
The Design and Implementation of System P:
A Polygen Database Management System

Yeuk Hong Yuan

May 1990 WP # CIS-90-07

The Design and Implementation of System P:
A Polygen Database Management System

Yeuk Hong Yuan

Bachelor of Science Thesis in Computer Science and Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

The Polygen Data Model aims at solving the problem of tagging information from multiple
(poly) data sources (gen). The problem is that at present there is no database management
system that can support data tags. Data tags are needed to identify where data comes from
or how it evolved into its final form. This information is important for various reasons,
such as for credibility judgements or for measuring cost and length of data acquisition. The
proposed solution, System P, a polygen database management system tags all data from the
sources and propagates these tags as necessary as the data is processed, such that when the
final result is returned, each datum has a list of sources and a history of how it evolved.

ACKNOWLEDGEMENTS: Thesis advisor: Richard Wang; with assistance from the
CISL Research Group. Supported in part by the MIT International Financial Services
Research Center, Reuters, and AT&T.

Table of Contents

1. Introduction .. 1
1.1. Background - the CISL Project .. 1
1.2. Goals of Thesis ... 1
1.3. Overview of Thesis ... 1

2. System P Architecture.. 2
2.1. CIS T V3.0.. 2

2.1.1. Local Query Processors .. 2
2.1.2. Global Query Processor... 3

2.2. System P Overview... 3
2.2.1. User Input Specifications.. 5
2.2.2. Data Catalog System .. 5
2.2.3. LQP Manager... 5

3. System P Data Structures... 6
3.1. Polygen Schema.. 6
3.2. Local Schema... 7
3.3. Polygen Relation... 7
3.4. Tags...7

3.4.1. Originating Source Tag .. 8
3.4.2. Intermediate Source T ... 8

3.5. Polygen Operations Matrix... 8
3.6. Intermediate Operations M atrix... 8
3.7. Query Execution Plan........... ... 9

4. Polygen Query Processor 10
4.1. Polygen Query Translator... 10

4.1.1. SQL Parser.. 10
4.1.2. Polygen Algebraic Analyzer ... 11
4.1.3. Polygen Operation Interpreter .. 11

4.1.3.1. Pass One r 11
4.1.3.2. Pass Two... 12

4.2. Polygen Operations Engine 14
4.2.1. DataiEngine 14

4.2.1.1. Primitive Operators.. 15
4.2.1.2. Compound Operators.. 16

4.2.2. Local Query Processor Interface... 17

5. System P Application Example ... 18
5.1. Sample Base Relations.. 18
5.2 System P Sample Session... 19

6. Concluding Remarks...33
6.1. Conclusions... 33
6.2. Future W ork................... ... 33

6.2.1. Query Optimization... 33
6.2.2. Conflict Resolution Rules.. 33
6.2.3. Inter-Domain Translation... 34

7. References.......................... .. 35

Appendix A: System P Code Listings .. 36
File Organization ... 36
A.1 CONTROL.LISP... 37
A.2 DATA.LISP... 40
A.3 MISC.LISP.. 43
A.4 OPS.LISP.. 45
A.5 PDBMS.LISP..52
A.6 PP.LISP.. 53
A.7 QTRANS.LISP..56
A.8 SIM .LISP.. 61
A.9 STRUCTS.LISP ... 62
A.10 USER.LISP... 64

Appendix B: BNF's for System P Structures ... 68
B.1 Polygen Schema.. 68
B.2 Polygen Relation... 68
B.3 Tags..68
B.4 Local Schema... 68
B.5 Polygen Operations Matrix... 68
B.6 Intermediate Operations Matrix... 69
B.7 Polygen Algebraic Expression... 69

List of Figures

Figure 1: Previous CIS/TK Architecture ... 2
Figure 2: System P Architecture.. 4
Figure 3: Relation Abstraction Structure... 7
Figure 4: Query Translation Process.. 10
Figure 5: Polygen Algebraic Analyzer Algorithm .. 11
Figure 6: Pass One Algorithm ... 12
Figure 7: Pass Two Algorithm..13
Figure 8: Polygen Data Engine Architecture .. 14
Figure 9: Polygen Algebraic Operators ... 15

List of Tables

Table 1: POM Operation Structure Description...8
Table 2: IOM Operation Structure Description..9
Table 3: Code Files Organization Table... 36

System P: A Polygen Database Management System

1. INTRODUCTION

System P, a prototype being developed as part of the Composite Information Systems (CIS) project at the
MIT Sloan School of Managementi, aims to solve the problem of data source tagging in a multiple
heterogeneous database environment. It is a multiple (poly) source (gen) database management system that
tags all data from the sources and propagates these tags as the data is processed. Thus when the solution is
returned, each datum has a list of sources and a history of how it evolved. Data tags can be used in various
applications such as determining credibility and costs, resolving data conflicts, or in wherever knowledge of
data source information plays a role.

1.1. BACKGROUND - THE CISL PROJECT

In a CIS, the complexities of multiple remote databases have been abstracted away to provide the user with
a simple, single database environment in which to work. However, in case studies of actual use, it has
been found that although users desire the simplicity of a virtual single database, they also want the ability
to know where and how the data were collected and transformed. This information is important for various
reasons, such as for credibility judgements or in measuring cost and length of data acquisition. In an
environment of many hundreds or even thousands of databases these questions take on even greater
significance for in such a large pool of databases, conflict and inconsistency also become major problems.
Data tags are thus needed to resolve these conflicts and to give users the information they may need to
measure reliability of data or time and cost.

