THE COMPOSITE INFORMATION SYSTEMS LABORATORY (CISL) PROJECT AT MIT

Stuart E. Madnick, Michael Siegel, Y. Richard Wang

May 1990 WP# 3157-90 WP# CIS-90-04
E53-321, Sloan School of Management
Massachusetts Institute of Technology
Cambridge, MA 02139

© Stuart E. Madnick, Michael Siegel, Y. Richard Wang

NOTE: Updated to include list of working papers and research publications up to May 19, 1992 as an Appendix.
The Composite Information Systems Laboratory (CISL) Project

Stuart E. Madnick
John Norris Maguire Professor
Sloan School of Management
E53-321, MIT
Cambridge, MA 02139
(617) 253-6671
smadnick@sloan.mit.edu

Michael Siegel
Research Associate
Sloan School of Management
E53-323, MIT
Cambridge, MA 02139
(617) 253-2937
msiegel@sloan.mit.edu

Y. Richard Wang
Assistant Professor
Sloan School of Management
E53-317, MIT
Cambridge, MA 02139
(617) 253-0442
rwang@sloan.mit.edu

INTRODUCTION

The increasingly complex and globalized economy has driven many corporations to expand business beyond their traditional organizational and geographic boundaries. It is widely recognized today that many important applications require access to and integration of multiple heterogeneous database systems. We have referred to these types of application systems as Composite Information Systems (CIS).

This paper presents the problems, approaches, and directions of the research activities at MIT’s Composite Information Systems Laboratory (CISL). The CISL project is a broad-based research undertaking with 9 component efforts as depicted in Figure 1. After briefly outlining the full scope of the CISL project, this paper will focus on cell 8 and 9 of Figure 1.

<table>
<thead>
<tr>
<th>Methodologies</th>
<th>Type of</th>
<th>Field</th>
<th>Prototype</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Connectivity</td>
<td>Studies</td>
<td>Implementation</td>
<td>Development</td>
</tr>
<tr>
<td>Strategic</td>
<td>1) Medium</td>
<td>2) Low</td>
<td>3) Medium</td>
<td></td>
</tr>
<tr>
<td>Organizational</td>
<td>4) Medium</td>
<td>5) Low</td>
<td>6) Medium</td>
<td></td>
</tr>
<tr>
<td>Technical</td>
<td>7) High</td>
<td>8) High</td>
<td>9) High</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Scope and Intensity of CISL Research Activities

A fundamental CIS assumption is that organizations must deal with and connect pre-existing information systems which have been developed and administered independently. With this assumption, CIS follows two principles: (1) system non-intrusiveness, and (2) data non-intrusiveness. By system non-intrusiveness we mean that a pre-existing information system need not be changed. We have found that many of these systems are controlled by autonomous organizations or even separate corporations that are reluctant or unwilling to change their systems. By data non-intrusiveness we mean that changes are not required to the data in a pre-existing information system. Although we are in favor of data standardization, we have found that it is difficult to attain in a timely manner across organizational boundaries.

Acknowledgements: Work reported herein has been supported, in part, by Citibank, IBM, Reuters, MIT’s International Financial Service Research Center (IFSRC), MIT’s Laboratory for Computer Science (LCS), and MIT’s Leaders for Manufacturing (LFM) program.
SCAPE OF CISL PROJECT

A key objective of a CIS is to provide connectivity among disparate information systems that are both internal and external to an organization. Three types of connectivity have been researched:

1. **Strategic Connectivity:** The business benefits and strategies that can be attained by easier, more efficient, integrated intra-organizational and inter-organizational access to information [MA88].

2. **Organizational Connectivity:** The organizational reality of the opposing forces of centralization (e.g., in support of strategic connectivity) and decentralization (e.g., in response to the needs of local conditions, flexibility, distribution of risk, group empowerment) that can lead to loosely-coupled organizations [OS89].

3. **Technical Connectivity:** The technologies that can help a loosely-coupled organization appear to be more tightly-coupled. This area is the primary focus of this paper and will be elaborated upon below.

The CISL research has employed three methodologies:

1. **Field Studies:** We have conducted detailed studies of several major corporations and government agencies to understand their current connectivity situation, future requirements and plans, and major problems encountered or anticipated [GA89, GO89, PA89, WA88].

2. **Prototype Implementation:** A prototype CIS, called the Composite Information Systems/Tool Kit (CIS/TK), has been developed to test solutions to many of the problems identified from the field studies [W089].

3. **Theory Development:** In several areas problems have been found for which no directly relevant existing theories have been identified [SI89a, SI89b, WA89c, WA90]. Two particular technical connectivity theory development efforts described in this paper are **semantic reconciliation** which deals with the integration of data semantics among disparate information systems and **source tagging** which keeps track of originating and intermediate data sources used in processing a query.

