." In some cases, this assumption is
not correct.

Suppose "IBM" represents a different company in each table. Refering to Figure 5.6, "IBM" in
eastcompanytb represents "Itsy-Bitsy Machines" and "IBM" in the west companytb represents
"International Business Machines." The one-level scheme does not allow us to represent this difference of
names at the local database level. In order to represent these differences, we have developed a two-level
scheme for representing synonyms.

A Two-Level Scheme
As shown in Figure 5.6, the synonym catalog consists of a single global synonym table and several local
synonym tables. The global synonym table contains local attributes that have synonyms, and for each
local attribute also contains a pointer to the local synonym table. For example, in the global synonym
table *globaLsyntb*, the attribute (recruitdb west companytb name) has a pointer to the local synonym
table *westsyntb*. Each local synonym table contains the actual synonyms for each local attrinute. For

main attribute syni syn2 syn3

IBM I.B.M ... International
Business
Machines

DEC DEC ... Digital

Inc. Equipment
Corporation

GLOBAL SYNONYM TABL

lqp tb att syn-tabi

recruitdb westcom name westsyntabb -
panytb

recruitdb eastcom name eastsyntab -
panytb

west syntabi

LOCAL SYNONYM
TABLE

east syntabl

Main attribu syn: synr

Itsy-Bitsy Machines IBM Itsy Bitsy Corp.

Figure 5.6 Two-Level Scheme for Synonym Catalogs

~~1

Main attribute syn1 syn2 synr

IBM I.B.M International Bus.

example, the synonym *westsyntb* contains synonyms for the attribute (recruitdb west_companytb
name).

5.3 The Global Retrieval Language

'Ie third component of the MERGE Data Model is the language used for querying the global schema. The
Global Retrieval Language (GRL) provides a common query language for retrieving and joining data
expressed in the global schema. GRL is very simple to undertand and supports retrieval-only capabilities.

5.3.1 GRL Design Issues

The objective of GRL is to provide a common language for querying different database systems. Since the
query capabilities of each database system varies widely, the choice of the query capabilities that GRL
should provide is an important issue.

Presently, CIS/ITK is targeted for decision support applications where retrieving data from separate systems
is more common than updates. Global updates is not only a difficult technical issue but is also hard to
implement in reality due to the autonomy of the various databases. We thus do not focus on update
capabilities.

Some of the databases that MERGE intend to support do not have any manipulation capabilities, for
example, Reuters, an on-line financial database is a retrieval-only system. In contrast, database systems
like ORACLE SQL not only have retrieval capabilities, but they also have data manipulation capabilities
like mar, min, and group. In order to provide for a common language that can access disparate systems,
we had to make a choice between the functionalities offered.

One choice is for GRL to provide for most types of query capabilties, and when a local database does not
have a GRL supported capability, for example max, MERGE can provide for a global implementation of
the capability. However we decided not to implement any manipulation type capabilities to keep the GRL
simple and general. Instead manipulation capabilities will be provided at the AQP level, where the
manipulation capabilities can be custom built according to the application.

Having decided on retrieval-type operations, there was still the issue of what kinds of retrieval-type
capabilities we should support. A key thing that MERGE intends to support is the merging of data from
different sources, thus a join capability was necessary.

Another issue in the design of GRL was in the design of the syntax. In the previous prototype, the query
language was very LISP oriented, which was hard to undertsand for most users, but more efficient to
process within a LISP environment. For the current version of GRL, we compromised on a SQL-like,
LISP-like language. The SQL-like syntax will make GRL more easy to understand. Ultimately, a front-
end SQL language could be developed as future work to serve as the common query language.

5.3.2 An Overview of GRL

A typical GRL query and the format which it returns data is shown in Figure 5.8. In the next section, we
describe how to use some of the features of GRL.

Selecting an Ent
To select a single entity and its attributes in a global schema, the select statement is used. For example,
to query the entity alumni for the attributes last-name,first-name , and position with a condition that the
degree is equal to "SB 79", the following query is used:

(select alumni (last-name first-name position)
where (= degree "SB 79"))

"Find the AT&T company's recruiting dates, positions, and alumni who
work for that company."

GRL:
(join (select company (position date)

where (= name "AT&T"))
(select alumni (last-name
on works-for)

(((company

first-name degree)

position) (company date) (alumni last-name)
(alumni first-name) (alumni degree))

("accountant" "3 March" "Hotchkiss" "George" "MS 79")
("engineer" "4 March" "Hotchkiss" "George" "MS 79")

0.)

Figure 5.8 A Typical Global Query in GRL

The data returned looks like:

(((alumni last-name) (alumni first-name) (alumni position))
("Smith" "John" "manager")
("Hopkins" "John" "physician")

If all the attributes within an entity are to be selected, then the *-option can be used:

(select alumni * where (= degree "SB 79"))

which is equivalent to the following query:

(select alumni (last-name first-name degree
where (= degree "SB 79"))

position)

Complicated conditions can also be expressed within a select statement. For example, to find all the
alumni who have a degree equal to "SB 79" and is working in the position of "manager", the following
query is used:

(select alumni (last-name
where (and

first-name)
(= degree "SB 79")

(= position "manager")))

Similarly, an or condition can be expressed in a similar fashion.

Joining Entities
To join multiple entities, the join statement is used. For example, to join the two entities alumni and
company, we can use the following query:

26

(join (select company (position date)
where (= name "AT&T"))

(select alumni (last-name first-name degree)
on worksfor)

When there is only one relationship between two entities, the query can be specified without the on clause.
In addition, the join statement supports multiple nested join statements with the following format:

(join (select entity] (attl ... attn) where ...)
(join (select entity2 (attl ... attn) where ...)

(join (select entity3 (atti ... attn) where ...)
(...))))

For a more detailed description of the GRL syntax, please refer to Appendix B.1.

6 GLOBAL QUERY PROCESSING

In the last chapter, we presented the data model and its associated components. The Global Query
Processor (GQP) is the basic engine for executing a global query, using the components of the data model
for attribute mapping and data reconciliation. The GQP is part of the CIS/K query processing architecture
and acts as the interface between the local query processors and the application query processor.

Section 6.1 provides an overview of the GQP architecture, and Section 6.2 addresses some of the main
issues in developing the GQP. In Sections 6.3 and 6.4, the two main components of the GQP -- the Query
Parser and Query Router are described in further detail.

6.1 Overview of the COP Architecture

The GQP architecture is divided into two main parts: query parsing and query routing. Figure 6.1
summarizes the main subcomponents in the GQP and their interaction. The partitioning of the GQP
reflects the two main tasks that happen during query processing: determining the subtasks that need to be
done and executing these subtasks. In addition, by separating the parser from the router, we can in the
future change the routing algorithm without requiring modifications to the entire GQP. In the previous
prototypes, the router was imbedded in the parser. This scheme made it hard to extend the system.
Furthermore, it made the system hard to understand and debug. The partitioned parser-router design offers a
better alternative.

The Ouer are
The query parser accepts a global query specified in the GRL syntax.
the subtasks that need to be done to satisfy the query. The
subcomponents in the parser.

It creates a parse tree that maps out all
parser tree is created through four

join

get-table alumnidb alumnitb ... get-table alumnidb schooltb ...

Figure 6.2 Example of Parse Tree

The Ouer Route
The query router accepts the parse tree. The router is responsible for executing the parse tree and
combining the data into a format that reflects the initial global query, for example, removing attributes
inserted for joining purposes but not specified in the global query, and converting the local attribute names
back into its equivalent global names. The router has four submodules that accomplish the above
mentioned tasks.

Gloal GLOBAL QUERY Merged

Query PROCESSOR Data

PARSER

SYNTAX
CHECKER

QUERY
EXPANSION

I]

t i

FORMA

CREATE
ACCESS

PLAN

COMBIN

QUERY
ENHANCER I

i INSER'I
CONSTR)

NTS

ACCESS GLOBAI

PATH CONVEI

LQP Formatted
Query Data

Figure 6.1 The GQP Architecture

The access plan router module executes each leaf of the parse tree, and is responsible for invoking the many
subqueries to the LQPs. After the execution of each leaf, the data returned is sent to the global convert
module, which maps the local attribute names into the equivalent global names. The insert module then
builds a set of constraints that is inserted into the next leaf of the parse tree. The execute-convert-insert
loop is completed when the entire parse tree is executed. All the data is then sent to the combine module
where it is combined. Finally, the combined data is formatted by the format module into a form that
reflects the initial global query.

The previous section has presented an overall view of the main components of the GQP and their
interactions. In the following section, we will present how the GQP tackles some interesting issues posed
by query processing in a distributed database environment.

6.2 Issues in Global Ouerv Processing

6.2.1 Automatic Database Selection

In a distibuted database system, data can usually be retrieved from several sources. The problems faced in
database selection are mainly due to (1) overlapping data, and (2) replicated data. When the number of
underlying databases is large, it is infeasible to expect the user to manually select the databases that
correspond to a global query - some mechanism that aids or automates the selection process is required.

The Problem - Many Combinations To Choose From
Figure 6.3 shows a global query fragment that is mapped to several fragments in the underlying data. For
the global attribute att1, there are two possible fragments (or sources) where the data can be retrieved, i.e.,
dl or db2. For att2, the data can be retrieved from either fragments db3 or db4, which are overlapped.
However, att3 can only be retrieved from db4.

Glob;
Attribut
Selectec att1 att2 att3

Replicated Fragments Overlapping Fragments

Figure 6.3 Mapping of Global Attributes To Possible Fragments

Thus to satisfy the global query, the possible combination of fragments to select include the following:

1. (db1 db3 db4),
2. (dbl db4),
3. (db2 db3 db4), or
4. (db2 db4)

Faced with several choices, a combination can be selected on a number of possible criterions, for example,
on the least number of fragments, on the lowest communication costs or on the least communication time
delay. For example, if we want to optimize on the number of sources accessed, we would either choose
combinations 2 or 3 since they require access to only two fragments.

A Changeable Set of Selection Rules
Choosing a particular combination of sources is based on factors that are usually dependent on the
application and the requirements of the user. For example, in financial applications, knowledge and the
ability to choose the source of the data is an important criterion stressed by many users [PAG 89]. In most
DDBMS, the selection mechanism is fixed and imbedded within the routing algorithm. In MERGE, we
recognise the fact that the criterias for source selection often change and have accordingly developed a
selection mechanism that utilizes a set of changeable rules for source selection. In addition, options for
both automatic selection, manual selection or a mixture of both are possible.

Currently, we have developed a default set of simple rules to automatically select an access path. It is based
on the criteria of accessing the least number of fragments, and if possible within one database, or table.
These rules are detailed in section 6.3.3. The current set of rules is intended only to show the feasibility of
such a selection mechanism and it ignores factors like communication costs and delays. However, by
choosing a rule scheme, we will be able to accomodate future extensions.

6.2.2 Join Strateg

The GQP has to join data from multiple databases. One strategy for joining data is to separately query each
database and join the data at the global level. In this strategy, the results from a database query are not used
in subsequent queries to other databases. The search space for each query is thus rather large.

The other strategy is to use the results from one database query as constraints for the next subquery. This
has the advantage of narrowing the search space in the subqueries.

In our GQP, the second strategy is adopted. The MERGE system is targeted for decision support
applications where the amount of data retrieved is usually small but involves several databases. Compared
to the second strategy, the first strategy results in large amounts of data being retrieved from each database.
This significantly lengthens the total retrieval time.

The retrieval time for the first strategy can be significantly improved if each query can be executed in
parallel. However, our present communications server cannot handle multiple tasks. A new
communications server that can handle multiple tasks is currently being implemented [GAN 89].

6.2.3 Local DBMS Optimizations

Most DBMS have capabilities for joining and manipulating data. In a distributed database system, a major
issue is whether the system should make use of the local DBMS's capabilities. Using the capabilities of
local DBMS has the advantage of relieving the global query processor from extra processing.

In our version of the GQP, we chose not to make this local DBMS optimization. The main reason being
that such a feature would require a more complex GQP, since Merge is designed to retrieve data from
heterogeneous databases with varying capabilties. For example in Multibase, a catalog is used to keep track
of the capabilities supported by each database. If a query to Multibase uses a capability that is not found in
the local database, it wil augment such a capability at the global level. However, this incurs the cost of
extra checks and augmentation, making the global query processor much more complicated. At presently,

we do not intend to optimize the GQP to use local DBMS capabilities, although it serves as an interesting
piece of future work, especially in applications where speed is more critical.

join

Data from left-leaf
used to constrain queries in

right-leaf

Figure 6.4 GQP Join Strategy

6.2.4 Interfacing for Data Reconciliation

One of the most complex parts of query processing is performing data reconciliation. In Chapter 2, we
discussed the needs for reconciling certain types of data conflicts at the GQP level, namely resolving syntax
type conflicts so that data from separate sources can be combined. For the reasons of extensibility, data
reconciliation in the GQP is actually done by tools that are not imbedded within the GQP. For example, a
translation facility [MCC 88] is a tool currently being used in the preliminary version of the GQP for
performing translations between different data formats and different scale units. As new tools like instance
identification and domain mapping are developed for reconciling data, the GQP should be able to
accomodate them. In MERGE, we have developed a consistent interface within GQP for accomodating
new tools.

Data reconciliation during query processing can basically happen at two places: (1) before getting the data
and (2) after getting the data. For example, consider the following global query:

(select company (position date industry) where (= name "AT&T"))

(1) Before Getting the Data
The previous query is asking for the "AT&T" company's recruiting positions and dates. However,
"AT&T" is also represented as several other names in the underlying data, for example "AT&T Corp.", and
"American Telephone + Telegraph". Thus before getting the data, the equivalent synonyms for "AT&T"
should be inserted into the query in order to get all "AT&T" company's recuiting information. In the GQP,
insertion of synonyms is performed in the query enhancer module.

(2) After Getting the Data
After getting the data, the data from different sources have to combined. However, as discussed in Chapter
2, in order to combine the data, the data has first to be resolved for conflicts in naming, formats and

scales. For example, if the previous query retrieved data from two tables, as shown in Figure 6.5, in order
to get all the information regarding the "AT&T" company, the company names returned from each database
have to be standardized before combining the data returned. Data reconciliation after gettting data is done in
the combine module of the router.

In the GQP, data reconciliations before getting the data are done in the query enhancer module of the parser.
Data reconciliations after getting the data are done in the combine module of the router. In this way, as new
tools are developed to support data reconciliation, there is a consistent way within the GQP to accomodate
them. Any other method, like imbedding data reconciliation within the query processor, has the
disadvantage of not being easily extendable.

comp.'-

AT&T

table2

company position date city

American manager April 3
Telephon

Telegraph

AT&T progr April 4
Corp. mer

company name
standardized

("AT&T" "communications" ...) ("AT&T" "manager" "April 3" ...)

("AT&T" "programmer" "April 4" ...)

data combined

("AT&T" "communications" "manager" "April 3")
("AT&T" "communications" "programmer" "April 4"...)

Figure 6.5 Data Reconciling before Combination

tablel

indusry

conmu
mcations

6.3 The Querl Parser: How it Works

In this section, we provide a detailed description of how the parser works. Recalling the simple-placement
global schema described in Chapter 5, a typical GRL query based on that schema is:

"Find the AT&T company's recruiting dates, positions, and alumni who work for that
company."

(join (select company (position date)
where (= name "AT&T"))

(select alumni (last-name first-name degree position)
on works-for) --- Query (1)

This query is accepted by the parser and is transformed into a parse tree. The transformation stages are
described next, and they include error checking, query expansion, creating an access plan, and query
enhancing.

6.3.1 Stage 1: Error Checking

In the error checking stage, the query is both checked for syntax and lexical errors. Syntax checking
involving checking the correctness of the query syntax. In lexical checking, the entities, attributes and
relations specified in the query are checked against the current global schema, and an error signalled if an
entity, attribute or relation is not found in the global schema.