System P allows implicit data tagging that is either transparent or visible to the user. It presently
supports two types of tags, originating source tags and intermediate source tags; other types may be added
simply by modifying the basic six relational operators. To the user who does not need the tags, they are
not displayed but are available, because the tags are kept internally.

1.2. GOALS OF THESIS

In order to solve the data source tagging problem, System P must achieve the following goals:
(1) Process SQL queries into operation sequences.
(2) Manipulate the different tags correctly as data is transformed.
(3) Replace present GQP as central processing component of CISffK.
(4) Identify issues and problems for future versions of System P.

1.3. OVERVIEW OF THESIS

The focus of this thesis is on the design and implementation of System P: A Polygen Database
Management System.

Chapter 2 gives an introduction to the architecture of System P as well as an overview of the previous CIS
system. In particular, key components of the old system will be related to this thesis.

Chapter 3 defines the data structures used by System P.

Chapter 4 describes the Polygen Query Processor. We begin with the query translation process in detail and
give an example of a query in its intermediate forms as well as its output form. Then we describe the other
two components, the LQP interface and the Polygen Operations Engine.

Chapter 5 shows a detailed example of System P in action.

And finally in Chapter 6, we present the conclusion of this thesis as well as suggest some future work.

1For an overview of the CIS Project, see [WAN88].

Page 1

System P: A Polygen Database Management System

2. SYSTEM P ARCHITECTURE

In this chapter we examine the old architecture of the CIS system and then proceed to an overview of the
current System P. We finish with descriptions of two other subsystems developed simultaneous with
System P and of their interactions with System P.

2.1. CIS/TK V3.0

The previous CIS architecture was built on top of CISflK V3.0 and is shown in Figure 1. We briefly
summarize two major components of the CIS/TK, the Local Query Processor and the Global Query
Processors as they are related to this thesis. 2

Composite
Answer

Application Query
... n n....... ws............................ I...........

Application 1Application Application
Model (Model - QueryManager Processor

Global Global Global
Data Data 4 Query

Ditionary Manager Results

Tables

CIS/TK Local Query LQP LQPD
Workstation Processor 1 2 3

Figure 1: Previous CISffK Architecture

2.1.1. Local Query Processors

Local Query Processors (LQP's) are devices that retrieve data from remote databases. For each remote
database there is one LQP that is associated with it to handle the communications. The interface between
the LQP's and the GQP was a simple pseudo-SQL interface which allowed a query against that remote
database.

2Most recent CIS/TK architecture discussion and overview in [WON881.

Page 2

System P: A Polygen Database Management System

2.1.2. Global Query Processor

The Global Query Processor (GQP) was the central processing unit of the CIS/TK system. It took as an
input a global query and returned the solution to that query to the user (or higher-level application). Like
System P it parsed the query into an execution plan and manipulated the retrieved data to form the query
solution.

Reasons to Replace the GQP

(1) The GQP was an adequate solution to problem that it had to handle but it could not solve the data source
tagging problem.

(2) System P uses the relational algebra and is theoretically sound; the GQP operations were not based on
any theory.

(3) Subsystems, e.g. Synonym Tables, within the GQP were hard to remove and did not allow for easy
modifications.

2.2. SYSTEM P OVERVIEW

System P, as shown in Figure 2, consists of two major components, the Polygen Query Processor and the
LQP mechanisms, and a set of supporting data structures.

The Polygen Query Processor (PQP) is the central data and query processing unit of System P; it and its
components are described in full in Chapter 4. Within the PQP are the Polygen Query Translator and the
Polygen Operations Engine. The Polygen Query Translator produces a schedule of operations given a
Polygen SQL Query. The Polygen Operations Engine executes these operations, dispatching operations to
either the LQP Manager or to the internal Data Engine. These processing units make up the PQP, and the
final result of these processes is then returned to the user as the solution to the query.

The LQP subsystem performs the data retrieval for the PQP. It includes the LQP's as described above as
well as an LQP Manager and a Data Catalog Bridge System - both were developed simultaneously with
System P and are summarized below.

There is also a set of data structures used by System P as repositories of information, i.e. system
information, or as workspaces for query and data processing. Some examples of these data structures
include the Polygen Schema which represents the virtual database, and the Query Execution Plan, which is
the schedule of operations produced by the Polygen Query Translator. All data structures used in System P
are described in Chapter 3.

2.2.1. User Input Specifications

When using System P, the user must input three specifications. First, he3 must input the query or
conditions under which the data must fit. Secondly, he must select which, if any, databases to omit from
the selection process. Finally, he needs to also determine some specifications for resolving any data
conflicts. These inputs are then dispatched to their respective receivers and processed as described below.

The user, when deciding these three inputs, will have at hand or on-screen the Polygen Schema, cost
reports, and credibility reports to help him decide what to choose. The Polygen Schema is used to
determine what type of information is available from the CIS and from which databases this information is
drawn from. Cost reports and credibility reports help the user decide what the most cost-effective and
reliable database selection and data conflict rules are.

3We use the male form to denote both male and female users.