CURRENT CIS PROTOTYPE STATUS

Our current CIS prototype, CIS/TK Version 3.0, has been demonstrated to provide access to as many as six disparate databases. The three MIT databases are all different dialects of SQL and are run by different MIT organizations: alumni database (Informix-SQL on an AT&T 3B2 computer), recruiting database (oracle-SQL on an IBM RT), and student database (SQL/DS on an IBM 4381). Finsbury's Dataline service uses proprietary technology, appears hierarchic to the end-user, and has only a menu-driven query interface. I.P. Sharp's Disclosure and Currency services provide both proprietary menu and query language interfaces. These databases provide breadth in data and provide examples of differences in style, accentuated somewhat by the different origins of each service (e.g., Finsbury is based in London, England and I.P. Sharp is based in Toronto, Canada).

CIS/TK Version 3.0 was completed in August 1989. It runs on an AT&T 3B2/500 computer under UNIX System V. Most of it is implemented in our object-oriented rule-based extension of Common Lisp, called the Knowledge-Oriented Representation Language (KOREL). Certain components are implemented in C and UNIX Shell. The current system provides direct access to, and integration of, information from all six databases.

We now present a simplified version of the actual heterogeneous CIS environments of CIS/TK. Suppose, as part of a major new marketing campaign, we wanted to know our top hundred customers in terms of total purchases from our two divisions over the past five years, expressed in dollars. Total
purchases for a customer is calculated by summing purchases from each of the two divisions. In order to reconcile the semantic heterogeneities, two major tasks need to be addressed: (a) inter-database instance matching and (b) value interpretation and coercion [WA89a, WA89b].

Instance Matching

Each division may identify a customer differently. Thus, it will be necessary to match a customer in one database to the same customer in the other by means other than an exact string comparison. For example, "IBM Corp." in one should be matched to "IBM, Inc." in the other; also "MIT" should match "Mass. Inst. Tech."; and "Continental Airlines" should match "Texas Air Corp.". Each division may also use a customer number (or other unique identifier) for a customer, but it is unlikely that the same identifier would have been used by both for a given customer.

To match customers (or any entity) between two databases, we use a combination of three techniques: key semantic matching, attribute semantic matching, and organizational affinity.

- **Key Semantic Matching:** To match the two IBM's, we can use rules such as "Corp." and "Inc." suffixes are equivalent. These rules can be context sensitive.

- **Attribute Semantic Matching:** The two MIT's are harder cases because it is unlikely that we would have a rule that "M" and "Mass." were equivalent. Instead we identify the match based on the values of other attributes (such as both have CEO "Paul Grey" and HQ city "Cambridge").

- **Organizational Affinity:** In many cases there exists an affinity between two distinct organizations. For example, although "Continental Airlines" is a separate corporation from "Texas Air Corp", Texas Air Corp owns Continental. Thus, depending on the purpose of the query, it may be desirable to treat two distinct entities as being the same (e.g., from a marketing perspective Continental and Texas Air may be merged; from a legal liability perspective they should be kept separate).

Value Interpretation and Coercion

After instance matching is performed, we must compute the combined sales to each customer. This presents numerous challenges regarding value interpretation and value coercion.

- **Value Interpretation:** For example, in one division, the total purchase amount is expressed as a character string that combines the currency indicator and numeric value (e.g., ¥120,000). The other division does not explicitly identify the currency being used; it must be inferred from the country of customer information (USA = $, Japan = ¥).

- **Value Coercion:** In order to compute the total purchase in dollars (or to compare totals across customers), a currency exchange rate needs to be applied. Since the yen/dollar exchange rate varies considerably from year to year (if not moment to moment), it is also necessary to "know" what time period to use and where to find the currency exchange data for that time period.

Although many of the instance matching, value interpretation and coercion features described above are implemented in a rudimentary form in CIS/TK Version 3.0, it provides an excellent tool for testing new algorithms and approaches.

THEORY DEVELOPMENT

Our research on theories for semantic reconciliation through the use of metadata, and source tagging through the development of a polygen data model are briefly described in the following sections.
Semantic Reconciliation Using Metadata (Source-Receiver Problem)

It has become increasingly important that methods be developed that explicitly consider the meaning of data used in information systems. For example, it is important that an application requiring financial data in francs does not receive data from a source that reports in another currency. This problem is a serious concern for many corporations because the source meaning may change at any time; a source that once supplied financial data in francs might decide to change to reporting that data in European Common Units (ECUs).