6.3.2 Stage 2: Ouerv Expansion

In the query expansion stage, the global query is expanded into a form that is easier to manipulate within
the GQP. Several types of expansions are involved:

Reati Ex a
First, the join relationship is expanded. The join relationship is the on clause of the GRL query. For
example in query (1), the join relationship is worksfor. The join relationship is expanded into the actual
join condition. For example, the relationship worksfor would be expanded into:

(= (company name) (alumni company))

This join information is obtained from the global schema. For our example, this would be the :join slot
of theworksfor relation object.

* Expansion
Secondly, the * option is expanded. The * option is used to select all the attributes in an entity. For
example, to get all the attributes within the alumni entity, the following query can be used:

(select alumni * where (= name "Sam"))

which is expanded into:

(select alumni (name social security degree major position company)
where (= name "Sam"))

Join-Key Expansion
Thirdly, the attributes are expanded to include the join-key attributes. For example, we found earlier that
query (1) has the join condition:

(= (company name) (alumni company))

The join-key attributes are (company name) and (alumni company), i.e., these two attributes are used these
entities. However, query (1) does not specify either of these join-key attributes. A join cannot be
performed if data for that attribute is not retrieved. The expanded query for query (1) is:

(join (select company (position date name)
where (= name "AT&T"))

(select alumni (last-name first-name degree position company)
on (= (company name) (alumni company)) --- Query (1.2)

Attribute Expnsion
The last step in the expansion is to expand each attribute in a GRL statement into a form that is more
easier to manipulate. Each attribute is expanded into a list (entity attribute).

After query expansion, query (1.2) looks like the following:

(join (select company ((company position) (company date) (company name))
where (= (company name) "AT&T"))

(select alumni ((alumni last-name) (alumni first-name)
(alumni degree) (alumni position) (alumni company)))

on (= (company name) (alumni company))) -- Query (1.3)

Next, the expanded query is passed to the create access plan stage.

6.3.3 Stage 3: Creating an Access Plan

In this stage, an access plan is created that maps out all the subtasks that need to be done to satisfy the
query. Creating an access plan involves (1) find all possible access paths, and (2) selecting an access path,
and (3) creating an access plan (parse tree) based on (2). These steps are summarized in Figure 6.6, and are
further elaborated next.

(1) Find Access Paths
To find the access paths for a query, each select statement of a query is applied the procedure described next.
For our examples, we will use the first select statement of query (1.3).

Procedure:
(i) Map Global Attributes to Local Names. Each global attribute is mapped to all the possible
local names. For example, the attribute (company name), is mapped to the following local names:

((recruitdb west_companytb company)
(recruitdb east_companytb comp-name))

After all the global attributes have been mapped into the local names, this map information is stored in a
local cache to facilitate quick lookups.

(ii) Joins between Sources. To find the possible access paths, all joins between the sources have to
be first enumerated. All the join relationships between the sources can be obtained from the global
schema, from the :table-relations of the entity object. These relationships are then used to find all possible
source combinations. For example, in order to satisfy query (1.3), the sources found previously in (i)
which include:

For the company entity:
1.1 (recruitdb westcompanytbl)
1.2 (recruitdb easLcompanytbl) , and

For the alumni entity:
2.1 (alumnidb alumnitb)
2.2 (alumnidb schooltb)

EXPANDED
QUERY

FIND ACCESS
PATHS

SELECT
ACCESS PATH RULES

CREATE
PARSE TREE

ACCESS PLAN

Figure 6.6 Creating an Access Plan

have relations of a concatenate and merge respectively. In other words, in order to satisfy the global query
that involves the entity company, the two sources 1.1 and 1.2 need to be concatenated together. Similarly,
to satfisfy the global query for the alumni entity, the two sources 2.1 and 2.2 need to be merged.

Step 2: Select Access Path
The selection of an access path is by default done automatically. The default rule set is shown in Figure
6.7. The goal of the default rule set is to determine the least number of sources needed to satisfy a query.

In our example query (1.3), the selection rule applied is very simple because there is only one combination
of sources required to satisfy the query, that is, the only combination? near the top of the flow chart in
Figure 6.6 is found to be true, and the process ends.

Figure 6.7 Default Selection Rules

Step 3: Create a Parse Tree

The last step is to create the parse tree using the access path selected from step (2). The parse tree created
for query 1.3 is shown in Figure 6.8. The parse tree is specified in an intermediate query language for
which the router understands.

join

concatenate merge

get-table recruitdb
east coastdb ...

get-table recruitdb get-table alumnidb
west_coasttb... alumnitb (last-name ...

Figure 6.8 Parse Tree for Query 1.3

get-table alumnidb
schooltb (degree ...

The parse tree for query (1.3) is the following intermediate query:

(join (concatenate (get-table recruitdb west companytb (position date company)

where (= company "AT&T"))

(get-table recruitdb east companytb (position date compname)

where (= comp-name "AT&T"))

(merge (get-table alumnidb alumnitb (last-name first-name position

company ss))

(get-table alumnidb schooltb (degree ss)

on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

on (= (company name) (alumni company)))

This parse tree is then sent to the query enhancement stage.

6.3.4 Stage 4: Ouerv Enhancing

The two types of query enhancement include synonym identification and translations. These enhancements
are described next.

Synnym Identificationl
The first type of query enhancement is synonym identification. All attributes in a query are checked against
the synonym catalog for synonyms. For example, to check whether (recruitdb westcompanytb
company) has synonyms, the following command is used:

(get syntb 'recruitdb 'westcompanytb 'company)

If synonyms exist, the local synonym table for that attribute is returned, else nothing is returned. Recall
our example in Figure 5.5 from Section 5.2.1 on the two-level scheme representation for synonym
catalogs. The local synonym table for (recruitdb west companytb company) from that example would be:

west-syntb

Each synonym table is inserted into the parse tree at the leaf (get-table statement) where the synonym
occurred in the following format:

(get-table lqp tb (attl ... attn) where conds
syns ((attl syn-tablel) ... (attn synjablen))

where attn is the name of the local attribute that corresponds to the synonym table syntablen. For
example *westsyntb* would be inserted as:

(get-table recruitdb west companytb (position date name)
where (= name "AT&T")

syns ((name *west_syntb*)))

After all the attributes are checked, the parse tree is augmented to include these synonym table names. The
actual insertion of synonyms does not take place until query routing.

After query enhancements, the parse tree for query (1.3) is the following:

(join (concatenate (get-table recruitdb westscompanytb (position date company)

where (= company "AT&T")

syns ((company *west-syntb*)))

(get-table recruitdb east companytb (position date compjname)

where (= comp-name "AT&T")

syns ((compname *east-syntb*)))

(merge (get-table alumnidb alumnitb (last-name first-name position

company ss))

(get-table alumnidb schooltb (degree ss)

on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

on (= (company name) (alumni company))) --- Parse Tree (1.3)

6.4 Querv Router! How it Works

The query router accepts a parse tree which it then executes. Before going into the details of how each
module of the router works, we will run through an example using the parse tree created for query (1.3).
From hereon, we will refer to that parse tree as parse tree (1.3). The numbers in bold in the following
example correspond to where the parse tree are being processed within the router, as shown in Figure 6.1.
For convenience, we reproduce parse tree (1.3):

ACCEPTS:

(join (concatenate (get-table recruitdb west_companyth (position date company)
where (= company "AT&T")
syns ((company *westsyntb*)))

(get-table recruitdb east_companyth (position date compjname)
where (= compjname "AT&T")
syns ((comp name *east syntb*)))

(merge (get-table alumnidb alumnitb (last-name first-name position
company ss))

(get-table alumnidb schooltb (degree ss)
on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))
on (= (company name) (alumni company)))

The router traverses the parse tree in a left to right, depth-first mode. For parse tree (1.3), the first left
branch:

5(a):
(concatenate (get-table recruitdb wesLcompanytb (position date company)

where (= name "AT&T")
syns ((company *westsyntb*)))

(get-table recruitdb easLcompanytb (position date comp_name)
where (= comp-name "AT&T")
syns ((comp-name *east_syntb*)))

would be first executed. The access path module executes this branch by generating subqueries to the
appropriate LQPs. The data returned from the LQPs is combined:

6(a):
(((recruitdb west_companytb position) (recruitdb west_companytb date)

(recruitdb westcompanyth company))
("manager" "February 5" "AT&T")

("programmer" "February 6" "AT&T"))

This data is sent to the global convert module which converts the header list (the first list in the data) into
the equivalent global attribute names:

7(a):
(((company position) (company date) (company name)

("manager" "February 5" "AT&T")

("programmer" "February 6" "AT&T"))

This is processed by the insert constraints module which takes the data and builds constraints for the right
branch of parse tree (1.3). These constraints are inserted into the right branch:

5(b):
(merge (get-table alumnidb alumnitb (last-name first-name position

company ss)
where (= company "AT&T")) ;; constraint inserted

(get-table alumnidb schooltb (degree ss)
on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

This right branch of parse tree (1.3) is then executed by the access router module. The data returned from
the LQPs are combined and sent to the global convert module:

6(b):
(((alumnidb alumnitb last-name) (alumnidb alumnitb first-name)

(alumnidb alumnitb position) (alumnidb alumnitb company) (alumnidb alumnitb ss))
("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))

The converted data is sent to the insert constraints module:

7(b):
(((alumni last-name) (alumni first-name) (alumni position)

(alumni company) (alumni ss))
("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))

However, no constraints are built because all the branches of the parse tree have been executed. The next
stage involves combining all the data returned from the left and right branches:

8:
(join ((company position) (company date) (company name)

("manager" "February 5" "AT&T")

("programmer" "February 6" "AT&T"))
(((alumni last-name) (alumni first-name) (alumni position)

(alumni company) (alumni ss))
("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))
on (= (company name) (alumni company)))

This data is joined into one big list:

9:
(((company position) (company date) (company name)

(alumni last-name) (alumni first-name) (alumni position)
(alumni company) (alumni ss))

("manager" "February 5" "AT&T" "Ernest" "George" "accountant" "AT&T"
"888002147")

("programmer" "February 6" "AT&T" "Horton" "Dave" "engineer" "AT&T" "214700888")))

This is processed by theformat module which removes any attributes not specified in the original query.
Refering to the orginal query (1.3), this includes removing (alumni company) and (alunmi ss), which were
necessary in joining the data but not specified in query (1.3):

RETURNS:

(((company position) (company date) (company name)
(alumni last-name) (alumni first-name) (alumni position)

("manager" "February 5" "AT&T" "Ernest" "George" "accountant")

("programmer" "February 6" "AT&T" "Horton" "Dave" "engineer"))

This section has provided a run-through of how the modules in the router interact. In the next section, we
describe how each module works.

6.3.1 The Access Path Router

The intermediate query router recognizes four operators, which in its basic form are the following:

GET-TABLE lqp table (att1 ... attn) WHERE conds. Selects the attributes att1,.. attn from the
table table on the restriction conds.

MERGE get-table get-table ON conditions. Merges two sets of data returned from the get-table
statements using the conditions as restrictions. All duplicate entries in the data are eliminated.

CONCATENATE get-table get-table. Concatenates two sets of data returned from the get-table
statements. Does not eliminate any duplicates.

The access path router accepts a parse tree which it then proceeds in a left-to-right depth -first manner to
break down into intermediate queries. The intermediate quries are then executed. When the access path
router encounters a get-table statement, the appropriate LQP specified in the statement is invoked in the
following manner:

(send-message lqp :get-data (table (atti ... attn)) conds)

After executing all the get-table statements within a subquery, the data returned from the LQPs are
combined with the either the merge or concatenate operator.

6.3.2 Global Convr

The global convert accepts a list of data from the access path router and converts the header of that list into
the equivalent global names. For example in 6(a), the header list is:

((recruitdb west companytb position) (recruitdb westcompanytb date)
(recruitdb west companytb company))

Each of these local attributes is converted into its equivalent global attributes by looking up in a temporary
cache, created during the parsing of the query. For example, to look up the global attribute for the first
local attribute in the header list shown above, the following command is used:

(lookup-3map 'recruitdb 'west companytb 'position *loc->gs*)

where *loc->gs* is the name of the local cache. The local attribute name returned is:

((company position))

This is done for all the elements in the header list, which is then appended to the rest of the data into the
following list:

(((alumni last-name) (alumni first-name) (alumni position)
(alumni company) (alumni ss))
("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))

6.3.3 Insert Constraints

This module takes the data returned from one branch of the parse tree and uses it to constrain the next query
found in the right branch. For example in 7(a), the data returned from the left branch of parse tree (1.3):

(((company position) (company date) (company name)
("manager" "February 5" "AT&T")

("programmer" "February 6" "AT&T"))

is matched with the on part of the join statement, the condition being:

(= (company name) (alumni company))

A match is found when one of the attributes in the header list of the data match with an attribute in the
condition list. In this case, a match is found for (alumni company). The data for the match is found from
the data and used as constraints:

(= (alumni company) "AT&T")

which is converted into the local attribute name:

(= (alumniidb alumnitb company) "AT&T")

and inserted into the left-most leaf in the right branch of the parse tree:

(merge (get-table alumnidb alumnitb (last-name first-name position
company ss)

where (= company "AT&T")) ;; constraint inserted
(get-table alumnidb schooltb (degree ss)
on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

6.3.4 Combine

The combine module takes the data returned from each branch of the parse tree and combines it on the join
operator. The joining process involves a cartesian product of the data and then a restriction is performed on
the resulting data list.

In the future, when data reconciliation facilities like translations are implemented, they can be interfaced to
the GQP in the combine module.

6.3.5 Format

The format module takes the combined data and strips off attributes that were not specified in the initial
query but were used in the the joining process. The data is then returned to the caller of the GQP,
completing the query processing process.

The last two chapters described the data model and the global query processor. In the next chapter, we test
these components with an application called the Placement Assistant System.

7 APPLICATION: PLACEMENT ASSISTANT SYSTEM

This chapter describes a simplified version of the Placement Assistant System (PAS) being implemented
by the CIS/TK project. It is used to demonstrate the MERGE system operating within the CIS/IK
environment, which currently supports access to several SQL-based DBMS. In the next section, we
describe the operational scenario of the simplified PAS, and in section 7.2, show a sample session with the
system.

7.1 Implementation Scenario

The following describes the scenario of the PAS system:

As a student, it would be nice to have a Placement Assistant System (PAS) to help plan and prepare you
for your job interviews. This task normally involves selecting a set of companies on any several criteria,
such as industry, location, economic performance, position. You will then want to check which companies
will be sending recruiters to your school, resolve any conflicts, and define your schedule of interviews. In
order to focus your energies and improve your chances, you will want to gather relevant information from

I.P. SHARP,
FINSBURY

DOWNLOAE

,4MODEM

ETHERNET

DONNER

Figure 7.1 Machine Configuration for PAS

both external and internal sources (if it happens that an alumnus works for any of the companies). This
would allow you to be knowledgeable about the company, prepare you to ask questions, and solicit support
for your application.

The Placement Assistant System is to be an on-line system that helps you in the various phases of the
placement process. There are several databases, shown in Figure 7.1, at your disposal:

1- ALUMNI (on an AT&T 3B2 computer). This will give you access to data regarding alumni and
the corporations which employ them,

2- RECRUIT (on an IBM PC/RT computer). The RECRUIT database, maintained by the Placement
Office at SLOAN, provides information as to which companies are recruiting, the positions for which
they are hiring, and when they will be coming.

3- FINSBURY and I.P. SHARP (external databases). Commercial data banks such as Finsbury
or I.P. Sharp provide general information about location, industry, products, financial situation of
major corporations.

Presently, this version of PAS does not have the capability to access the external databases through
CIS/TK, so the data from the external databases is downloaded onto an SQL database (Financial on MI2C)
which is then accessed by the CIS/TK system. Efforts to provide on-line connection to the external
databases are near completion and are further described in [GER 89] [GAN 89].