Page 3

System P: A Polygen Database Management System

I Figure 2: System P Architecture

2.2.2. Data Catalog System

The Data Catalog System [RIG90] solves formatting and scaling problems in a CIS environment. It
contains a set of data catalogs, for each LQP and one system-wide. Each data catalog defines what scale,
format, and units that the data is to conform with. More specifically, at each LQP there exists a bridge that
converts data between the system-wide data catalog and the LQP-specific data catalog. These bridges enforce

Page 4

System P: A Polygen Database Management System Page 5

a protocol where data inside the PQP follow one defined data catalog and data outside the PQP may fit the
data catalog of the LQP where the data is.

The implications of the Data Catalog System is that, within the Polygen Query Processor we need to only
consider one set of format, scales and units for each data type and that we do not have to consider the
conversions necessary to make data sensible to the LQP's as that is done by the bridges.

2.2.3. LQP Manager

The LQP Manager [TUN90] provides a back-up support for information retrieval in the CIS. This is
achieved by using regularly updated local copies of databases when communications to the remote database
cannot be established. Thus when a query to an LQP for information is made by the Polygen Operations
Engine, we are assured that it will return some data, although it may not be the most recent.

System P: A Polygen Database Management System

3. SYSTEM P DATA STRUCTURES 4

3.1. POLYGEN SCHEMA

The Polygen Schema5 defines the structure of the virtual single database of the CIS. Conceptually and in
implementation, the Polygen Schema is a list of polygen relation descriptions. Each polygen relation
description is a list of polygen attribute descriptions. Each polygen attribute description consists of a
polygen attribute name and a list of local attribute specifications to which the polygen attribute maps to.
Thus in the Polygen Schema we store the structure of the virtual single database as well as the mapping
information necessary to construct polygen relations from local relations.

The following sample polygen relation definition specifies that (1) porganization is a polygen relation and
(2) the polygen attributes are oname, industry, ceo and headquarters. It also specifies for each polygen
attribute the local attributes that they correspond to. For example, industry corresponds to two local
attributes, the ind attribute in the business relation in the AD database and the trade attribute in the
corporation relation in the PD database.

(porganization
((oname ((ad business bname)

(cd firm fname)
(pd corporation cname)))

(industry ((ad business ind)
(pd corporation trade)))

(ceo ((cd firm ceo)))
(headquarters ((cd firm hq)

(pd corporation state)))))

The following components use the polygen schema to look up information:
- User - inspects the schema as the reference for the CIS.
- SQL Parser 6 - in the parser, attribute names are expanded to include the relation names

and the Polygen Schema provides the mapping information necessary for this
transformation.

- Query Translator7 - creates a schedule of operations to construct the polygen relations.
Since polygen relations are created by collecting local relations and merging them,
these operations must specify which relations to retrieve and merge. The Polygen
Schema provides this mapping information to convert from polygen attribute names
to local attribute names and to coordinate the retrieval processes necessary to
construct the polygen relations.

- Polygen Operations Engine - when the Polygen Operations Engine retrieves data from
the LQP's, the attribute names of the input relations are returned as local attribute
names. The Polygen Schema information is used to transform these local attribute
names to their corresponding polygen attribute names.

Database Subset Selection

In a CIS, there may be multiple users, each having their own requirements for a Polygen Schema. In
System P, there exists a base polygen schema that provides the mappings to all the remote databases of the
CIS, but as we saw in Figure 2 a user's database selection specification affects what the Polygen Schema
will be for that user. At present, there is a simple mechanism that filters out attribute mapping
information. It matches the database component of the local attribute information to a list of databases that
are not to be used. The result of this filter is the Polygen Schema used for that user's session. The default
configuration for System P accesses three remote databases but the user may specify which databases not to
use and by doing so, create a custom Polygen Schema.

4 Appendix B contains complete BNF's for the System P Data Structures.
5 Formal definition is in [WAN90].
6The SQL Parser is a component of the Polygen Query Processor and is discussed in 4.1.1
7within the Polygen Operation Interpreter stage only.

Page 6

System P: A Polygen Database Management System

For example, if we do not want to use the information from the Placement Database, then the above
PORGANIZATION relation definition becomes:

(porganization
((oname ((ad business bname)

(cd firm fname))
(industry ((ad business ind)))
(ceo ((cd firm ceo)))
(headquarters ((cd firm hq)))))

3.2. LOCAL SCHEMA

For each underlying database, there is a local schema which describes the structure of the database as a list
of column headers. Each column header consists of an attribute name and a data type. The data type
structure is unused at present and provides a hook for future development in domain and data type research.

3.3. POLYGEN RELATION

Polygen Relations are the primary vehicles of data in System P, in particular within the PQP. When the
data has been collected from the LQP's and when the internal Data Engine returns intermediate forms, they
are all polygen relations. As shown in Figure 3, Polygen Relations consist of two parts: (1) a header and
(2) the data. The header is a list of column headers, where each is a attribute name and a data-type. The data
is represented as a list of tuples in which each tuple is a list of data cells. Each data cell is a triplet
consisting of a data value and two tags, (1) originating source tag (2) intermediate source tag.