To deal with this problem, the system must be able to represent data semantics and detect and automatically resolve conflicts in data semantics. At best, present systems permit an application to examine the data type definitions in the database schema, thus allowing for type checking within the application. But this limited capability does not allow a system to represent and examine detailed data semantics nor handle changing semantics.

We have examined the specification and use of metadata in a simple source-receiver model [SI89a, SI89b]. The source (database) supplies data used by the receiver (application). Using metadata we described a method for determining semantic reconciliation between a source and a receiver (i.e., whether the semantics of the data provided by the source is meaningful to the receiver).

The need to represent and manipulate data semantics or metadata is particularly important in composite information systems where data is taken from multiple disparate sources. Typically, schema integration algorithms have been developed for component databases with static structure and semantics. However, to allow for greater local database autonomy, schema integration must be considered a dynamic problem. The global schema must be able to evolve to reflect changes in the structure and meaning of the underlying databases. If an application is affected by these changes, it must be alerted. As part of our research we are developing methods that use metadata to simplify schema integration while allowing for greater local database autonomy in an evolving heterogeneous database environment.

Methods for semantic reconciliation are described within a well-defined model for data semantics representation. This representation assumes that there are common primitive data types. From this base, for example, the currency of a trade price can be defined as the currency of the exchange where it was traded. Using this common language, sources can define the semantics of the data they supply and applications, using the same language, can define the semantic specification for required data. We have developed an algorithm that compares the semantic requirements of the application with the meaning of the data supplied by the source to determine if the source will supply meaningful data [SI89b]. A similar algorithm can be used to determine if an application is receiving meaningful data from a set of component databases. In this case the data semantics of each database are examined to determine which sources might provide meaningful data. These methods can also be used to determine if an application can continue in the presence of changes in the component database semantics by making use of available conversion routines. Thus semantic reconciliation is a dynamic process which allows for component database semantic autonomy.

Polygen Model (Source Tagging Problem)

A typical objective of a distributed heterogeneous DBMS is that users must be able to access data without knowing where the data is located. In our field studies of actual needs, we have found that although the users want the simplicity of making a query as if it were a single large database, they also want the ability to know the source of each piece of data retrieved.

A polygen model has been developed to study heterogeneous database systems from this multiple (poly) source (gen) perspective [WA89c, WA90]. It aims at addressing issues such as "where is the data from," "which intermediate data sources were used to arrive at that data," and "how source
tags can be used for information composition and access charge purposes." In a complex environment with hundreds of databases, all of these issues are critical to their effective use.

The polygen model developed presents a precise characterization of the source tagging problem and a solution including a polygen algebra, a data-driven query translation mechanism, and the necessary and sufficient condition for source tagging. The polygen model is a direct extension of the relational model to the multiple database setting with source tagging capabilities, thus it enjoys all of the strengths of the traditional relational model. Knowing the data source enables us to interpret the data semantics more accurately, knowing the data source credibility enables us to resolve potential conflicts amongst the data retrieved from different sources, and knowing the cost of accessing a local database enables us to develop an access charge system.

A polygen domain is defined as a set of ordered triplets. Each triplet consists of three elements: a datum drawn from a simple domain in a local database (LD), a set of LDs denoting the local databases from which the datum originates, and a set of LDs denoting the intermediate local databases whose data led to the selection of the datum. A polygen relation p of degree n is a finite set of time-varying n-tuples, each n-tuple having the same set of attributes drawing values from the corresponding polygen domains.

We have developed precise definitions of a polygen algebra based on six orthogonal operators: project, cartesian product, restrict, union, difference, and coalesce. The first five are extensions of the traditional relational algebra operators, whereas coalesce is a special operator needed to support the polygen algebra. Other important operators needed to process a polygen query can be defined in terms of these six operators, such as outer natural primary join, outer natural total join, and merge. A query processing algorithm to implement a polygen algebra has also been developed.

CONCLUDING REMARKS

This article has presented a brief overview of the CISL project objectives with specific focus on the prototype implementation and theory development regarding semantic reconciliation and source tagging. All of the research activities depicted in Figure 1 are currently underway and have been, or will be, reported in a series of CISL project reports and articles. From our interviews of major organizations, the problems being addressed are becoming increasingly critical to the development and deployment of modern information systems.
REFERENCES

[Due to limited space, only CISL project references are listed here. Citations to background work and other related projects can be found in the reference sections of these papers.]

RECENT REPORTS

WP# CIS-89-01; 71 pages.
Maria Linn Paget. (March 1989) "A knowledge-based approach toward integrating international financial on-line databases."