In the next section, we describe a sample session with MERGE.

7.2 Sample Session

MERGE provides a common query language for retrieving, and combining data from the various databases
described in the last section. A global schema that represents the underlying data is shown in Figures 7.2(a)
and 7.2(b). The following is a session that a student might go through with MERGE to find out more
about recruiting companies:

1. "Find all companies recruiting in the communications industry". This query involves
accessing two databases (alumni and recruit). The first access is to the alumni database, which gets the
Standard Industry Code (SIC) for the communications industry, and then the recruit database is accessed to
get companies with that SIC.

;;;; Query to Global Query Processor:

(GQP (SELECT COMPANY (DATE POSITION NAME)
WHERE (= INDUSTRY "Communications")))

;;;; This query is sent to the parser which returns the following parse tree:

<2 (PARSER (MERGE (GET-TABLE LOCAL2E SICCODETB
(INDUSTRY SICCODE) WHERE

(= INDUSTRY "Communications"))
(GET-TABLE ORACLE2E COMPANYTBL

(VISITDAY POSITION COMPANYNAME
SICCODE))

ON
(= (ORACLE2E COMPANYTBL SICCODE)

(LOCAL2E SICCODETB SIC_CODE)))

;;;; The parse tree is then passed to the router which routes each subquery to the appropriate

LQP:

2> (QUERYROUTER
(MERGE (GET-TABLE LOCAL2E SICCODETB (INDUSTRY SIC CODE)

WHERE (= INDUSTRY "Communication"))
(GET-TABLE ORACLE2E COMPANYTEL

(VISITDAY POSITION COMPANY NAME
SICCODE))

ON
(= (ORACLE2E COMPANYTBL SICCODE)

(LOCAL2E SICCODETB SICCODE))))

Global
Schema:

sic
position
industry

last-name
first-name
company
degreeWorks for

Finance info

code
compno
revenue
profit
cuiency
mult

period

Figure 7.2(a) Global Schema for PAS

MIT2C (AT&T 3B2)
DATALINE

DATA I

periodending
sales
efo
code
company-name
-S---

__ A

MIT2A (AT&T 3B2)
MIT2A (AT&T 3B2)
ALUMNIDB

ALUMNITB
- first name
- last-name
- degree
- birthdate
- prefix
- zipcode
- sequencenum
- positioncode
- companyname
- address_11
- address_12
- address_13

MIT2C (AT&T 3B2)

MIT2C (AT&T 3B2)
DISCL_2

DESCRIBE

- compno
- sc (siccode)
- pc

POSITION

- positioncode
- position-name

SICNUMTBI

- sequence-num
- sic code

GENINFO
- compno
- co
- ad1
- cy

- st
- zp

- ts

SICCODETB
- sic code
- industry

GENNUMI

- compno
- rd
- rdns
- ef

- ns

- ni

DONNER (IBM RT)
IBM-RT

COMPANYTBL

- company name
- position
- state
- sc

- status
- visit day

;;;; The first subquery is to the alumni database to get the SIC for "communications":

3> (SEND-MESSAGE LOCAL2E :GET-DATA
(SICCODETB (INDUSTRY SICCODE)

(= INDUSTRY "Communications")))

SQL query to be sent to DBMS....
SELECT INDUSTRY, SICCODE FROM SICCODETB WHERE INDUSTRY =
'Communications'

Connecting to localdb on machine mit2e.. .Done.

;;;; The LQP returns the following data:

<3 (SEND-MESSAGE
(("INDUSTRY" "SICCODE")
("Communications" "48")))

;;;; Next, the router executes the right branch (recruiting information) with the newly

found information on SIC as a constraint:

3> (QUERYROUTER
(GET-TABLE ORACLE2E COMPANYTBL

(VISITDAY POSITION COMPANY NAME SICCODE) WHERE
(= SICCODE "48")))

;;;; Get data from about recruiting information:

4> (SEND-MESSAGE ORACLE2E :GET-DATA
(COMPANYTBL (VISITDAY POSITION COMPANYNAME SIC_CODE)

(m SICCODE "48 ")))

SQL query to be sent to DBMS....
SELECT VISITDAY, POSITION, COMPANYNAME, SIC_CODE FROM
COMPANYTBL WHERE SIC CODE = '48'

Connecting to oracldb on machine mit2e.. .Done.

<4 (SEND-MESSAGE
(("VISITDAY" "POSITION" "COMPANYNAME" "SICCODE")

("February 5" "investment mgmt" "AT&T" "48")
("January 28" "finance" "AT&T" "48")
("January 29" "marketing" "AT&T" "48")
("February 9" "international" "AT&T" "48")))

;;;; The data is combined with the previous data and returned:

<1 (GQP (((COMPANY DATE) (COMPANY POSITION) (COMPANY NAME))
("February 5" "investment mgmt" "AT&T")
("January 28" "finance" "AT&T")
("January 29" "marketing" "AT&T")
("February 9" "international" "AT&T")))

2. "Find the alumni who work at AT&T, and the company's financial information for
the year 1987". This query involves access to three databases: the alumni, recruit, and financial
databases. First the alumni database is accessed to retrieve data about the alumni, and then the recruit
database is accessed to retrieve the states. Finally, the IPSHARP database is accessed to retrieve AT&T's
financial data for the year 1987. This data is then combines together.

;;;; Query to Global Query Processor:

1> (GQP (JOIN (SELECT ALUMNI (LAST-NAME FIRST-NAME DEGREE)
WHERE (= COMPANY "AT&T"))

(JOIN (SELECT COMPANY (STATE))
(SELECT FINANCE (PROFIT CURRENCY MULT)

WHERE (PERIOD "19871231")))))

;;;; This query is sent to the parser which returns:

<2 (PARSER (JOIN (GET-TABLE LOCAL2E ALUMNITB
(COMPANY_NAME LAST NAME FIRST_NAME

DEGREE)
WHERE (= COMPANYNAME "AT&T"))

(JOIN (GET-TABLE ORACLE2E COMPANYTBL
(COMPANYNAME STATE))

(MERGE (GET-TABLE DISCLOSURE2E GENINFO
(CO CURR COMPNO))

(GET-TABLE DISCLOSURE2E GENNUM
(CF NS MULT COMPNO)

WHERE (CF "19871231"))
ON

(= (DISCLOSURE2E GENINFO
COMPNO)

(DISCLOSURE2E GENNUM
COMPNO)))

ON (= (COMPANY NAME)
(FINANCE COMPANY)))

ON (= (ALUMNI COMPANY) (COMPANY NAME)))

;;;; This parse tree is sent to the router:

2> (QUERYROUTER (GET-TABLE LOCAL2E ALUMNITB
(COMPANY_NAME LASTNAME FIRSTNAME DEGREE)

WHERE (= COMPANYNAME "AT&T")))

;;;; invoke LQP

3> (SEND-MESSAGE LOCAL2E :GET-DATA
(ALUMNITE (COMPANYNAME LAST NAME FIRSTNAME

DEGREE)
(= COMPANYNAME "AT&T")))

SQL query to be sent to DBMS....
SELECT COMPANYNAME, LASTNAME, FIRSTNAME, DEGREE FROM
ALUMNITB WHERE COMPANYNAME = 'AT&T'

Connecting to localdb on machine mit2e.. Done.

;;;; data returned from LQP

<3 (SEND-MESSAGE
(("COMPANY_NAME" "LAST_NAME"

"FIRSTNAME""DEGREE")
("AT&T" "George" "Ernest" "SM 1979")))

;;;; routes next leaf in parse tree, which gets the state information

2> (QUERYROUTER
(GET-TABLE ORACLE2E COMPANYTBL

(COMPANYNAME STATE) WHERE
(= COMPANYNAME "AT&T")))

;;;; invokes the lqp for the recruiting database

3> (SEND-MESSAGE ORACLE2E :GET-DATA
(COMPANYTBL (COMPANY_NAME STATE)

(COMPANYNAME "AT&T")))

which returns

<3 (SEND-MESSAGE
(("COMPANYNAME" "STATE") ("AT&T" "MA")
("AT&T" "NJ") ("AT&T" "MA") ("AT&T" "MA")))

;;;; routes next leaf

2> (QUERYROUTER
(MERGE (GET-TABLE DISCLOSURE2E GENINFO (CO CURR

COMPNO)
WHERE (= CO "AT&T"))

(GET-TABLE DISCLOSURE2E GENNUM
(Cr NS KULT COMPNO)

WHERE (= CF "19871231"))
ON

(= (DISCLOSURE2E GENINFO COMPNO)
(DISCLOSURE2E GENNUM COMPNO))))

;;; invokes LQP

3> (SEND-MESSAGE DISCLOSURE2E :GET-DATA
(GENINFO (CO CURR COMPNO) (= CO "AT&T")))

SQL query to be sent to DBMS....
SELECT CO, CURR, COMPNO IROM GENINFO WHERE CO = 'AT&T'

Connecting to discl_2 on machine mit2e .. .Done.

;;;; data returned

<3 (SEND-MESSAGE

;;;; route next last leaf

(("CO" "CURR" "COMPNO") ("AT&T" "$-US"
"470")))

3> (QUERYROUTER
(GET-TABLE DISCLOSURE2E GENNUM

(CF NS MULT COMPNO) WHERE
(AND (= CF "19871231") (= COMPNO "470"))))

;;;; invokes the LQP for financial data

4> (SEND-MESSAGE DISCLOSURE2E :GET-DATA
(GENNUM (CF NS MULT COMPNO)

(AND (= CF "19871231")
(= COMPNO "470"))))

SQL query
SELECT C,
WHERE (CF

to be sent
NS, MULT,

= '19871231

to DBMS....
COMPNO FROM GENNUM
') AND (COMPNO = '470')

Connecting to dicl_2 on machine mit2e ... Done.

;;;; data returned by LQP

<4 (SEND-MESSAGE
(("CF" "NS" "MULT" "COMPNO")

;;;; data is formatted and returned to GQP

<1 (GQP (((ALUMNI LAST-NAME) (ALUMNI FIRST-NAME)
DEGREE)

(ALUMNI

(COMPANY STATE) (FINANCE PROFIT) (FINANCE CURRENCY)
(FINANCE MULT))

("George" "Ernest" "SM 1979" "NJ" "33598.0" "$-US"
"million")
("George" "Ernest" "SM 1979" "MA" "33598.0" "$-US"
"million")))

In this chapter, we demonstrated the feasibility of MERGE for providing data connectivity for CIS/TK.
Unfortunately, due to time constraints and problems in the data reconciliation facilities, we could not show
these tools in action. In the next chapter, we present the conclusion of our work, and point towards some
possible future work in developing MERGE.

8 CONCLUSION
In this thesis, the design of a distributed database management system for providing data connectivity for
CIS/IK was presented. This was motivated by the goal of providing a single, integrated environment to
access and combine data from various heterogeneous, pre-existing databases. The key difference between
MERGE and other Distributed DBMS is that MERGE is designed with the intent of serving as a foundation
for further work in semantic connectivity. In order to achieve this, it was necessary to design MERGE to
be extensible, and to define interfaces for the addition of tools for semantic data reconciliation. In this
chapter, we first discuss how the design of MERGE faired in satisfying these goals. Then, we present some
possible future work for extending MERGE.

8.1 LuLk

Several insights about the design of MERGE were gained during the implementation of the system as well
as during the development of the PAS application for testing the system.

The separation of the GQP into two parts: the query parser and the query router proved to be a very effective
design choice. It provided a very clear way to describe the system -- something which was found to be
lacking in the preliminary prototype. This was mainly because the MERGE GQP design corresponded
well to the tasks involved in global query processing, that is, planning all the subtasks that need to be done
and actually executing these tasks. This separation of the GQP will allow future developers to change the
router without affecting the parser, if such a need arises due to particular needs of the application.

The facility for automatically selecting databases for a global query proved to be a big relieve for both
casual users and developers of the system. In addition, the use of a changeable set of rules for performing
database selection allowed one to change the criteria for determing an access path depending on the
application and the requirements of the user. When testing the system with the PAS application, there were
several times when we had to change the rules because of the type of data we wished to retrieve. By
separating the criterias for database selection from the selection mechanism itself, we can in the future
expand upon the current default rules without modifications to the system, something not possible with
systems that imbed the rules within the selection mechanism.

On the other hand, creating interfaces for data reconciliation within the GQP proved to be a harder issue than
at first thought, especially when the range of possible tools and their implementations for data
reconciliation are unknown. Nevertheless, the two basic ideas about performing data reconciliation before
data is retrieved and after data is retrieved proved to be useful guidelines for interfacing to such tools.
Difficulties arise when data reconciliation required the coordination of both pre-data retrieval and post-data
retrieval enhancements.

Focusing on the other component of MERGE, that is the data model, we found that the distinction between
the structural properties and the semantic properties of data allowed us to tackle each problem separately
with considerable success. This was because the structural properties remained fairly stable and once a
global schema was created, there was rarely any need to modify it. As for the semantic properties, even
with the simple PAS application, we were constantly finding more examples of different types of semantic
conflicts. This convinced us that the MERGE data model, with its goal of extensibility, was an appropriate
representation scheme.

During the implementation of this thesis, we attempted to build some simple data reconciliation tools for
resolving synonyms and translations. However, we found that without a domain mapping system, that is,
a facility that allows one to express the properties of the underlying data, like integer, string or character,
we were really hampered in our attempts to build such tools.

8.2 Future Work

The insights gained point to some possible future work for developing MERGE. Firstly, we think at least
some form of domain mapping support is needed to express the basic properties of the data, perhaps like
integers and string identification. Other areas include the development of a wider range of selection rules to

optimize access time or costs. Also, the development of a query language that can provide more operations
would be useful, for example an extended version of the SQL language.

Other possible areas of future work that are not directly within MERGE but relevant, include the
development of data reconciliation tools, with which we can test the GQP for its data reconciliation
interfacing abilities.

Work in this thesis on providing data connectivity for CISffK and serving as a foundation for semantic
connectivity has only scratched the surface of many interesting issues. Nevertheless, we feel that the
contribution of this thesis will allow researchers to explore the intriguing problems in semantic
connectivity without having to be burdened with the tasks of getting the data from various dissimilar
machines.

REFERENCES

[BHA 87] Bhalla S., Prasad B., Gupta A., and Madnick S., "A Technical Comparison of Distributed
Heterogeneous Database Management Systems," 1987.

[BRO 84] Brodie, M.L., "On the Development of Data Models," On Conceptual Modelling: Perspectives
from Art~lcial Intelligence, Databases, and Programming Languages, 1984.

[CHA 88] Champlin, A., "Interfacing Mutiple Remote Databases in an Object-Oriented Framework",
Bachelor's Thesis, MIT, May 1988.

[CHE 76] Chen, P. "The Entity-Relationship model: Towards a unified view of data," ACM Trans.
Database Syst. 1, 1 March, 1976.

[DAT 87] Date, CJ., The SQL Standard, 1987.

[DEE 82] Deen, S.M. "Distributed Databases - An Introduction," Distributed Data Bases, 1982.

[GAN 89] Gan, F. "An Architecture Design and Implementation of a Communication Server for Disparate
Databases." B.S.Thesis, MIT, 1989.

[GER 89] Gerber, H. "Optimizing Information Retrieval For Disparate Menu Driven Database Systems."
B.S. Thesis, MIT, 1989.

[HOR 88] Horton, D.C., Madnick, S.E., Wang, Y.R., "Inter-Database Instance Identification in
Composite Information Systems, "Proceedings of the Twenty-Second Annual Hawaii International
Conference on Systems Sciences, January, 1989.

[HOR 88-2] Horton, D.C., "An Object-Oriented Approach Towards Enhancing Logical Connectivity in a
Distributed Database Environment," M.S. Thesis, MIT Sloan School, 1988.