3.4. TAGS

Tags are used in System P to mark where data came from and how the data developed. At present, System
P is implemented with two different tags, one to tag data with its sources and the other to track which
databases were involved in data development. Adding more tags (e.g. monetary cost tags or time of
transaction tags) in the future would require changing only the basic six polygen operators, described below.

Figure 3: Relation Abstraction Structure

Page 7

System P: A Polygen Database Management System

Storage of tags is on the data cell level, where each data cell is a single data value and its associated tags.
Although this scheme is space-wise inefficient, it is simple to manipulate the tags and thus complexity of
tag propagation is reduced. A possible topic of future investigation is how to optimize storage of tags.

3.4.1. Originating Source Tag

Originating Source Tags (OST) mark from where data values originate. At present, the components of an
OST are a database name and a relation name, although future versions may have greater level of detail.
Data having more than one sources (i.e. if it came from multiple locations), have tags representing each of
these sources.

3.4.2. Intermediate Source Tag

Intermediate Source Tags (IST) mark which databases have been involved in the development of the data
value. Involvement occurs when the data in question interacts with other data through a polygen operation.
For example, in a difference operation the result has been affected by all the data of the second relation and
thus by all the originating sources of the data values of that second relation.

3.5. POLYGEN OPERATIONS MATRIX

The Polygen Operations Matrix (POM) represents the schedule of operations to be performed in the virtual
single database environment. This implies that all references are to polygen attributes and polygen relations
and are thus in the polygen name space. The symbols used in the POM are explained in Table 1 below.
The POM is created by the Polygen Algebraic Analyzer 8 in the Query Translator of the PQP.

Table 1: POM Operation Structure Description
PR The temporary relation name given to the result of the operation of the POM entry
OP The operation to be performed in this step
LHR The Left-Hand Relation, i.e. first relation of this operation, and in cases of unary

operations, the relation being operated upon.
LHA The Left-Hand Attribute of the LHR to be operated upon. In the case of a projection

operation this contains the projection list, i.e. the attributes to be projected.
THETA The theta is the comparison operator for the operation, e.g. in a selection, this could be an

equal or a greater than, etc.
RHR The Right-Hand Relation, i.e. second relation operand, for the operation.
RHA The Right-Hand Attribute of the RHR. In the case of the select operation, this would be a

constant value, e.g. an integer or a string.

A sample POM entry would be:

E PRI OP I LHR U iA ITHlfAI RHA I RHR
R(1) SELEcT PALUMNUS DEGREE "MANI

where the operation is a SELECTION and the conditional expression is:
(PALUMNUS.DEGREE = "MBA")

3.6. INTERMEDIATE OPERATIONS MATRIX

The Intermediate Operations Matrix (IOM) is the output of Polygen Operation Interpreter 9 in the Query
Translator and represents the comprehensive schedule of operations necessary to answer the query. The
operations in the IOM include the local query processor calls to retrieve the data and the operations in the
internal Data Engine, e.g. merging of data sets from different databases. The structure of the IOM entry is
8Trie Polygen Algebraic Analyzer is discussed in Section 4.1.2.
9The Polygen Operation Interpretation is described in Section 4.1.3.

Page 8

System P: A Polygen Database Management System

almost identical to that of a POM entry with some subtle differences discussed in Table 2 below and it also
keeps an execution location slot.

Table 2: IOM Operation Structure Description
PR same as POM-PR
OP same as POM-PR but can also be either a RETRIEVE or a MERGE which are specific to

the IOM.

LHR same as POM-LHR, but in the case of the MERGE operation, the value could be a list of
PR values to be merged together.

LHA same as POM-LHA
THETA same as POM-THETA
RHR same as POM-RHR
RHA same as POM-RHA
EL The Execution Location of the operation, either a database or the PQP

IOM operations are defined such that operations to be executed at a local database use only local relation
(i.e. operations with execution location values not equal to PQP) and attribute names whereas operations in
the internal Data Engine are restricted to polygen relation and attribute names. We maintain this naming
protocol of having all names in the internal Data Engine in the polygen name space, so that polygen
operations are performed as if there is only one database and the abstraction of a single database environment
is not violated.

The corresponding IOM entry to the above example would be:

E PRI op LJR I L1A IThM A I R AIRH~R EL
R1 sELEC ALUM DOG -= "MBA" NIL T AD

where the LHR and LHA have been converted to the local relation name and local attribute name
respectively; and the execution location is Alumni Database (AD).

3.7. QUERY EXECUTION PLAN

The Query Execution Plan (QEP) produced by the Query Optimizer10 defines the most optimized query
plan for the system to execute to resolve the query. The amount of work for the Polygen Operations
Engine has been reduced by (1) moving as many operations to the local query databases and (2) projecting
away all but the minimal set of data necessary to answer the query. These optimizations reduce the amount
of data that needs to be moved to and within the Polygen Operations Engine, thus also reducing the space
necessary for the query.

At present the QEP is taken directly from the IOM and no optimizations are made. The effects are minimal
for the present CIS system because the number of attributes in the local systems is not high. However, in
future systems, an optimized QEP is necessary because database relations could be quite wide by having a
large number attributes.

10 The Query Optimizer is a component of the Query Translator and is discussed in Section 6.2.

Page 9

System P: A Polygen Database Management System

4. POLYGEN QUERY PROCESSOR

The Polygen Query Processor (PQP) receives the Polygen SQL query from the user and through a series of
processes returns a result to the user. This series of operations is performed by two discrete processes, the
Polygen Query Translator and the Polygen Operations Engine.