WP# CIS-89-02; 89 pages.
David B. Godes. (June 1989) "Use of heterogeneous financial data sources: Three case studies."

WP# CIS-89-03; 123 pages.
T.K. Wong. (June 1989) "Data connectivity for the Composite Information System/Tool."

WP# CIS-89-04; 84 pages.
Francis C.K. Gan. (June 1989) "An architecture, design, and implementation of a communications server to access disparate databases."

WP# CIS-89-05; 60 pages.
Howard Lawrence Gerber. (June 1989) "Optimizing information retrieval from disparate menu driven systems."

WP# CIS-89-06; 10 pages.
Michael Siegel and Stuart Madnick. (September 1989) "Schema integration using metadata."

WP# CIS-89-07; 55 pages.
Wilberto Martinez. (June 1989) "User interface for the Composite Information System."

WP# CIS-89-08; 8 pages.

WP# CIS-89-09; 18 pages.
Michael Siegel and Stuart Madnick. (November 1989) "Identification and reconciliation of semantic conflicts using metadata."

WP# CIS-89-10; 18 pages.

WP# CIS-90-01; 29 pages.

WP# CIS-90-02; 23 pages.
Y. Richard Wang and Stuart Madnick. (February 1990) "A polygon model with heterogeneous database systems with source tagging capabilities."

WP# CIS-90-03; 20 pages.
Yang W. Lee and Richard Wang. (March 1990) "Beyond the globalization of information technology."
WP# CIS-90-04; 6 pages.
Michael Siegel, Stuart Madnick and Y. Richard Wang. (May 1990) "The composite information systems laboratory (CISL) project at MIT."

WP# CIS-90-05; 172 pages.
Bertrand Rigaldies. (May 1990) "Technologies and policies for the development of composite informations systems in decentralized organizations."

WP# CIS-90-06; 97 pages.
Rebecca Kao and Terence Sim. (May 1990) "An enhance architecture for composite information systems."

WP# CIS-90-07; 69 pages.
Yeuk Hong Yuan. (May 1990) "The design and implementation of system P: a polygon database management system."

WP# CIS-90-08; 75 pages.
Bertrand Rigaldies. (May 1990) "CIS open issues: list of issues encountered in a compotsite information system."

WP# CIS-90-09; 65 pages.
Shailendra Krishna. (May 1990) "The design of global financial systems: a case study."

WP# CIS-90-10; 28 pages.
Ying-Sung Tay. (May 1990) "Managing risk with composite information systems."

WP# CIS-90-11; 11 pages.
Steve Godes and Ying-Sung Tay. (May 1990) "Merck’s Foreign Exchange Risk Management."

WP# CIS-90-12; 31 pages.
Dana Pressman. (May 1990) "The role of composite information systems: the Citibank corporate finance and strategies analysts case."

WP# CIS-90-13; 114 pages.

WP# CIS-90-14; 75 pages.

WP# CIS-90-15; 57 pages.
Almudena Arcelus. (May 1990) "Name management strategy for database integration."

WP# CIS-90-16; 51 pages.
Herber Regal Norckauer. (May 1990) "Duplicate entry detection in mailing and participation lists."

WP# CIS-90-17; 46 pages.
Boniface Makatiani. (May 1990) "Enhancement of communication server in the composite information system/tool kit (CIS/TK) prototype."

WP# CIS-90-18; 72 pages.
Min-Yuan Tung. (May 1990) "Local query processor manager of the composite information system/tool kit."

WP# CIS-90-19; 12 pages.
WP# CIS-90-20; 24 pages.

WP# CIS-90-21; 68 pages.
Bonnie Catherine Scurlock. (December 1990) "An Intelligent Mechanism For Non-Primary Foreign Key Joins In The CIS/TK System."

WP# CIS-91-01; 22 pages.

WP# CIS-91-02; 16 pages.

WP# CIS-91-03; 43 pages.

WP# CIS-91-04; 123 pages.
Tom Parker. (May 1991) "Data Browser Interface for the Composite Information System."

WP# CIS-91-05; 23 pages.

WP# CIS-91-06; 21 pages.

WP# CIS-91-10; 19 pages.

WP# CIS-91-11; 9 pages.

WP# CIS-91-12; 2 pages.

WP# CIS-92-01; 23 pages.
Yeona Jang, Y. Richard Wang. (February 1992) "Assessing Data Qualtiy in Heterogeneous Databases."

WP# CIS-92-02; 10 pages.
PUBLISHED PAPERS

Reddy, P. M. B. E. Prasad and A. Gupta. Formulation of global integrity constraints during derivation of global schema. Submitted to Knowledge and Data Engineering, 1992

May 19, 1992