IKIN 84] King, R., McLeod D., "A Unified Model and Methodology for Conceptual Database Design" On
Conceptual Modelling: Perspectives from Artificial Intelligence, Databases, and Programming Languages,
1984.

[LEV 87] Levine S., "Interfacing Objects and Databases", M.S. Thesis, MIT, 1987.

[LIN 87] Lindsay B., "A Retrospective of R*": A Distributed Database Management System," Proceedings
of the IEEE, Vol 75, No5, May 1987.

[MAD 88-1] Madnick, SE., Wang, Y.R., "A Framework of Composite Information Systems for Strategic
Advantage," Proceedings of the Twenty-First Annual Hawaii International Conference on Systems Sciences,
January 1988.

[MAD 88-2] Madnick, SE., Wang Y.T., "Evolution Towards Strategic Applications of Databases Through
Composite Information Systems," Connectivity Among Information Systems, Vol 1, MIT, Cambridge
MA, 1988.

[MCC 88] McCay, B.C., "Translation Facility of the Composite Information System Tool Kit, Version
1.0," Technical Report CIS-88-10, MIT, Aug. 1988.

[NEU 82] Neuhold, E. J., Walter, B., "An Overview of the Architecture of the Distributed Data Base
System "POREL"", Distributed Data Bases, September 1982.

[PAG 89] Paget, M.L., "A Knowledge-Based Approach toward Integrating International On-line Databases",
M.S. Thesis, MIT, 1989.

[ROS 82] Rosenberg, R.L, Landers, T., "An Overview of Multibase", Distributed Databases, September
1982.

[SCH 82] Schneider, HJ., Distributed Data Bases, September 1982.

[SHA 84] Shaw, M., "The Impact of Modelling and Abstraction Concerns on Moderm Programming
Languages" On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases, and
Programming Languages, 1984.

[STO 84] Stonebraker, M., "Adding Semantic Knowledge to a Relational Database System," On
Conceptual Modelling: Perspectives from Ardficial Intelligence, Databases, and Programming Languages,
1984.

IWAN 88-1] Wang, Y.T., Madnick, S.E., "Logical Connectivity: Applications, Requirements, and An
Architecture," MIT, 1988.

[WAN 88-2] Wang, Y.T., Madnick, S.E., Horton D.C., and Wong, T.K. "Concept Agents in CIS/TK: A
Tool Kit for Composite Information Systems," Proceedings of the International Computer Symposium,
Taiwan, December 1988.

[WEG 86] Weger, P., "Perspectives on Object-Oriented Programming," Technical Report No. CS-86-25,
Brown University, December 1986.

[WON 88] Wong, T.K., Alford, M. "The CIS/TK Implementation V1.0," Technical Report CIS-88-11,
MIT, August 1988.

APPENDIX A.1 - Schema Definition for PAS

;;;; MIT PLACEMENT OFFICE GLOBAL SCHEMA
;;; This file tests the schema definition language
;;; 3 entities: alumni, company and finance
;;; 2 relationships: worksfor, finance-info

(create-schema mit-placement)

(create-entity alumni
:attributes ((first-name (local2e alumnitb first name))

(last-name (local2e alumnitb last name))
(degree (local2e alumnitb degree))
(company (local2e alumnitb companyname)))

)

(create-entity company
:attributes ((name (oracle2e companytbl companyname))

(position (oracle2e companytbl position))
(date (oracle2e companytbl visit day))
(sic (oracle2e companytbl siccode)

(local2e siccodetb sic code))
(industry (local2e siccodetb industry)))

:table-relations ((merge (oracle2e companytbl)
(local2e siccodetb)
on (= (oracle2e companytbl siccode)

(local2e siccodetb sic-code))))

(create-entity finance
:attributes ((company (disclosure2e geninfo co)

(dataline2e data companyname))
(code (dataline2e data code))
(compno (disclosure2e geninfo compno)

(disclosure2e gennum compno))
(revenue (disclosure2e gennum ni)

(dataline2e data efo))
(profit (disclosure2e gennum ns)

(dataline2e data sales))
(currency (disclosure2e geninfo curr)

(dataline2e data currency))
(mult (disclosure2e gennum mult))
(period (disclosure2e gennum cf)

(dataline2e data periodending)))
:table-relations ((merge (disclosure2e geninfo)

(disclosure2e gennum)
on (= (disclosure2e geninfo compno)

(disclosure2e gennum compno))))

(create-relation works for
:entity-from alumni
:entity-to company
:join (=.(alumni company)

(company name)))

(create-relation financeinfo
:entity-from company
:entity-to finance
:join (= (company name)

(finance company)))

APPENDIX B.1 - GLOBAL RETRIEVAL LANGUAGE

The following is a BNF of the GRL syntax. Letters in caps are the actual syntax. Letters in italic refer to
the left-hand side of the BNF equations. The parenthesis "(" and ")" are part of the syntax of GRL. Letters
enclosed between "{ ...)" are optional. Letters enclosed between "I .. I ..]" means that one of several
options can be used which are divided by "I".

join-query

(JOIN select-query join-query

(ON label))

select-query
(SELECT entity [(att... at)|*]

(WHERE select-condition))

label
name of relation object

entity

entity object

attribute

select-condition

(binary-op select-condition select-condition)I
(= (entity att) val)

binary-op

::= AND I OR

val

value surrounded by double quotes

APPENDIX B.2 -SCHEMA DEFINITION LANGUAGE

create-schema

(CREATE-SCHEMA schema)

create-entity

(CREATE-ENTITY entity

:ATTRIBUTES (map ... map)

{:TABLE-RELATIONS (tb-rel

create-relation

(CREATE-RELATION relation

:ENTITY-FROM entity

:ENTITY-TO entity

:JOIN join-rel)

schema

name of global schema

entity

entity object

map
(att [(lqp tb col) .. (lqp tb co)])

lqp

local query processor object

table

... tb-ret)))

col

column

tb-rel

(MERGE source source

ON merge-cond) I

(CONCATENATE source source)

source
(lqp tb)

merge-cond

(AND (= (lqp tb co) (lqp tb cot))

merge-cond) I

(= (lqp tb cot) (lqp tb cot))

join-rel

(AND (= (entity att) (entity att))

join-rel) I

(=(entity att) (entity att)

APPENDIX C.1 GOP V3.0 CODE

;;;; This file implements the Global Query Processor
;;; TK
;;; April 27, 89

;;; declare all the global attributes
(defvar *global-atts*)

;;; gqp
(defun gqp (query)

(let ((parsed)
(gs->loc)
(loc->gs))

(multiple-value-setq (parsed-query gs->loc loc->gs) (parser query))
(router parsed-query gs->loc loc->gs)))

PARSER MODULES

;;;; This file implements the Parser
April 1, 89

PARSER

(defun prser (query)
(let ((pquery)

(ent-atts)
(locs)
(gs->loc)
(loc->gs))

;; expand the query
(sef p_query (expandquery query))
;; get all the attributes in the query
(setf entIatts (listqueryatts p.query))
;; get all the locs
(setf locs (getattlocs ent atts))

make the map tables, a cache of all
attributes and its location used in

;;the query
(setf gs->loc (makegs->loc locs))
(setf loc->gs (makeloc->gs (reverse-map locs)))
;; make the intermediate query
(setf p_query (determine source p-query gs->loc loc->gs))
;; enhance the query
(setf p_query (enhancequery p.query))
(values pquery gs->loc loc->gs)))

;;;; AUXILIARY FUNCTIONS
;;; list-query-atts
;;; list all the attributes in a expanded query
;;; ((ent att) ... (ent att))
(defun listquery-atts (query)

(cond ((null query)
nil)

((select? query)
(get._select-atts query))

((join? query)
(let ((joinl (get-join1 query))

(join2 (getjoin2 query)))
(append (lisLquery-atts join 1)

(listquery-atts join2))))))

QUERY EXPANSION MODULE

;;; This file implements the query expansion module
;;; Expansions include:
;;; 1. expand relation labels
;;; 2. expand *-option with attributes
;;; 3. transform query attributes and conditions
;;; into long-form.
;;; 4. insert join key attributes

;;; expandquery
;;; expands the query

(defun expandquery (query)
(let ((expquery))

;; reset global atts
(reset-global atts)
;; expand query
(setf exp-query (expand query))

;; insert join attributes
(insertjoinkeys expquery)))

;;;expand
;;; expands stages 1 to 3 (shown at beginning)

(defun expand (rest-query)
(cond ((null rest-query)

nil)
((join? rest-query)
(let ((join 1 (get-joinl rest-query))

(join2 (getjoin2 rest-query))
(joinon (getjoinon restquery)))

;; expand and make a join statement
(make.join (expand join1)

(expand join2)
(expandrelation joinon

(get select entity join 1)
(get-select entity

(getfirst-join join2))))))
((select? rest-query)
(let* ((entity (get-select entity resLquery))

(atts (get selectatts resLquery))
(conds (get_selectconds restquery))
;; combine the atts from condition
(cond-atts (lisLcond atts conds)))

;; expand and make a select statement
(makeselect entity

(expand-attributes entity atts condatts)
(expand-conds entity conds))))))

;;; Expand Attributes

;;; expand-attributes
;;; expand the attributes of a select statement

(defun expand.attributes (entity atts conCatts)
(cond ((*-option? atLs)

(let* ((*-atts (get_*_atts entity))
(ent-atts (add.entity entity *-atts)))

;;; saves original atts for later formatting
(save_global-atts ent-atts)
entatts))

(t
(let ((ent_atts (add-entity entity atts)))

;;; saves original atts for later formatting
(save-global-atts ent-atts)
(add-entity entity (union-equal condatts atts))))))

;;; get_*_atts
;;; gets all the attributes for that entity

(defun get*_atts (entity)
(geLentity-attributes entity))

;;; Expand Conditions

;;; expandconds
;;; expands the conditions

(defun expand-conds (entity conds)
(cond ((null conds) nil)

((simplecond? conds)
(expanCsimplescond entity conds))
((nested-cond? conds)
(let ((op (first conds))

(condl (second conds))
(cond2 (third conds)))

(makenestedcond op
(expand-conds entity condI)
(expand-conds entity cond2))))))

;;; expandsimplecond
;;; expand simple condition

(defun expandsimplecond (entity cond)
(let ((op (first cond))

(att (second cond))
(val (third cond)))

(makesimple_condition op

(first (adcLentity entity (list att)))
val)))

;;; Expand Relation

;;; expand-relation
;;; expands a relation label into the actual join information if not
;;; already specified. If no label is specified, a relation is chosen.

(defun expand_relation (relation entity 1 entity2)

;; relation not specified
(cond ((null relation)

(geLrelationjoin (choosejelation entityI entity2)))
;; actual relation join information
((relation-join? relation)
relation)
;; otherwise it is a relation label
(t
(getrelation_join relation))))

;;; chooserelation
;;; choose the relation if not specified in the query
;;; the first relation that matches in both the entities is chosen.
(defun chooserelation (entity-to entity-from)
(let ((relsj (getentityrelations entity-to))

(rels_2 (get eentity-relations entity-from))
(same.rels))

;; find the shared relations between entities
(setf same_rels (intersection-equal rels_1 rels_2))

;; choose the first one on the list
(first samerels)))

Insert Join Attributes

;;; insertjoinkeys
takes an expanded query and inserts the join attributes not

;;; already found in the query

(defun insert joinkeys (query)
(cond ((null query) nil)

((select? query)
query)
((join? query)
(let* ((joinon (getjoin-on query))

(joinI (insertjoinlatts (get-joinl query)
join-on))

(join2 (insertjoin2_.atts (get-join2 query)
join-on)))

(makejoin join1
join2

join-on)))))

;;; insert-join1_atts
;;; insert the join attributes for the first part of the join

statement.

(defun insert-join1_atts (query join-on)
(let* ((atts (list atts join-on))

(entity (geLselecLentity query))
(select atts (select atts entity atts)))

(insertselect_atts selectatts query)))

;;; insert-join2atts
;;; insert the join attributes for the second part of a join
;;; statement.

(defun insert-join2_atts (query join-on)
(cond ((select? query)

(let* ((join atts (list atts join -on))
(ent (get-select-entity query))
(select atts (select atts ent join-atts)))

(insert-selectatts selectatts query)))
((join? query)
(let* ((join 1 (get-join1 query))

(join2_on (getjoin -on query)))
(makejoin (insertjoin2_atts join 1 join-on)

(insertjoin2_atts (getjoin2 query) join2_on)
join2_on)))))

;;; insertselect_atts
;;; insert attributes into a select statement

(defun insertselect atts (atts query)
(let* ((query-atts (getselect-atts query))

(all-aus (union-equal atts query-atts)))
(makeselect (get.select-entity query)

allatts
(get-selectconds query))))

;;; auxiliary functions

;;; add-entity
;;; adds the entity to each item in the list, ie (entity item)

(defun add-entity (entity items)
(let ((expand items))

(dolist (iteml items)
(setf expanditems (append expandjitems

(list (list entity item1)))))
expand-items))

;;; get-first-join
;;; gets the first select statement from the second part of a join
;;; statement.

(defun get_firstjoin (join2)
(cond ((select? join2)

join2)
((join? join2)
(get join1 join2))))

;;; list_atts
;;; list all the attributes in the on part of a join statement.
(defun list_atts (join-on)

(let ((atts))
(labels ((list-attsl (rest_join-on)

(cond ((null restjoin -on))
((simple-cond? restjoin-on)

(setf atts
(append atts

(rest restjoin on))))
((nested cond? rest_join-on)

(setf atts
(append atts

(list (second
(second
restjoin-on)))))

(list.attsl (third restjoin-on))))))
(lisLatts1 join-on))))

;;; list_cond_atts
;;; returns all the attributes in a condition list
(defun list_cond_atts (cond)

(cond ((null cond) nil)
((simplecond? cond)
(list (second cond)))
((nested cond? cond)
(let ((condI (second cond))

(cond2 (third cond)))
(union-equal (list-condatts cond1)

(listcond_atts cond2))))))

;;; selecLatts
returns all attributes with the same entity as specified

(defun select_atts (entity atts)
(let ((selectedatts))

(dolist (att atts)
(if (equal entity (first att))

(setf selected-atts (union-equal selected_atts
(list att)))))

selected-atts))

;;;; AUXILIARY FUNCTIONS

;;; save_global-atts
;;; sets the attributes defined by the user into *goal-atts*
;;; to be used for formatting later, ie before the data is returned
;;; to the user
(defun save-globaLattsl (query)
(setf *global-atts* (get-globalatts query)))

(defun save-global.atts (atts)
(setf *global-tts* (append *global-atts* atts)))

(defun reset-globaLatts 0
(setf *global-atts* nil))

;;; get-global-atts
returns a list of all the global attributes

(defun get-global-atts1 (query)
(cond ((null query)

nil)
((join? query)
(let* ((join 1 (get-join1 query))

(join2 (getjoin2 query)))
(append (get-global atts join 1)

(get-global-atts join2))))
((select? query)
(let ((atts (get-select-atts query)))

atts))))

CREATE ACCESS PLAN MODULES

;;; This implements the create access plan module
;;; this module compiles a global query in the following stages:
;;; 1. find all the possible access paths
;;; 2. select a path/paths based on a set of selection rules
;;; 3. compile the query into an intermediate query language

determine-source
;;; determines the access path for a global query in an intermediate query
;;; language.

(defun determine source (query gs->loc loc->gs)
(cond ((null query)

nil)
((join? query)
(list 'join

(determinesource (get-joinl query) gs->loc loc->gs)
(determinesource (get-join2 query) gs->loc loc->gs)
'on

(getjoin-on query)))
((select? query)
(let ((atts (getselect-atts query))

(conds (get-select-conds query))
(joins (get(entitytable7rels

(get-select-entity query)))
(accesspaths)
(selected-paths))

;; find all the possible access paths
(setf sourcelist

(find-sources atts joins gs->oc loc->gs))

;; select the access paths
(setf access-paths

(select-source source-list atts joins gs->loc loc->gs))

;; compile the global query
(makejintquery atts conds joins access-paths gs->loc loc->gs)))))

FIND SOURCE MODULE

;;;;This file implements the find sources module
;;; February 23, 89

findsources
;;; description: returns all the possible sources where all the

attributes can be found.