4.1. POLYGEN QUERY TRANSLATOR

The Polygen Query Translator is a chain of four processes as shown in Figure 4 and outputs the Query
Execution Plan to be passed to the Polygen Operations Engine. Each process is discussed below except for
the Query Optimizer which is considered future and as such is discussed in Chapter 6.

4.1.1. SQL Parser

The SQL Parserl 1 takes an SQL query based on the Polygen Schema and returns the corresponding polygen
algebraic expression. The SQL interface provides a high level query language with which the user may
already have some familiarity, since SQL is common in database management systems. The parser
performs several transformations on the query: (1) changes all attribute names to full form, by pairing each
attribute name with the relation name, (2) simplifies the query to fit into a restricted grammar, and (3)
evaluates the query within the restricted grammar into the polygen algebraic expression.

The SQL parser is implemented using the yacc and lex facilities provided in the UNIX environment.

A sample SQL query may be:

SELECT ONAME, CEO
FROM PORGANIZATION, PALUMNUS
WHERE CEO = ANAME AND DEGREE = "MBA"

and the resulting Polygen Algebraic Expression would be:

(((PALUMNUS (DEGREE = "MBA"))
(ANAME = CEO)
PORGANIZATION)
(ONAME CEO))

1 1The SQL Parser is being developed independantly by Mervin Chan. See [CHA90] for details.

to
Polygen
Operations
Engine

Figure 4: Query Translation Process

Page 10

System P: A Polygen Database Management System

4.1.2. Polygen Algebraic Analyzer

The Polygen Algebraic Analyzer (PAA) produces the Polygen Operations Matrix by unnesting the Polygen
Algebraic Expression12 (PAE) from the SQL Parser. By assigning each intermediate value of the PAE to a
temporary relation name, the PR, the PAA decomposes it into series of discrete polygen operations. The
PAA algorithm is given in Figure 5.

for each relation operand of the algebraic expression

if the relation operand is a relation name
then

else
nothing

/* expand the operand into a POM entry and keep
the temporary relation name to be used at the
end of this process */

apply polygen algebraic analyzer to it
store the result of the application as an POM

entry and note the PR value
endif

compose the POM entry for this operation using temporary
from the loop above if any.

values found

I Figure 5: Polygen Algebraic Analyzer Algorithm

For the above PAE, the corresponding POM would be:

PR OP [HR IHA 'IE'A RHA RHR
R-8 SELECO N PALUMNUS DEGREE E"MBA" NIL
R-7 JOIN R-8 ANAME = CE PORGANIZATON
FOO PROJECTION R-7 (ONAME CEO) NIL NIL NIL

4.1.3. Polygen Operation Interpreter

The Polygen Operation Interpreter takes the Polygen Operations Matrix returned by the Polygen Algebraic
Analyzer and through two stages, Pass One and Pass Two, creates the Intermediate Operations Matrix
(IOM).

4.1.3.1. Pass One

Pass One transforms the POM into a half-processed IOM. It parses the left side of the POM, e.g. the left-
hand relation (LHR) and the left-hand attribute (LHA), expanding LHR's to multiple retrieves if they map to
multiple sources and renaming relations and attributes if the that operation step is handled outside the
Polygen Operations Engine, i.e. occurs at some Local Query Processor. It creates a basic structure for the
IOM for which Pass Two will use to complete the Polygen Operation Interpreter phase. The algorithm for
Pass One is given in Figure 6 and the code is in Appendix A.7.

The half-processed IOM for the above POM would be:

PR OP [HR IRA ThETA RHA RHR EL
R-10 SEIKTION ALUMNS DEG = "MBA" NIL AD
R-16 JOIN R-10 ANAME = CO I PORGANIZATION PQP
F10 PROJECTION R-16 ONAME CEO NIL NIL NIL P

12The BNF for the Polygen Algebraic Expression is in Appendix B.

Page 11I

System P: A Polygen Database Management System Page 12

4.1.3.2. Pass Two

Pass Two completes the IOM generation process by (1) performing the equivalent of Pass One on the right
hand side of the half-processed IOM and (2) adding retrieve operations before the entry thereby resolving
entries that have left hand and right hand relations and need to be retrieved from different locations. This
completes the Polygen Operation Interpreter phase and the IOM is then passed to the Query Optimizer. The
algorithm for Pass Two is given in Figure 7 and the code is in Appendix A.7.

The fully processed IOM for the above POM would be:

PR OP LHR LHA THErA RHA RHR EL
R-10 SELECION ALUMNUS DBG = "MBA" NIL AD
R-11 RETRIEVE BUSINESS NIL NIL NIL NIL AD
R-12 RETRIEVE FIRM NIL NIL NIL NIL CD
R-13 RETRIEVE CORPORATION NIL NIL NIL NIL PD
R-14 MERGE (R-11 R-12 R-13) NIL NIL NIL NIL P
R-16 JOIN R-10 ANAME = CEO R-14 P
FOO PROJECTION R-16 (ONAMECEO) NIL NIL NIL PQ

for each line in POM
look up LHR in Polygen Schema
/* LHR is a defined Polygen Relation */
if LHR in Polygen Schema
then

/* Multiple Source Case */
if LHR maps to MULTIPLE sources
then

for each source in sources
retrieve source

merge sources
else
/* Single Source Case */

execute line at local database
endif

else
/* LHR is an intermediate result */

execute line in PQP
endif

endfor

Figure 6: Pass One Algorithm

System P: A Polygen Database Management System Page 13

for each line in IOM /* Half Processed IOM */
look up RHR in Polygen Schema
/* RHR is a Polygen defined relation */
if RHR in Polygen Schema
then

if RHR maps to MULTIPLE sources
then

for each source in sources
retrieve source

merge sources
if line execution location is PQP
then

execute line in PQP with merge result
else

retrieve LHR of line
execute line with the retrieve result LHR

and the merge result as RHR
endif

else
if line execution location is PQP
then

retrieve RHR of line
execute line in PQP with retrieve result

else
/* expand to two retrieves since takes place */
/* at two separate databases */

retrieve LHR of line
retrieve RHR of line
do line in PQP with two retrieve results

endif
endif

endif
endfor

Figure 7: Pass Two Algorithm

System P: A Polygen Database Management System

4.2. POLYGEN OPERATIONS ENGINE

The Polygen Operations Engine (POE) as shown in Figure 8 is composed of two major components: (1)
the Data Engine and (2) the LQP interface. The Data Engine is composed of a set of high-level and
primitive operators that perform the actual manipulation of data and tags. The LQP interface communicates
with the LQP's and retrieves data that is then tagged on the way into the POE. A Control Structure reads
operations from the Query Execution Plan and invokes either the Data Engine or the LQP interface
depending on the execution location requirement of the operation.

I from the

Figure 8: Polygen Data Engine Architecture

4.2.1. Data Engine

The Data Engine is the collection of both high and low level polygen operators as shown in Figure 9.
Each invocation to the Data Engine is a call to one of these operator resulting in turn to either a single call
or series of calls of primitive operators. All Data Engine invocations require an operator and a set of

Page 14

System P: A Polygen Database Management System

arguments, either one or two relations with a set of supporting data, e.g. attribute specifications.
Operations return solutions in the form of polygen relations as defined above so that intermediate results
can be used as arguments to other Data Engine invocations.

Figure 9: Polygen Algebraic Operators

There are six polygen operators that form the basis set of all operators in our system: restriction/selection,
projection, cross-product, union, difference, and coalesce. Since each primitive operator is in itself
complete, we can define custom higher level operators as calls to multiple primitive operators thus all
higher level operators in System P. For example, intersection, join, and outer-natural-join are based on
these primitive operators, in design and implementation.

Each operator performs a specific type of operation on the relation(s) as relational operators but in the
polygen environment, the operators also deal with data-tags. In System P, we presently use two data-tags,
an originating source tag and an intermediate source tag. The originating source tags specify from which
database and relation as well as which column and tuple number; and the intermediate source tags denote
which databases have been used to derive the data. These tags are changed only within the six basic
operations in specific cases. Additional tags may be added and would involve re-analysis of how the new
tags would be changed within the six operators. Present data tag reformulation descriptions are given below
within the operations descriptions.

4.2.1.1. Primitive Operators

4.2.1.1.1. Projection

Given a polygen relation, p, a projection of p consists of mapping down the tuples and for each, keep only
values for attributes in the specified column list. The result is checked for data-wise duplicates tuples and
for those found, one is kept and the others are discarded. However, the data tags of each cell of the tuple
being kept are changed as follows: (1) the new value for the originating source tag of the cell is the union

OTHER
HIGH LEVELOPERATORS

Page 15

System P: A Polygen Database Management System

of that cell's old tags and the tags for all of the corresponding cells of the discarded tuples; (2) the same
process is used for the intermediate source tags. This method ensures we keep the tag information for
discard tuples in our final reduced result.

4.2.1.1.2. Selection/Restriction

Given a relation and a conditional specification, i.e. for a restriction, two attributes and an operator or, for a
selection, an attribute, a constant and an operator, test each tuple to determine whether the conditional holds
true or not. For the tuples which the conditional is true, the intermediate source tags for the cells of these
tuples are modified to be the union of the old intermediate source tags and the originating data sources of the
two (for the restriction or one as in the case of the selection) data cells used in the conditional.

4.2.1.1.3. Cartesian Cross-Product

Given two polygen relations, pl and p2, returns a relation that represents the Cartesian product of the tow
relations. The attributes header of each relation is the concatenation of the attributes headers of the p1 and
p2.

4.2.1.1.4. Union

Given two union-compatible relations, pl and p2, copy the tuples of both pl and p2 into one new relation
and search for data-wise duplicates; these duplicates need to be resolved into one tuple. The resultant
originating data tags are the union of the duplicates originating data tags and likewise for the resultant
intermediate data tags.

4.2.1.1.5. Difference

Given two union-compatible relations, pl and p2, for each tuple in pl determine if there is a data-wise
duplicate in p2 and if so do not pass it; if not, keep it. For all data-cells of the tuples kept, their
intermediate source tags are modified to be the union of the old intermediate source tags and s(p2), which is
defined to be the union of all sets of originating source tags in p2.