(defun findsources (atts joins gs->loc loc->gs)

;;; get all possible sources
(let* ((all-sources (list-combs (list-sources atts gs->loc)

(list-joins joins))))

;; filter sources that cannot satisfy all the attributes
(filter_combs allsources atts gs->loc loc->gs)))

;;; list_combs
;;; description: list all possible combinations. if the join
;;; information is nil or does not correspond to the elts, then only
;;; the single combinations are listed. if the elt list is nil, then

nil is returned.
;;; accepts: (elt ... elt) and ((eltI elt2) .. (eltI elt3))
;;; returns: ((eltl) (elt2) (elt3) (eltl elt2) ... (eltl elt3))

(defun listcombs (elts join)
(let ((all-list))

(labels ((list-elt (eltl rest-elts)
(let ((elist))

(dolist (rest-elt rest-elts)
(cond ((eltjoin? (first (last eltl))

rest-elt join)
(setf elist

(append elist
(list
(append

eltl (list
rest-elt))))))))

elist))

(list-elt2 (combs)
(let ((new-combs))

(cond ((= (length (first combs))
(length elts)))

(t
(dolist (c combs)

(setf new-combs
(append new-combs

(list-elt
c
(listafter
(first (last c))
elts)))))

(if new-combs
(progn

(setf all-list (append all-list
new-combs))

(list-elt2 new-combs))))))))
(list-elt2'(0))
all-list)))

;;; listafter
;;; description: returns the list of elts after the given elt, if elt
;;; is nil then return the whole list
;;; accepts: elt and (elt1 elt elt3 .. eltn)
;;; returns: list of elts after elt, ie. (elt2 eltn)

(defun list-after (elt e-list)
(cond ((null elt)

e-list)
((eq elt (first e-list))
(rest e-list))
(t
(list-after elt (rest e-list)))))

;;; elt-join?
;;; description: checks whether there is a join between 2 elts
;;; accepts: elt_from elt-to ((eltl elt2) (elt3 elt4) ...)
;;; returns: t if there is a join

(defun eltjoin? (elt_from elt -to joins)
(let* ((pair (list eltfrom eltto))

(rpair (reverse pair)))
(if (or (not elt from)

(not elt to))
t

(dolist (j joins)
(if (or (equal pair j)

(equal rpair j))
(retum t))))))

;;; filtercombs
;;; description: takes all the combinations and filters out those that
;;; do not satisfy the query. specifically, it removes all
;;; possibilities that do not contain all the attributes.

(defun filter_combs (s._combs atts gs->loc loc->gs)
(let ((fLcombs)

(attlist))

;;; for each source combination
(dolist (sources s-combs)

;;; for each source
(dolist (s sources)

;;; get source attributes
(let ((satts (get-entatt

(lookup-3map loc->gs

(getlqp s)
(geLtb s)))))

;;; if any attributes in att are found in s-atts then place in
;;;att_list if not already there.

(dolist (s.att s.atts)
(if (member-equal s-att atts)

(setf attlist
(union-equal (list s.att)

att-list))))))

;;; if all the attributes in attlist match the
;;; attributes in att then place source combination in

s_list
(if (not (set-difference-equal atts attlist))

(progn (setf fcombs (append f combs (list
sources)))))

;;; reset attlist
(setf attlist nil))

;;; return fLcombs
fcombs))

;;; get_entatt
;;; description: returns list of ent-att given ((col entatt ...
;;; ent-att) ... (col entatt ... entatt))

(defun getenLatt (cots)
(let ((anLlist))
(dolist (c cols)

(let ((atts (rest c)))
(dolist (a atts)

(setf ant-list (append antlist (list a))))))
ant-list))

;;; getjlqp
;;; description: returns lqp
;;; accepts: (lqp tb)

(defun getjqp (source)
(first source))

;;; get_tb
;;; description: returns tb
;;; accepts: (lqp tb)

(defun geLtt (source)
(second source))

;;; listsources
;;; description: returns all the sources of attributes

(defun listsources (locs gs->loc)

(let ((slist))
(dolist (1 locs)

(setf sjlist (union-equal s-list (get-sources I gs->loc))))
s_list))

;;; getsources
;;; description: gets the source for the entatt from the map table

(defun geLsources (att gs->loc)
(let ((locs (lookup-2map gs->loc (get-ent att) (get-att att)))

(sorces))
(dolist (I locs)

(setf sources (append sources (list (getsource 1)))))
sources))

;;;get_source
;;; gets a source from a location
(defun geLsource (loc)

(list (getlqp loc) (geLtb loc)))

;;; list-joins
;;; description: returns all the tables with joins between them.

(defun listjoins (join)
(let ((j-list))

(dolist (j join)
(if (merge? j)

(setf j-list (append jiist
(list (make-tb-join (get.jtbl j)

(getjtb2 j)))))))
j_list))

;;; makejtbjoin
;;; description; takes two tables and puts them in a list

(defun make_tbjoin (tbl tb2)
(list tbl tb2))

;;; entity-attribute operators
(defun get-att (ent-att)

(second ent-at))

(defun get-ent (ent-att)
(first ent-att))

SELECT SOURCE MODULE

select_source
;;; description: takes a set of possible source combinations and

selects a combination or a concatenation of combinations depending
on the selection rules given.

(defun selectsource (sources atts joins gs->loc loc->gs)
(let ((srules (get-srules))

(chosen-sources sources))
(cond ((only-comb? chosen.sources)

chosen-sources)
(t
(dolist (r srules)

(let ((r..sources (apply r (list chosensources))))
(cond ((null r..sources))

((only-.comb? rsources)
(setf chosen_sources r .sources)
(return))
;;; more than one combination
(t
(setf chosensources (ask_user? r rsources))
(return)))))

return the chosen sources
chosen_sources))))

selection rule operators
;;; onlycombs?, samejtable?, same-database?, leasttables?, ask_user?

;;; onlyscombs?
;;; description: checks whether there is only one combination. Returns

the combination if only one, else nil.

(defun onlyscomb? (sources)
(if (= (length sources) 1)

sources
nil))

;;; samedatabase?
;;; description: returns all combinations that come from one database.

Returns nil if there are no source combinations that come from one
dataabse.

(defun samedatabase? (sources)
(let ((samedbs))

(dolist (s sources)
(let ((db (getjlqp (first s)))

(samejflag t))
(dolist (c s)

(if (not (equal (getjlqp c) db))
(progn (setf same-flag nil)

(return))))

(if same-flag
(setf same-dbs (append same_dbs (list s)))

(setf sameflag t))))
samejdbs))

;;;sametable?
;;; description: returns the sources that come from the same source,
;;; ie same (Iqp tb). returns nil if none.

(defun sametable? (sources)
(let ((samejtbs))

(dolist (s sources)
(if (only-comb? s)

(setf samejtbs (append same_tbs (list s)))))
sameths))

(defun same_tablel? (sources)
(let ((samejtbs))

(dolist (s sources)
(let ((tb (first s))

(same-flag t))
(dolist (c s)

(if (not (equal c tb))
(progn (setf same-flag nil)

(return))))
(if sameflag

(setf same tbs (append sametbs (list s)))
(setf same-flag t))))

samejtbs))

;;; least_tables?
;;; description: returns the combination with the least number of
;;; sources.

(defun leasttables? (sources)
(let ((leasLsources)

(source-no)
(min-no))

calculate the length of each combination and make a list in
;;source no
(setf source_no (mapcar #'length sources))

find the min length
(setf minno (apply #'min source-no))

;;; search through the list for combinations with this min length
(dolist (s sources)

(if (= (length s) min-no)
(setf least-sources (append least-sources (list s)))))

return the combinations with the least number of sources
least-sources))

least same db?
;;; description: a combinatiion of the samedb? and leasttables?
;;; primitives. Returns the least tables from combinations that have
;;; sources from the same database

(defun least same db? (sources)
(let ((same db (same database? sources)))

(cond ((null same.db)
nil)

((onlycomb? samedb)
same.db)
(t
(least_tables? same-db)))))

;;; slugs

(defun form-iquery (sources atts joins gs->oc loc->gs)
sources)

(defun concatenate-iquery (sources atts joins gs->loc loc->gs)
sources)

;;;; SELECTION SOURCE RULES

;;; default rules
(setf *default_srules*
(list 'same_table? 'samedatabase? 'leasttables?))

;;; initialy set to default rules
(setf *selection_srules* *defaultsrules*)

;;; get_srules
return current rules

(defun get-srules 0
selectionsrules)

;;; setsrules
;;; to update rules
(defun set_srules (rules)
(setf *selection_srules* rules))

ASK USER

;;; switch status
(defvar *user_switch* nil)

;;; askuser?
;;; checks whether the user switch status
;;; if the switch off, return all sources
;;; else ask the user
(defun askuser? (key sources)

(cond (*user-switch*

(user-selectsource key sources))
(t
soures)))

;;;; MIGRATE THIS
;;;; user_selectsource
(defun user_select-source (key sources)

(list (first sources)))

MAKE INTERMEDIATE QUERY MODULE

This file implements the intermediate query language
;;; March 19, 1989

;;intermediate query
;;; 3/4 Primitives:
;;; (1) (get-table lqp tb (att .. att)

(and (= att "val")
(= att "val")))

;;; (2) (merge (get-table ...)
(get-table ...))

;;; (3) (concatenate (merge ..)
(get-table ..))

Intermediate Query

;;; makeintquery
;;; compiles a global query into an intermediate query
;;; assumes query is from one entity

(defun makeintquery (atts conds joins sources gs->loc loc->gs)
(labels ((int (source)

;; simple get-table query
(cond ((single-source? source)

(make_table-query atts
(make_tableconds conds

(list conds
conds)
(first source)
gs->loc)

(first source)
gs->loc
loc->gs))

;; merge query
((multsources? source)
(makejmergequery atts

conds
joins
source
gs->loc
loc->gs))))

;; concatenate queries if there are multiple
source combinations

(concat (source)
(cond ((only-comb? source)

(int (first source)))
(t
(makeconcatquery

(int (first source))
(list (concat (rest source))))))))

(concat sources)))

;;; get-table statement

;;; maketable-query
;;; makes a get-table statement

(defun maketablejquery (atts conds source gs->loc loc->gs)
(let ((tablequery (list 'get-table

(getjqp source)
(gettb source))))

add attributes
(setf table-query (append table-query

(list (maketableatts atts gs->loc
source))))

add conditions
if there are conditions

(if conds
(setf tablequery (append table-query

(list 'where conds))))

return table-query
tablejquery))

maketableatts
makes the selection of attributes for the get-table

(defun maketable atts (atts gs->loc source)
(let ((local.att-list))

(dolist (a atts)

;;; filter the locations that do not come from the source
(let* ((loc (filterilocs (lookup-2map

gs->loc
(first a)
(second a))
source))

(local-att (third loc)))
(setf localattlist (append localattlist

(list local att)))))
local.attjlist))

maketableconds
makes the condition for a get-table statement

(defun makejtable-conds (conds sourceconds source gs->loc)
(cond ((null conds) nil)

((simple_cond? conds)
(if (member-equal conds source-conds)

(convertcond conds source gs->loc)
nil))

(t
(let ((condi (maketableconds (second conds)

source conds
source
gs->loc))

(cond2 (make_table_conds (third conds)
source conds
source
gs->loc)))

(if (null condI)
cond2

(if (null cond2)
cond1

(list (first conds) condi cond2)))))))

;;; convert_cond
takes a condition and converts it into the equivalent

;;; condition for the local source

(defun convertcond (cond source gs->loc)
(let ((enLatt (second cond))

(c)
(newcond))

get the actual location
(setf loc (filter locs (lookup-2map

gs->loc
(first ent-att)
(second ent att))
source))

replace into cond
(setf newcond (list (first cond)

(third loc)
(third cond)))

new-cond))

;;; merge statement

;;; make.merge-query
;;; makes a merge statement

(defun makemerge-query (atts conds joins sources gs->loc loc->gs)

(labels ((merge (rest sources &optional locs)
(let* ((fsource (first rest_sources))

;; filter the atts not in the source
(sourceatts (filter..atts

f_source atts gs->loc))

;; create a list of conditions stripped
of the nested operators

(cond-list (listconds conds))

;; filter the conds not in the source
(source-conds (filter-conds

f_source condlist gs->loc))

;; create condition for table
(tableconds (makejtableconds conds

source conds
f source
gs->loc))

create the table query
(query (makejtable-query

source ails
table-conds
f source
gs->loc
loc->gs)))

;;; if there are locs passed from the last pass
;;; add them
(if locs

(setf query (insertlocs locs query)))

(cond ((null (rest rest-sources))
query)
(t
(let* ((on_info (mergeon fsource

(first
(rest rest-sources))
joins))

(on_locs (list locs oninfo))
(fsourcejlocs (filter_mlocs

on locs
f source))

(rsourcelocs (set-difference
on locs
fsourcelocs)))

;;; insert locs that are not in the loc list
;;; of the query
(setf query (insert-locs fsourcelocs query))

(list 'merge
query
(merge (rest rest-sources) rsourcelocs)
'on
onjinfo)))))))

(merge sources)))

;;; concatenate statement

;;; makeconcatquery
makes the concetenate query

(defun makeconcatquery (query 1 rest-queries)
(cond ((null rest-queries)

queryl)
(t
(list 'concatenate query 1

(makeconcat_query (first rest-queries)
(rest rest.queries))))))

;;; auxiliary functions

;;; checks whether the source combination is single

(defun singlesource? (sources)
(if (= (length sources) 1)

t
nil))

;;; checks whether there are multiple combinations

(defun multsources? (sources)
(if (= (length sources) 1)

nil
t))

;;; filterlocs
;;; description: takes a list of source locations for an entatt and

returns those specified by the source. Only returns one; the last
one on the list that matches

(defun filterlocs (locs source)
(let ((floc))

(dolist (I locs)
(if (and (equal (getlqp 1) (first source))

(equal (gettb 1) (second source)))
(setf floc (append floc 1))))

floc))

;;; filtersconds
;;; description: filters all conditions that do not match the source.

(defun filterconds (source conds gs->loc)
(et ((fconds))
(dolist (cI conds)

(et* ((att (second cI))
(locs (ookup-2map gs->loc

(first att)
(second att))))

(if (filterilocs locs source)
(setf fconds (append fconds (list c1))))))

Lconds))

;;; list-conds
;;; description: strips the "and" and "or" operators from the
;;; conditions and returns only the conditions.

(defun list_conds (conds)
(cond ((null conds)

nil)
((nesedcond? conds)
(append (listconds (second conds))

(listconds (third conds))))
((simplecond? conds)
(list conds))))

;;; listilocs
;;; description: takes the join information and returns a list of
;;; locations stripped of the "and" operator.

(defun listlocs (ocs)
(let ((loclist))
(labels ((strip (restlocs)

(cond ((null rest locs))
((andjoin? restilocs)
(setf loclist

(append locjlist
(rest (second restlocs))))

(strip (third restlocs)))
((simplejoin? restlocs)
(setf loc.list

(append locjlist
(rest restlocs)))))))

(strip locs)
loc_list)))

;;; insert_locs
;;; description: inserts a set of locations into a query. If the
;;; location already exist in the query, then do nothing. All the
;;; locations must come from the same source. The query must be a
;;; simple table query.

(defun insertlocs (ocs query)

(et ((querycols (fourth query)) ; ** substitute with inter q
(locscols (mapcar #'third locs)))

(append (list (first query)
(second query)
(third query)
(union-equal query-cols locscols))

(cdkkr query))))

;;; filter_mlocs
returns a list of locs that has the same source as the argument source.

(defun filter_mlocs (locs source)
(let ((floc))

(dolist (1 locs)
(if (and (equal (getlqp 1) (first source))

(equal (get-tb 1) (second source)))
(setf floc (append floc (list 1)))))

floc))

merge-on
description: makes the on part of the merge query. Expects only

;;; one merge information to be found. If nothing found, returns nil.
;;; At some point, it should complain that nothing was found. *** but

not here.

(defun merge on (sourcel source2 joins)
(let ((sourcejoin)

(s1_2 (list sourcel source2)))
(dolist (jl joins)

(let ((j _sources (list (second j1)
(third jl))))

(if (and (or (equal s1_2 j _sources)
(equal (reverse s1_2) j Lsources))

(merge? jl))
(progn (setf sourcejoin (fifth jI))

(return)))))
source-join))

;;; filter_atts
;;; description: filters the attributes that do not belong to the
;;; location specified by source

(defun filteratts (source atts gs->loc)
(let ((fatts))

(dolist (attl atts)
(let ((ocs (lookup-2map gs->loc

(first attl)
(second attl))))

(if (filter locs locs source)
(setf fLatts (append f_atts

(list attl))))))
f_atts))

QUERY ENHANCER MODULE

;;;; This file implements the query enhancer submodule
;;; April 15, 89

enhancequery
(defun enhancequery (query)

(cond ((null query)
nil)

((get-table? query)
(enhancejtable query))

((merge? query)
(enhancemerge query))

((concatenate? query)
(enhanceconcatenate query))

((join? query)
(enhancejoin query))))

enhancetable
;;; only synonym handling
(defun enhancetable (query)

(let ((lqp (getLtablejlqp query))
(tb (get-table-tb query))
(atts (gettableatts query))
(syns))

(makesyns-query query lqp tb atts)))

;;; enhance-merge
;;; enhanced with translations
(defun enhancemerge (query)

(let* ((merge-on (geLmerge.on query))
(mergelist (lisLmergeon mergeon)))

(make-mergetrans_query
(make-merge (enhance-query (get-mergel query))

(enhancequery (geLmerge2 query))
(get.merge-on query))

merge-list)))

;;; enhance-concatenate
;;; synonym handling
(defun enhance_concatenate (query)

(make_concatenate (enhancequery (getcconcatl query))
(enhance-query (get-concat2 query))))

;;; enhance-join
;;; translations
(defun enhance.join (query)

(let ((join-on (get-join-on query)))
(makejointrans-query
(makejoin (enhance-query (get-joinl query))

(enhance-query (get-join2 query))
join on)

(list-joinon join on))))

;;;; ENHANCING FACILITIES INTERFACE
;;; enhances the query with synonym handling
(defun make syns.query (query lqp tb atts)

(cond ((synson?)
(let ((syns))
(dolist (att atts)

(let ((syntb (getsynjtable (eval (get-global-syntb))
lqp tb att)))

(if syn_tb
(setf syns (append syns

(list (list att syn-tb)))))))
(make-syn-query (make-table lqp tb atts)

syns)))
(t
query)))

;;; make_mergetransquery
;;; enhance the merge query with translations
(defun makemergetransquery (query mergejlist)

(cond ((trans.on?)
(let ((trans))

(dolist (m merge_list)
(let ((transop (get-trans-op (get-global-transtb)

(first m) (second m))))
(if trans_op

(setf trans (append trans
(list (list m

transop)))))))
(maketrans_merge query trans)))

(t
query)))

;;; makejointransquery
;;; enhances the query with translations
(defun makejointransquery (query join)

(cond ((glotranson?)
(let ((trans))

(dolist (j join)
(let ((trans.op (gettranssop (get-global-transtb)

(first j) (second j))))
(if transop

(setf trans (append trans
(list (list j transop)))))))

(make-trans-join query trans)))
(t
query)))

AUXILIARY FUNCTIONS

;;; listmergeon
;;; list all the pairs of merge on
(defun listmergeon (merge-on)

(cond ((merge.and? merge_on)
(let ((and1 (mergeand1 merge-on))

(and2 (merge-and2 merge-on)))

(append (list (list (second andi) (third and1)))
(Iistjmergeon and2))))

(t
(list (list (second merge-on) (third mergeon))))))

;;; list-joinon
;;; list the entity-attribute pairs
(defun list-joinon (join on)

(cond ((join-and? joinon)
(let ((andi (join-andl joinon))

(and2 (joinand2 join on)))
(append (list (list (second andi) (third andi)))

(list.joinon and2))))
(t
(list (list (second join-on) (third joinon))))))

ROUTER MODULES

This file implements the router module
;;; April 15,89

;;; router
(defun router (query gs->loc loc->gs)

(format_data (parser router query gs->loc loc->gs)))

parsrrouter
;;; routes a query from the parser
(defun perserrouter (query gs-Aoc loc->gs)

(cond ((join? query)
(let ((join1 (get-join1 query))

(join2 (get-join2 query))
(join -on (get-joinon query))
(datal))

;; get data for the first part
(setf datal (filter-gs-data (query-router join1) loc->gs))
;; convert to global schema terms
(setf datal (convertgs_data datal loc->gs))
;; insert data from first part into 2nd part
(setf join2 (insert-query-jdata datal join2

(list_joinon join-on)
gs->loc))

join data
(joindata datal

(parser-router join2 gs->loc loc->gs)
join-on)))

(t
(convertgsdata (filtergsdata

(query-router query) loc->gs)
loc->gs))))

QUERY ROUTER MODULE

;;;; This file implements the query router
;;; April 17, 89

;;; query-router
;;; routes an intermediate query
(defun query-router (query)

(cond ((merge? query)
(routemerge query))
((concatenate? query)
(routesconcatenate query))
((get-table? query)
(routejtable query))))

;;; routetable
;;; routes a table query
(defun routetable (query)

(let ((data)
(lqp (geLtablejlqp query))
(tb (geLtable-tb query))
(atts (get_tableatts query))
(conds (gettable-conds query)))

;; retrieve data from lqp
(setf data (geLdata lqp tb atts conds))
;; convert cols and add it to the data
(append (list (convertcolnames lqp tb atts))

(rest data))))

;;; route-merge
;;; routes a merge query
(defun routemerge (query)

(let ((mergel (getjmergel query))
(merge2 (getmerge2 query))
(merge-on (getjmergeon query))
(datal)
(data2))

get data for first part
(setf datal (routetable mergel))
;; insert key data from datal into merge2
(setf merge2 (inserLquerydata datal merge2 merge-on))
;; get data for second part
(setf data2 (query-router merge2))
;; merge data
(merge_data datal data2 merge-on)))

;;; routeconcatenate
;;; routes a concatenate query
(defun routeconcatenate (query)

(let ((concatl (get_concati query))
(concat2 (getconcat2 query)))

(concatdata (routetable concati)
(queryrouter concat2))))

;;;; LQP INTERFACE
;;;getdata
;;; interfaces to the LQP object
(defun getdata (lqp tb atts conds)
(let ((data (send-message lqp :get-data (list tb atts conds))))

(cond ((lqp-errr? data)
(format t "LQP returned an error"))

((null (rest data))
(error "No data was found for the query"))
(t
data))))

;;lqprr
returns t if kp-error

(defn kp-arrr? (data)
(if (equal (first data) Iqp-error)

t
nil))

AUXILIARY FUNCTIONS

convertcolnames
;;; converts the header list returned by an LQP to
;;; have the source too, ie (lqp tb att)
(defun convertcolnames (lqp tb att-list)

(let ((catts))
(dolist (att attjlist)

(setf catts (append catts (list (list lqp tb att)))))
catts))

FILTER MODULE

;;;; This file implements a filter for data returning from the local lqp's
;;; to the router.
;;; April 30, 89

;;; filter-gsdata
;;; filters the data returned from the lqp
;;; all local attributes not defined in the loc->gs
;;; table are filtered
(defun filter-gs.data (data loc->gs)

(let ((headjlist (first data))
(data~list (rest data)))

(filter-gsjdatalist (filter-gshead head-list loc->gs)
head list
data-list)))

;;; filter-gshead
;;; filters those attributes not defined in loc->gs
(defun filter-gsjhead (head loc->gs)

(Iet (fh ead))
(dolist (h head)

(let* ((lqp (first h))
(tb (second h))
(att (third h))
;; get equivalent global schema term
(gs (lookup-3map loc->gs lqp tb att)))

;; if exist, then add to filter list
(if gs

(setf fhead (append fhead
(list h))))))

fhead))

;;; filter-gsdatalist
;;; filters a set of data on the filter-keys
(defun filtergsdatalist (filter-keys head data)

(let ((newdata (list filterkeys)))
(dolist (d data)

(let ((row))
(dolist (key filter -keys)

(et ((pos (finddata-position head key)))
(if pos

(setf row (append row
(list (nth pos d)))))))

(setf new-data (append new-data (list row)))))
new-data))

COMBINE MODULE

This file implements the combine module
April 18, 89

;;; joindata
;;; joins the data - inner join
(defun joinjdata (jl j2 on)

(let ((jlheader (first j 1))
(j2_header (first j2))
(jldata (rest jI))
(j2.data (rest j2))
(data))

;;cartesian product of data
(setf data (cartesian jl data j2_data))
;; perform a restriction
(joinrestriction (append (list (append jl header j2_header))

data) on)))

;;; mergejdata
;;; merges the data - inner join
(defun merge-data (ml m2 on)

(let ((mlheader (first ml))
(m2_header (first m2))
(m1_data (rest m1))
(m2_data (rest m2))
(data))

;; perform a cartesian product of the data
(setf data (cartesian mdata m2_data))
;; perform a restriction
(mergejrestriction (append (list (append mlheader m2_header))

data) on)))

;;;concat data
;;; concatenates the data
;;; returns only the first header, expects cI and c2 to be
;;; aligned
(defun concatdata (cl c2)

(let ((headl (first c1))
(resLdatal (rest c1))
(head2 (first c2))
(rest.data2 (rest c2)))

(append (list headl)
(append rest-datal rest data2))))

cartesian
performs a cartesian product dIxd2

(defun canesian (dl d2)
(let ((product))
(dolist (dl-elt dl)

(dolist (d2_elt d2)
(setf product (append product

(list (append dlelt d2_elt))))))
product))

;;;; RESTRICTIONS
;;; mergejestriction
;;; performs a restriction on the data
(defun mergerestriction (data cond)

(let* ((head (first data))
(rest-data (rest data))
(restrictdata (list head)))

;; for each data elt
;; check restriction condition
(cond ((null cond)

data)
((merge_and? cond)
(let* ((andi (merge.andl cond))

(and2 (merge-and2 cond))
(opt (first and1))
(perand1 (second and1))
(operand2 (third andi))
(post (fm& dataposition head operand1))
(pos2 (fnd-datajposition head operand2)))

(dolist (d rest.data)
(let ((datapos1 (nth post d))

(data-.pos2 (nth pos2 d)))
(if (equal data.posl datapos2)

(setf restrict.data (union-equal restrictdata
(list d))))))

(mergerestriction restrictdata and2)))
(t
(let* ((operandI (second cond))

(operand2 (third cond))
(post (fmd dataposition head operand1))
(pos2 (fmd-data-position head operand2)))

(dolist (d rest data)
(let ((dataL.post (nth post d))

(datapos2 (nth pos2 d)))
(if (equal data-pos1 data_.pos2)

(setf restrict data (union-equal restrictdata
(list d))))))

restricLdata)))))

;;;joinrestriction
;;; performs a join statement restriction
(defun joinjrestriction (data cond)
(et* ((head (first data))

(restdata (rest data))
(restricLdata (list head)))

;; for each data elt
;; check restriction condition
(cond ((null cond)

data)
((join-and? cond)
(let* ((and1 (join-andt cond))

(and2 (join_and2 cond))
(opt (first andt))
(operandl (second andt))
(operand2 (third andI))
(post (fmddata-position head operandi))
(pos2 (fmddata-position head operand2)))

(dolist (d rest data)
(let ((datajposl (nth posl d))

(datapos2 (nth pos2 d)))
(if (equal dataposl datapos2)

(setf restrict-data (union-equal restrict_data
(list d))))))

(joinrestriction restrict_data and2)))
(t
(let* ((operandI (second cond))

(operand2 (third cond))
(posI (finddataposition head operand1))
(pos2 (find,..datajosition head operand2)))

(dolist (d restjdata)
(let ((data_.posl (nth posi d))

(datapos2 (nth pos2 d)))
(if (equal data.posl datapos2)

(setf restrict-data (union-equal restrictdata
(list d))))))

restrict-data)))))

AUXILIARY FUNCTION

;;; findjdata-position
;;; returns the position of a datum in a returned data list
;;; starts with 0
(defun find_data-position (head key)

(let ((pos 0)
(flag nil))

(dolist (h head)
(if (equal h key)

(progn (setf flag t)
(return))

(incf pos)))
if key not found

(if flag
pos

(error "The key -A was not found in the header list:-%-A"
key head))))

;;; inserts data from the first part of a merge statement into query
;;; data is expected to come from one source
(defun insertquery-data (data query mergeon)

(cond ((merge? query)
;; only insert data into first part of merge
(inserLmerge_data data query merge-on))

((concatenate? query)
(makeconcatenate
;; only insert data into first part of concatenate
(insert_concatenate_data data (geLconcatenatel query) merge-on)
(get.concatenate2 query)))

((get-table? query)
(let ((source_from (geLsource (first (first data))))

(source_to (list (gettablejlqp query)
(geLtable-tb query))))

(insert_table_data data source_from
source_to query mergeon)))))

;;; insert.merge-data
(defun insertjmerge_data (data query merge-on)

(let* ((mergel (getimergel query))
(merge2 (geLmerge2 query))
(on (getmergeon query))
(head (first data))
(source-to (list (gettablejlqp mergel)

(get-tablejtb mergel)))
(source-from (getsource (first bead))))

(make-merge
(insert_tabledata data sourcefrom sourceto mergel merge-on)
merge2
on)))

;;; insert_concatenatedata
;;; inserts data from the first part of a merge into concatenate query
(defun insert_concatenate_data (data query merge_on)

(let* ((concatl (geLconcatenatel query))
(concat2 (getconcatenate2 query))
(lqp (geLtablejlqp concat1))
(tb (gettable_tb concatI))
(sourceto (list lqp tb))
(head (first data))
(sourcejfrom (geLsource (first head))))

(makeconcatenate (inserttabledata data sourcefrom
sourceto concati mergeon))))

insert_table_data
;;; inserts data into a table query
;;; expects a get-table query
(defun inserttabledata (data sourcefrom sourceto query mergeon)

(let ((conds (get_able_conds query))
(lqp (gettablelqp query))
(tb (get_table_tb query))
(atts (get_tableatts query)))

(make_table lqp tb atts
(insert-conddata data source_from

sourceto conds mergeon))))

each elt in a row of data is combined with an "and"
;;; rows are combined with an "or"

the new conditions are combined with the old on "and"
;;; changed "and" to "or" -what's the implications!!!
(defun insert_conddata (data source_from sourceto conds mergeon)

(let* ((mergejist (listmergeon merge,-on))
(new-conds (getconds_data data source_from sourceto mergejist)))

(if (null conds)
(make cond_data new-conds)

(makejtableand conds (make conddata newconds)))))

;;; get_conds_data
converts the data into a list with the new source

(defun get condsdata (data sourcefrom sourceto merge_list)
(IPe* ((key (first data))

(datalist (rest data))
(flterkeys (create-key-map key mergejlist)))

;; filter data not in filterkeys
(filter_data filterkeys data)))

;;; filterdata
;;; filters unwanted data not in the map-list

also filters out repeated data
(defun filterdata (map-jist data)

(let ((fdata)
(hdata)
(dataikeys (first data))
(restdata (rest data)))