4.2.1.1.6. Coalesce13

Given a relation, p, and two attributes, x and y, for each tuple in p, compare the x and y values to determine
which one if any to use. If either one has nil as the value then use the other cell. If they are equal data-
wise, then the new cell's originating source tag is the union of the two data cells. Likewise with the
intermediate source tag. In the case the data are not equal then either use the conflict resolution rules or
signal an error.

4.2.1.2. Compound Operators

Compound operators are combinations of primitive operators. Many benefits to derived from this. They
provide a higher-level means to describe commonly used operations, i.e. theta-join vs. selection of a cross-
product. This additional layer of abstraction allows simpler operation matrixes to be created and
manipulated. Complex operators also take benefit from the fact that all data tag updates are done on the
primitive operator level; as such they need not manipulate data tags in their code. Below are descriptions of
some operators specific to System P, as others remain the same as in a relational environment.

13The COALESCE operation is described and formally defined in [DAT83].

Page 16

System P: A Polygen Database Management System

4.2.1.2.1. Outer-Natural-Join4

Outer-Natural-Join is a powerful operation that is essential in a system with incomplete data. It allows
either join keys attribute to have a null value without eliminating that tuple from the results.

4.2.1.2.2. Outer-Primary-Join15

The outer-primary-join is a outer natural join with the primary keys used as the join key. This operation is
used to create the multiple source polygen relations as the first step of the outer-total-join.

4.2.1.2.3. Outer-Total-Join

Given two polygen based relations, R and S, returns the outer-natural-join of R and S with all associated
attributes coalesced. Since local attributes for a multiple source polygen attribute map to the same polygen
name in the Polygen Data Engine, associated attributes can be detected by matching attribute names; pairs
located are then coalesced.

4.2.1.2.4. Merge

Given multiple polygen based relations, returns a outer-total-join reduction of the relations. The order of
reduction is not ordered; the code and operation of merge is independent of the number of argument relations
it takes.

4.2.2. Local Query Processor Interface

Local Query Processor (LQP) calls are invoked when the execution location for an operation is not local,
i.e. not in the Polygen Operations Engine (POE). The call to the LQP's require the database name, the
relation name, a projection list, a conditional expression and the name of the system data catalog. The
retrieved data is tagged as it enters the POE, so that all data in the POE has data tags.

14 Outer-Join is described and formally defined in [DAT83].
15Outer-Primary-Join, Outer-Total-Join and Merge are formally defined in [WAN90].

Page 17

System P: A Polygen Database Management System Page 18

5. SYSTEM P APPLICATION EXAMPLE

To use System P, login to MIT2E as syspdemo, the files are automatically loaded into a ibc 16 process and
to start System P, type "(sysp)".

5.1. SAMPLE BASE RELATIONS

Below are the local relations that will be used for this example grouped by their respective local databases.
For the purpose of this example all data has been changed to all caps and converted to the LISP type string
and comparisons are using the string comparators.

ALUMNI Database
ALUMNUS Relation

AID# ANAME DBG MAJ

012 John McCauley MBA IS
123 Bob Swanson MBA MGT
234 Stu Madnick MBA IS
345 James Yao BS EEC

456 Dave Horton MBA IS
567 John Reed MBA MGT
678 Bob Horton SF MGT
789 Ken Olsen MS 1E

PLACEMENT Database
STUDENT Relation

SID# I ISNAME G M OR
01 Fo3a Wan 3.5 Math
12 Yeuk Yuan 3.9 EECS
23 Rich Bolsky 3.2 Finance
34 John Smith 3.9 Finance
45 Mike Lavine 3.7 IS

CAREER Relation
AI# BNAME POS

012 Citicorp MIS Director
123 Genentech CEO
234 Langley Castle CEO
345 Oracle Manager
456 Ford Manaaer
567 Citicorp CEO
678 BP CEO
789 DBC CEO
234 MIT Professor

INTERVIEW Relation
SID# CNAME JOB

01 IBM Sstem Analyst
12 Oracle Product Manager
23 Banker's Trust CFO
34 Citico Far East Mana er

BUSINESS Relation

Langley Castle Hotel
IBM High Tech
MIT Education
CitiCorp Banking
Oracle High Tech
Ford Automobile
DEC High Tech
BP Energy
Genentech High Tech

CORPORATION Relation

(NAME TRADE STATE

Apple HiEh Tech--- ~- .4 -

Oracle Hi2h Tech
A~I&T Hifh Tech M

IBM High Tech

Citicorp Banking NY
DEC High Tech MA
Banker's Trust Finance NY

FINANCE Database
FIRM Relation

FNAME CEO HQ
AT&T Robert Allen NY
Langley Castle Stu Madnick MA
Bankers Trust Charles Sanford NY
CitiCorp John Reed NY
Ford Donald Peterson MI
IBM John Ackers NY

Apple John Sculley CA
Oracle Lawrence Ellison CA
DBC Ken Olsen MA
Genentech Bob Swanson CA

1 6 Ibuki Common Lisp

FINANCE Relation
FNAMER PROFIT

AT&T 1989 -1.7 bil
Langley Castle 1989 1 mil
Banker's Trust 1989 648 mil
CitiCorp 1989 1.7 bil
Ford 1989 5.3 bil
IBM 1989 5.5 bil
Apple 1989 400 mil
Oracle 1989 43 mil
DBC 1989 1.3 bil
Genentech 1989 21 mil

CNAME 'WADE STATE

Avple High Tech
Oracle Hieh Tech
AT&T High Tech

System P: A Polygen Database Management System Page 19

5.2 SYSTEM P SAMPLE SESSION

In this section , we step through some of the basic features of System P, displaying the various schema
information, and processing a query, first with the tags displayed and second without. Then we show a case
of database selection where a user who does not desire to use all three databases asks the same query. And
although the solution does not change, its evolution, as recorded in its data tags, does change.