(dolist (d rest-data)
(let ((fdata 1))

(dolist (map mapjist)
(let* ((key (first map))

(pos (find-datajposition data-keys key)))
(setf fdatal

(append fdatal
(list (nth pos d))))))

(setf fdata (union-equal fdata (list fdatal)))))
(dolist (map maplist)

(let ((map-key (second map)))
(setf hdata (append hdata (list mapkey)))))

(append (list hdata) fdata)))

;;; create-key-map
(defun create_keynap (keys maplist)

(let ((key_map))
(dolist (key keys)

(dolist (m maplist)
(if (member-equal key m)

(setf key-map
(append key-map

(list
(list key

(first (set-difference m
(list key)
:test

key-map))

make-cond data
takes a list ((keyl key2 ..) (datal data2 ..)(datal data2

;;; and makes a condition statement with "or" between rows and "and"
;;; within each row.
(defun make conddata (data)

(let ((keys (first data))
(datarows (rest data)))

(makecond.rows keys datajrows)))

make_cond_rows
combines each row with "or"

(defun make-cond.rows (key rows)
(cond ((null (rest rows))

(makescond_row key (first rows)))
(t
(makejtable-or (makecondrow key (first rows))

(makecond_rows key (rest rows))))))

make_cond_row
combines elts in a row with "and"

(defun make_condrow (key row)
(cond ((null (rest row))

(ist'= (getloccol (first key)) (first row)))
(t
(makejtableand (list '= (geLloccol (first key)) (first row))

(makecond_row (rest key) (rest row))))))

;;;; AUXILIARY FUNCTION

LOCATION ABSTRACTION
(defun getlocpcol (location)

(third location))

#'equal)))))))))

CONVERT MODULE

;;;; This file implements the convert module
converts a data header into required form at gqp level

;;; April 19, 89

convertcolnames
attaches to each col name the lqp and tb info

(defun convert_colnames (qp tb cols)
(let ((clist))
(dolist (col cols)

(setf clist (append clist (list (list lqp tb col)))))
clist))

;;;convert-gs data
;;; changes the header of the data into global terms

and returns the list of header and data
(defun convert-gsjdata (hdata loc->gs)

(let ((head (first hdata))
(data (rest hdata)))

(append (list (convert-gs_atts head loc->gs))
data)))

;;; convert-gs-atts
;;; converts to global schema attributes
(defun converLgsatts (header loc->gs)
(let ((c_header))

(dolist (att header)
(let* ((lqp (first att))

(tb (second att))
(col (third att))
;; get global schema attribute from
;; map table
(gs~att (lookup-3map loc->gs lqp tb col)))

(setf cjheader (append c_header gs~att))))
c-header))

;;;; This file implements the insertion of join data
;;; April 26, 89

insertquery-jdata
;;; inserts join data into second part of the query
(defun insertqueryjdata (data query onjlist gs->loc)

(cond ((join? query)
(insert join-jdata data query on-list gs->loc))

((merge? query)
(insertjmergejdata data query on-list gs->loc))

((concatenate? query)
(insert concatenate-jdata data query on-list gs->oc))

((get-tabl? query)
(insert_tablejdata data query onjlist gs->loc))))

;;; insert-join
;;; inserts into a join query data from a first part of a join
(defun insert-join-jdata (data query on-list gs->loc)

(let* ((join 1 (get-join1 query))
(join2 (get-join2 query))
(on (get-joinon query))
(head-list (first data))
(entity-from (get-ent (first headjlist))))

(cond ((get-table? join 1)
(make-join (inserttablejdata data joinI on-list gs->loc)

join2 on))
((merge? join 1)
(makejoin (insert merge-jdata data join 1 on-list gs->loc)

join2 on))
((concatenate? join 1)
(makejoin (insertconcatenatejdata data join 1 onjlist gs->loc)

join2 on)))))

;;; insert tablejdata
;;; inserts join data into a get-table query
(defun inserttablejdata (data query on-list gs->loc)

(let ((lqp (gettablejqp query))
(tb (geLtablejtb query))
(atts (get_tableatts query))
(conds (get_tableconds query)))

(maketable lqp tb atts
;; insert conditions created by the previous
;;join data
(insert-cond-jdata data (list lqp tb) conds

on-list gs->loc))))

;;; insert.mergejdata
;;; inserts data into merge query
(defun insertmerge-jdata (data query on-list gs->loc)
(let ((mergel (getmergel query))

(merge2 (getmerge2 query))
(on (getmergeon query)))

;; insert data into first part of merge
;; which is a get-table query
(make-merge (inserttablejdata data mergel on-list gs->oc)

merge2
on)))

insert concatenatejdata
;;; insert joins data into concatenate query
(defun insertconcatenatejdata (data query on-list gs->loc)

let ((concatl (get-concatenatel query))
(concat2 (get-concatenate2 query)))

(make_concatenate (insert_tablejdata data concati on_list gs->loc)
concat2)))

AUXILIARY FUNCIONS
inserLcondjdata

;;; inserts join data into condition statement
(defun insertcondjdata (data source-to conds onjist gs->loc)

(let ((new-conds (convertjdata (getcondsjdata data
onlist)

sourcejto gs->loc)))
(if (null conds)

(make_cond_data newconds)
(maketable_and conds (makescond_data newconds)))))

;;; get-condsjdata
;;; gets the conditions for data
(defun get-condsjdata (data on-list)
(let* ((key-jist (first data))

(datalist (rest data))
(filterkeys (createkeymap key-fist onjlist)))

(filter_data filterkeys data)))

;;; convert.jdata
converts the header list of join data into local attributes

(defun convert-jdata (jdata sourcejo gs->loc)
(et ((head (first jdata))

(data (rest jata))
(newhead))

(dolist (h head)
(et ((entity (get-ent h))

(att (get-att h)))
(setf newhead

(append new_head
;;filter the locs
;; since each global attribute
;; can be mapped to several locs
(list
(filter-locations
(lookup-2map gs->loc entity att) sourcejto))))))

(append (list new_head) data)))

;;; filterjocs
filter the locations until only one location

(defun filterjlocations Oocs source-to)
(et* ((floc (first locs))

(source (get-source floc)))
(if (equal source_to source)

floc

100

(filter-locs (rest locs) source-to))))

make-cond data
;;; takes a list ((keyl key2 ..) (datal data2 ..) (datal daia2 ..) ..)
;;; and makes a condition statement with "or" between rows and "and"
;;; within each row.
(defum make cond-data (data)
(let ((keys (first data))

(datajrows (rest data)))
(makecond_rows keys datarows)))

;;; makecondrows
;;; combines each row with "or"
(defun makecond rows (key rows)
(cond ((null (rest rows))

(makescondrow key (first rows)))
(t
(makejtable-or (makecondrow key (first rows))

(makecondrows key (rest rows))))))

;;; makecondrow
;;; combines elts in a row with "and"
(defun makejcond.row (key row)

(cond ((null (rest row))
(list '= (get (first key)) (first row)))
(t
(maketable-and (list '= (get_locscol (first key)) (first row))

(makecondrow (rest key) (rest row))))))

101

FORMAT MODULE

;;;;This file implements the format module
;;; strips off data that was not requested for
;;; April 19, 89

;;; formatdata
;;; strips off data from hdata not requested in globatts
(defun format data (hdata)
(let* ((head (first hdata))

(data (rest hdata))
;; get global atts
(atts *global-atts*)
(fdata (list atts)))

(dolist (d data)
(setf fdata (append fdata

(list (filter.globaldata atts head d)))))

;;; filterglobal-data
returns list of data defined by atts

(defun filter-global]data (atts head data)
(let ((fdata))

(dolist (att atts)
(let ((pos (find-data-posiion head att)))

;; expects to find something
(if pos

(setf fdata (append fdata (list (nth pos data)))))))
fdata))

102

MAPPING (CACHE) MODULES

;;;; This file implements 2 map tables to store the mappings from
;;;; global to local schema names, and vice-versa.

MAKEGS->LOC
makes the map from global to local terms from list of attributes.

;;; eg. ((alumni name)... (company name))
(defun makes->loc (attlocs)

(let ((map (make-2keytable)))
(insert-2map map att-locs)
map))

;;; make-loc->gs
;;; make a map from local to global terms from atts
(defun make_loc->gs (loc-atts)

(let ((map (make-3keytable)))
(insert-3map map loc-atts)
map))

;;; get_att_locs
;;; get all the attribute locations
(defun get-attjocs (enLatts)

(let ((locs))
(dolist (ent-attl ent atts)

(let* ((ent (first ent-attl))
(att (second entattl))
(loc (get-entity-locs ent att)))

(setf locs (append locs (insertentatt entattl loc)))))
locs))

;;;; AUXILIARY FUNCTIONS

insertentatt
;;; inserts (ent att) to each (lqp tb col)
(defmacro insert ent att (ent-att locs)

'(mapcar #'(lambda (x) (append ,ent-att (list x)))
,locs))

;;; reversemap
;;; reverses a list of (ent att (lqp tb col)) into (lqp tb col (ent att))
(defun reverse_map (attLocs)

(mapcar #'(lambda (x) (append (third x) (list
(list (first x)

(second x)))))
att locs))

103

APPENDIX C.2 SCHEMA DEFINITION LANGUAGE CODE

;;; This file implements the global schema definition language

CREATE-SCHEMA
(defmacro create-schema (schema)

"GLOBAL SCHEMA DEFINITION LANGUAGE.
Creates a global schema.
Used at the beginning before defining entities and relations
eg.
(create-schema alumni)"

'(progn (create-gsm ',schema)
(seLcurrentgsm ',schema)))

CREATE-ENTITY
(defmacro create-entity (entity &key ((:attributes atts))

((:table-relations tb-rels)))
"GLOBAL SCHEMA DEFINITION LANGUAGE.
Creates an entity with optional attributes and table relations.
eg. (create-entity 'alumni

:attributes
((name (lqpl dbl namel) (lqp2 db2 name2))
(age (lqp2 db2 age2)))
:table-relations

((merge (IqpI dbl) (lqp2 db2)
on (= (lqpl dbl namel) (lqp2 db2 name2)))))"

'(progn
(create-entity ',entity)
(add_gsm_entity ',*current-gsm* ',entity)
;; add entity name to current gsm
(if ',atts

(progn (dolist (att ',atts)
(let ((attribute (first att))

(locs (rest att)))
;; add attribute to entity
(add attribute ',entity attribute)
(dolist (loc locs)

(addlocation 'entity attribute loc))))))
(if ',tb-rels

(dolist (rel ',tb-rels)
(add_table relation ',entity rel)))))

;;;; CREATE-RELATION
(defmacro create-relation (relation &key ((:entity-from ent-from))

((:entity-to ent-to)) ((:join join)))
"Creates a relation.
eg. (create-relation 'worksfor

:entity-from 'alumni
:entity-to 'company
:join '(= (alumni comp-name)

(company name)))"
'(progn

(createrelation ',relation)

104

;; add relation name to current gsm
(add_gsm_relation ',*current-gsm* ',relation)
;; add to relation object slots
(if ',entfrom

(progn
(add-relationentityjfrom ',relation ',entfrom)
;; add relation name to entities
(addtrelation ',ent-from ',relation)))

(if ',ent.to
(progn
(addrelation ',enLto ',relation)
(add-relationentity.to ',relation ',ento)))

(if 'join
(addrelation.join ',relation 'join))))

;;; DELETING A SCHEMA

;;;; delete-schema
;;; deletes an entire schema
(defmacro delete-schema 0

"GLOBAL SCHEMA DEFINITION LANGUAGE
Deletes a schema if specified, else deletes the current schema.
eg.

(delete-schema) or (delete-schema mit-placement)"
'(if ',*current-gsm*

(let ((ents (getgsm.entities ',*current-gsm*))
(rels (get-gsm relations ',*current-gsm*)))

;; delete entities
(dolist (ent1 ents)

(delete-entity ent1))
;; delete relations
(dolist (rell rels)

(deletejrelation rell))
;; delete gsm
(deletegsm ',*current-gsm*)
;; set current gsm to nil
(set-current_gsm nil))

nil))

;;;; LOAD-SCHEMA
;;; loads a schema specified by a filename
(defmacr load-schema (file)
'(if (open ,file :direction :probe)

(progn
(delete-schema)
(load ,file)
(format t "Current schema -A-%" ',*current-gsm*)
t)

(format "-%File not found. -A-%" ,file)))

105

VIEW-SCHEMA
;;; views the entities and relations in the schema
(defmacro view-schema 0
'(if ',*cuffent-gsm*

(progn
(format t "-2%GLOBAL SCHEMA: -A-%" ',*current-gsm*)
(format t " Entities: -%")
(format t "-5T-A-%" (getgsm..entities ',*current-gsm*))
(format t " Relations: -%")
(format t "-5T-A-2%" (getgsmrelations ',*current-gsm*)))

(progn
(format t "-%No schema currently loaded-%")
(format t "Load schema with (load-schema <filename>)-%"))))

;;;; VIEW-ENTITY
;;; views the attributes, locations, table relations in the entity
(defmacro view-entity (entity)

"GLOBAL SCHEMA DEFINITION LANGUAGE
Shows a entity
e.g.

(view-entity alumni)"
'(if (entityexist?',*current-gsm* ',entity)

(let ((atts (get-entity-attributes ',entity)))
(format t "-2%ENTITY: -A-%" ',entity)
(format t " Attributes:-%")
(format t "-5T-A-%" atts)
(format t " Relations:-%")
(format t "-5T-A-%" (get.entity_relations ',entity))
(format t " Table-relations:-%")
(format t "-5T-A-%" (get-entity-tablerels ',entity))
(dolist (att atts)

(format t " -A:-%" att)
(format t "-5T-A-%" (get.entityjocs ',entity att)))

(format t "-%"))
(progn

(format t "Entity not found: -A-%" ',entity)
(format t "Entities found in global schema:-%")
(format t "-5T-A-%" (get-gsm entities ',*current-gsm*)))))

VIEW-LOCATION
;;; look at the locations of a specific attribute

VIEW-RELATION
;;; views a relation
(defmacro view-relation (relation)

"GLOBAL SCHEMA DEFINITION LANGUAGE
Shows a relation.
e.g.

(view-relation works_for)"
'(if (relation -exist? ',*current-gsm* ',relation)

(progn
(format t "-2%RELATION: -A-%" ',relation)
(format t " Entity-from:-%")
(format t "-5T-A-%" (geLrelationentity-from ',relation))

106

(format t " Entity-to:-%")
(format t "-5T-A-%" (get-relation entity-to ',relation))
(format t " Join:-%")
(formatt "-5T-A-%-2%" (getjrelation.join ',relation)))

(progn
(format t "-%Relation not found: -A-%"',relation)
(format t "Relations found in global schema:-%")
(format t "-5T-A-%" (get-gsmjrelations ',*current-gsm*)))))

107

ENTITY MODULE

;;; This file implements the entity module
;;; An entity looks like the following:

;;; slots:
<attributenamel>:

<attributenameN>:
;;; attributes:
;;;Irelationsl:
;;;Itablerelsl:

;;; entity object

(make-object 'entity
('superiors 'gsm)
('Iattributesl t 'multiple-value-f)
('Irelationsl t 'multiple-value-f)
Citablerelsi t 'multiple-value-f))

;;; CREATING AN ENTITY

;;; create-entity
;;; creating an entity

(defun create-entity (name)
(create-instance 'entity name))

;;; addattribute
adds an attribute to an entity

(defun addattribute (entity att)
(cond ((attributeexist? entity att)

(signalerror 'entity_3 (list entity att)))
(t
(put-object entity att t 'multiple-value-f)
;; add to attributes slot
(put-object entity 'lattributesl att))))

;;; add-location
;;;adds a location to an attribute

(defun addlocation (entity att loc)
(cond ((locexist? entity att loc)

(signalerror 'entity5 (list entity att loc)))
(t
(put-object entity att loc))))

108

;;;addrelation
;;; adds a relation name to the relations slot

(defun add_relation (entity relation)
(if (entityrelationexist? entity relation)

(signalerror 'error (list entity relation))
(put-object entity 'Irelationsi relation)))

;;;addtablerelation
(defun add_table_relation (entity relation)
(if (entity-table-relationexist? entity relation)

(signal-error 'error_9 (list entity relation))
(put-object entity 'Itable-relsl relation)))

;;; GETTING AN ENTITY

;;; getentityjtablerels
;;; gets the table relations in the tablerels slot

(defun geLentity_tablejrels (entity)
(geLentity-slot entity 'Itable-relsl))

;;; geLentity-attributes
;;; gets the attributes in the entity

(defun geLentity-attributes (entity)
(geLentity-slot entity 'lattributesl))

;;; get-entity_relations
;;; gets the relations in the entity

(defun geLentityrelations (entity)
(geLentity-slot entity 'Irelationsl))

;;; get-entity-locs
(defun get.entitylocs (entity att)

(get-object entity att))

;;; KOREL INTERFACE

;;; get-entityslot
;;; gets a slot from an entity object

(defun get-entity-slot (entity slot)
(get-object entity slot))

109

;;; DELETING AN AN ENTITY

;;; delete-entity
(defun delete_entity (entity)

(remove-classes entity)
(remove-object 'entity 'instances entity))

;;; AUXILIARY FUNCTIONS

attribute_exist?
;;; checks whether attribute exist
(defun attributeexist? (entity att)

(et ((atts (get_entityslot entity 'lattributesl)))
(if (member-equal att atts)

t
nil)))

;;; loc_exist?
(defun locexist? (entity att loc)
(if (attributeexist? entity att)

(let (locs (get -entity-slot entity att)))
(if (member-equal loc locs)

t
nil))

(signal_error 'entity_4 (list entity att))))

;;; checks whether the relation exist
(defun entityrelationexist? (entity relation)

(et ((rels (geLentity_slot entity 'trelationsl)))
(if (member-equal relation rels)

t
nil)))

;;; entity-table relationexist?
(defun entitytable_relationexist? (entity tb-rel)
(et ((tb-rels (get-object entity 'Itablejrels)))
(if (member-equal tb-rel tb-rels)

t
nil)))

110

RELATION MODULE

;;; This file implements the relation object and its operations
;;; A relation looks like the following:

;;; slots:
;;; entity-to:
;;; entity_from:
;;; join:

;;; relation object

(make-object 'relation
('superiors 'gsm)
('lentityjtol nil 'multiple-value-f)
('lentityjroml nil 'multiple-value-f)
('ljoini nil 'multiple-value-f))

;;; CREATE A RELATION

create_relation
(defun createrelation (name)

(create-instance 'relation name))

;;;; add_relationentityfrom
(defun addrelationentityJrom (relation entjfrom)

(cond ((relationentityexist? relation 'lentity-froml entjfrom)
(signalerror 'error_8 (list relation 'entity_from entfrom)))
(t
(put-object relation 'lentity-fromI entfrom))))

;;;; add_relationentityjto
(defun addrelation-entityjo (relation entjto)

(cond ((relation-entity-exist? relation 'lentityjtol ent-to)
(signal error 'error_8 (list relation 'entity-to entjto)))
(t
(put-object relation 'lentityjtol ent-to))))

;;; addrelationjoin
(defun add_relation.join (relation join)
(cond ((relationjoinexist? relation join)

(singalerror 'error_9 (list relation join)))
(t
(put-object relation 'Ijoini join))))

111

;;; GETITING A RELATION

;;; get relation_entity_from
;;; gets the first entity

(defun getrelationentity_from (relation)
(get-object relation 'lentityjfroml))

;;; get-relationentityjto
;;; gets the entityto slot

(defun getrelation.entityjo (relation)
(get-object relation 'lentityjtol))

;;; get.relationjoin
;;; gets the join slot

(defun geLrelation-join (relation)
(get-object relation 'Ijoinl))

;;; deleting a relation

;;; deleterelation
(defun deleterelation (relation)
(remove-classes relation)
(remove-object 'relation 'instances relation))

;;; AUXILIARY FUNCTIONS

;;; relationentityexist?
(defun relationentityexist? (rel slot ent)
(let ((ent from.slot (get-object rel slot)))
(if (equal ent entfrom_slot)

t
nil)))

;;; relation-joinsexist?
(defun relation-join exist? (rel join)

(let ((rel-join (get-object rel 'Ijoinl)))
(if (equal join reljoin)

t
nil)))

112

GSM MODULE

;;;; This files implements the global schema manager (gsm)
;;; The gsm object looks like the following:

;;; slots:
;;; entities:
;;; relations:

;;; GSM object
(make-object 'gsm

(lentitiesi t 'multiple-value-f)
(Irelationsl t 'multiple-value-f))

;;;; current gsm
(defvar *current-gsm* nil)

;;; set the current gsm
(defun set_currentgsm (gsm)
(setf *current-gsm* gsm))

;;; CREATING A GSM

;;; create-gsm
;;; only one gsm is assumed to be loaded in at any one time. Thus,
;;; there is no need to check whether any other gsm exists.
(defun creategsm (name)

(create-instance 'gsm name))

;;; add_gsmentity
;;; adds an entity name to the entities slot of the gsm
(defun add_gsmentity (gsm entity)

(cond ((entity.exist? gsm entity)
(signalerror 'error_10 (list gsm entity)))

(t
(put-object gsm 'lentitiesi entity))))

;;; adds a relation name to the relations slot of the gsm
(defun add_gsmjelation (gsm relation)

(cond ((relationexist? gsm relation)
(signal_error 'error_1l (list gsm relation)))

(t
(put-object gsm 'Irelationsl relation))))

;;; GETTING GSM

;;; get-gsmrelations
(defun get-gsm-relations (gsm)
(get-object gsm 'Irelationsi))

;;; get-gsmentities
(defun get-gsm-entities (gsm)
(get-object gsm 'lentitiesi))

113

;;; DELETE A GSM

;;; delete-gsm
(defun deletegsm (gsm)

(remove-classes gsm)
(remove-object 'gsm 'instances gsm))

;;; delete-gsm entity
;;; delete an entity in the entities slot
(defun delete-gsm-entity (gsm entity)

(remove-object gsm 'lentitiesl entity))

;;; delete-gsm relation
;;; delete a relation in the relations slot
(defun delete-gsmrelation (gsm relation)

(remove-object gsm 'Irelationsl relation))

;;; AUXILIARY FUNCTIONS

;;; entity-.exist?
(defun entity-.exist? (gsm entity)

(let ((gsm-ents (get-object gsm 'lentitiesl)))
(if (member-equal entity gsm-ents)

t
nil)))

;;; relationexist?
(defun relationexist? (gsm relation)

(let ((gsmjrels (get-object gsm 'Irelationsi)))
(if (member-equal relation gsmjrels)

t
nil)))

114

;;;; This files implements the global schema manager (gsm)
;;; The gsm object looks like the following:

;;; slots:
;;; entities:
;;; relations:

;;;GSM object
(make-object 'gsm

('lentitiesi t 'multiple-value-f)
('Irelationsi t 'multiple-value-f))

;;;; current gsm
(defvar *current-gsm* nil)

;;; set the current gsm
(defun set_curent-gsm (gsm)

(setf *current-gsm* gsm))

;;; CREATING A GSM

;;; create-gsm
;;; only one gsm is assumed to be loaded in at any one time. Thus,
;;; there is no need to check whether any other gsm exists.
(defun creategsm (name)

(create-instance 'gsm name))

;;; add-gsm entity
;;; adds an entity name to the entities slot of the gsm
(defun add_gsm entity (gsm entity)

(cond ((entityexist? gsm entity)
(signal_error 'error_10 (list gsm entity)))

(t
(put-object gsm 'lentitiesi entity))))

;;; adds a relation name to the relations slot of the gsm
(defun addgsm-relation (gsm relation)

(cond ((relation-exist? gsm relation)
(signal-error 'error_11 (list gsm relation)))

(t
(put-object gsm 'Irelationsi relation))))

;;; GETTING GSM

;;; get-gsm-relations
(defun getgsmrelations (gsm)

(get-object gsm 'Irelationsi))

;;; get-gsmsentities
(defun get_gsmentities (gsm)
(get-object gsm 'lentitiesi))

115

;;; DELETE A GSM

;;; delete-gsm
(defun deletegsm (gsm)
(remove-classes gsm)
(remove-object 'gsm 'instances gsm))

;;; delete_gsm entity
;;; delete an entity in the entities slot
(defun delete-gsm-entity (gsm entity)

(remove-object gsm 'lentitiesi entity))

;;; deletegsmrelation
;;; delete a relation in the relations slot
(defun delete-gsmrelation (gsm relation)

(remove-object gsm 'Irelationsi relation))

;;; AUXILIARY FUNCTIONS

;;; entity-exist?
(defun entity.exist? (gsm entity)
(let ((gsm.ents (get-object gsm 'lentitiesi)))
(if (member-equal entity gsm-ents)

t
nil)))

;;; relationexist?
(defun relationexist? (gsm relation)

(let ((gsmels (get-object gsm 'Irelationsi)))
(if (member-equal relation gsm-rels)

t
nil)))

116

APPENDIX C.3 GLOBAL QUERY LANGUAGE CODE

;;; This implements the global query language

;;; condition

;;; makesimplecond
;;; makes a simple condition

(defun makesimple_condition (op att val)
(list op att val))

;;; makenestedcond
;;; makes a nested condition

(defun make-nested cond (op condI cond2)
(list op condI cond2))

;;; simple-cond?
;;; checks whether it is a simple condition, ie. and operator or an "in".

(defun simple-cond? (conds)
(if (or (in cond? conds)

(opscond? conds))
t

nil))

nestedcond?
;;; checks whether the condition is an and or or operator

(defun nested cond? (conds)
(if (or (and cond? conds)

(or-cond? conds))
t

nil))

;;;and_cond?
;;; checks whether it is an AND condition

(defun aidcond? (cond)
(if (equal (first cond) 'and)

t
nil))

;;; orcond?
;;; checks whether it is an OR condition

(defun ori.cond? (cond)
(if (equal (first cond) 'or)

t

117

nil))

;;;in_cond?
;;; checks whether it is an IN condition

(defun incond? (cond)
(if (equal (first cond) 'in)

t
nil))

;;; op-cond?
;;; checks whether it is an OPERATOR condition

(defun op-cond? (cond)
(if (member-equal (first cond) '(=> <>=<=))

t
nil))

;;; JOIN statement

;;; make-join
;;; make a join statement

(defun make-join (join 1 join2 join -on)
(list 'join join 1 join2 'on join-on))

;;; join?
;;; checks whether the query is a join statement

(defun join? (query)
(if (equal (first query) 'join)

t
nil))

;;; get-join1
;;; get the first part of the join

(defun get-joinl (query)
(second query))

;;; get-join2
;;; get the second part of the join

(defun get join2 (query)
(third query))

118

;;; get-join-on
;;; get the on information

(defun getjoinon (query)
(fifth query))

;;; relation-join?
;;; checks whether the on part of the join statement has a relation
;;; specified in terms of entities, eg. (= (alumni name) (company
;;; employee)) *** should have a better way to check**
(defun relation-join? (join)

(cond ((atom join) nil)
((join-op? join)
t)

(t
nil)))

;;; join-op?
;;; checks the first thing in the list for the join operator
(defun joinop? (join)
(if (or (join_=? join) (joinand? join))

t
nil))

;;; join_.=?
(defun join_=? (join)
(if (equal (first join)'=)

t
nil))

;;; join_and?
;;; checks whether it is an and
(defun joinand? (join)
(if (equal (first join) 'and)

t
nil))

;;; gets the first and of a condition
(defun join-andl (cond)

(second cond))

;;; gets the second and of a condtion
(defun joinand2 (cond)

(third cond))

;;; SELECT statement

;;;makeselect
make a select statement

(defun makeselect (entity atts conds)
(let ((sel_query (list 'select entity atts)))

119

(if conds
(setf sel-query (append sel-query (list 'where conds))))

seLquery))

;;; select?
;;; checks whether the query is a select statement

(defun select? (query)
(if (equal (first query) 'select)

t
nil))

;;; get selectentity
;;; get the entity

(defun get~select entity (query)
(second query))

;;; getselectatts
;;; gets the attribute list in a select statement

(defun getselecLatts (query)
(third query))

;;;get_select_conds
;;; gets the condition list

(defun get_selectsconds (query)
(fifth query))

;;; * -option?
;;; returns true if the attribute list is a *

(defun *-option? (op)
(if (equal op '*)

t
nil))

120

INTERMEDIATE OUERY LANGUAGE MODULES

;;;; This file implements the intermediate query
;;; April 16, 89

;;; GET-TABLE

;;; maketable
(defun maketable (lqp tb atts &optional conds)
(if conds

(list 'get-table lqp tb atts 'where conds)
(list 'get-table lqp tb atts)))

;;; get-table?
;;; checks whether the query is a get-table statement
(defun get-table? (query)
(if (equal (first query) 'get-table)

t
nil))

;;; gettablejlqp
gets the lqp part

(defun get table-lqp (query)
(second query))

;;; get_table_tb
;;; gets the table part
(defun get-tablejtb (query)

(third query))

;;; get_tableatts
;;; gets the list of attributes
(defun gettable-atts (query)

(fourth query))

;;; gettableconds
(defun gettable_conds (query)

(nth 5 query))

;;; make_tableor
(defun make_tableor (or1 or2)

(list 'or orl or2))

;;; maketableand
(defun maketable and (andI and2)

(list 'and andI and2))

;; IERGE

;;; makemerge
(defun makemerge (ml m2 on)

121

APPENDIX C.4

(list 'merge ml m2 'on on))

;;; get_mergel
;;; get ml
(defun get-mergel (query)
(second query))

;;; geLmerge2
;;; get m2
(defun get_merge2 (query)
(third query))

;;; merge?
;;; checks whether it is a merge statement
(defm mere? (query)
(if (equal (first query) 'merge)

t
nil))

;;; geLmerge-on
(defun geLmergeon (query)

(nth 4 query))

;;; mergeand?
checks whether the on part

(defun merge-and? (merge-on)
(if (equal (first mergeon) 'and)

t
nil))

;;; mergeandl
;;; gets the first part of an and
(defun merge-andl (mergeon)

(second mergeon))

;;; mergeand2
(defun mergeand2 (mergeon)

(third mergeon))

;;; CONCATENATE

;;; make-concatenate
(defun makeconcatenate (cI c2)
(list 'concatenate ci c2))

;;; concatenate?
(defun concatenate? (query)
(if (equal (first query) 'concatenate)

t
nil))

;;; get_concatenatel
(defun geLconcatenatel (query)

(second query))

122

;;; get_concatenate2
(defun getoncatenate2 (query)

(third query))

;;; merge

;;; eg. (MERGE (dbl tbl) (db1 tb2)
;;; ON (AND (= (dbl tbl name) (dbl tb2 namel))

(= (dbl tbl first-name) (dbl tb2 firstnamel))))

;;; merge?
;;; checks whether it is a merge statement

(defun merge? (join)
(if (equal (first join) 'merge)

t
nil))

;;; and~join?
;;; description: returns t if it is an "and" join

(defun andjoin? (join)
(if (equal (first join) 'and)

t
nil))

;;; simple-join?
;;; description: returns t if it is a simple join, ie. (=)

(defun simple-join? (join)
(if (equal (first join)'=)

t
nil))

;;; get-jtbl
;;; description: get the first db-table from the join information

(defun getjtbl (join)
(second join))

;;; getjtb2
;;; description: get the second db-table from the join information

(defun getjtb2 (join)
(third join))

123