Comments for the sample will be shown in this format.

"... skipping some output" denotes that some output was deleted from this example to save space.

Welcome to Macintosh Allegro Common LISP Version 1.2.2!

;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
;Loading "hard:Rich's f
Load Test Data? (y or n
;Loading "hard:Rich's f
Test stuff? (y or n) n
? (sysp)

:Yeuk's
:Yeuk's
:Yeuk's
:Yeuk's
:Yeuk's
:Yeuk's
:Yeuk's
:Yeuk's
:Yeuk's
:Yeuk's

y

Stuff:CISL:MAC.LISP" ...
Stuff:CISL:user.lisp" ...
Stuff:CISL:misc.lisp"...
Stuff:CISL:structs.lisp"...
Stuff :CISL:control.lisp" ...
Stuff :CISL:qtrans.lisp" ...
Stuff :CISL:ops.lisp" ...
Stuff :CISL: sim. lisp" ...
Stuff :CISL:pp.lisp" ...
Stuff : CISL: data .lisp" . .

:Yeuk's Stuff:CISL:testdata.lisp" ...

System P Main Menu

System P Top Menu
1. Query Editor
2. Schema Displays
3. System Configuration
4. Quit

Choice: 3

System Configuration Menu

System Configuration
1. Turn Data Tag Display On
2. Turn Verbose Mode Off
3. Change User - (present: YEUK)
4. Quit to Previous Menu
Choice: 1

Turn On Data Tag Display

System Configuration
1. Turn Data Tag Display Off
2. Turn Verbose Mode Off
3. Change User - (present: YEUK)
4. Quit to Previous Menu
Choice: 4

Schema Displays Menu

System P: A Polygen Database Management System

... skipping some output

Schema Displays
1. Polygen Schema
2. Polygen Relation
3. Local Schema
4. Local Relation
5. Local Relation Data
6. Quit to Previous Menu
Choice: 1

Shows the Polygen Relations and the Attributes for each.

Polygen Relation: PORGANIZATION
Attributes: ONAME INDUSTRY CEO HEADQUARTERS

Polygen Relation: PFINANCE
Attributes: ONAME YEAR PROFIT

Polygen Relation: PALUMNUS
Attributes: AID# ANAME DEGREE MAJOR

Polygen Relation: PCAREER
Attributes: AID# ONAME POSITION

Polygen Relation: PSTUDENT
Attributes: SID# SNAME GPA MAJOR

Polygen Relation: PINTERVIEW
Attributes: SID# ONAME JOB LOCATION

Selecting to view PORGANIZATION

Schema Displays
1. Polygen Schema
2. Polygen Relation
3. Local Schema
4. Local Relation
5. Local Relation Data
6. Quit to Previous Menu
Choice: 2
Relation Name: porganization

Polygen Relation: PORGANIZATION
Attributes: ONAME INDUSTRY CEO HEADQUARTERS

Local Attribute Mapping Information for PORGANIZATION
Polygen Attribute: ONAME

> DB: AD Rel: BUSINESS Attribute: BNAME
> DB: CD Rel: FIRM Attribute: FNAME
> DB: PD Rel: CORPORATION Attribute: CNAME

Polygen Attribute: INDUSTRY
> DB: AD Rel: BUSINESS Attribute: IND
> DB: PD Rel: CORPORATION Attribute: TRADE

Polygen Attribute: CEO
--- > DB: CD Rel: FIRM Attribute: CEO

Polygen Attribute: HEADQUARTERS
--- > DB: CD Rel: FIRM Attribute: HQ
--- > DB: PD Rel: CORPORATION Attribute: STATE

Page 20

System P: A Polygen Database Management System Page 21

Viewing Local Schema from the Schema Displays Menu

... skipping some output

Local Database: AD
Local Relation: BUSINESS
Attributes: BNAME IND

Local Database: AD
Local Relation: ALUMNUS
Attributes: AID# ANAME DEG MAJ

Local Database: AD
Local Relation: CAREER
Attributes: AID# BNAME POS

Local Database: CD
Local Relation: FIRM
Attributes: FNAME CEO HQ

Local Database: CD
Local Relation: FINANCE
Attributes: FNAME YR PROFIT

Local Database: PD
Local Relation: STUDENT
Attributes: SID# SNAME GPA MAJOR

Local Database: PD
Local Relation: INTERVIEW
Attributes: SID# CNAME JOB

Local Database: PD
Local Relation: CORPORATION
Attributes: CNAME TRADE STATE

Viewing a particular local relation

skipping some output

Choice: 4
Local Database: ad
Local Relation: alumnus

Local Database: AD
Local Relation: ALUMNUS
Attribute Domain Polygen Relation Polygen Attribute
AID# INT --- > AID# PALUMNUS
ANAME CHAR --- > ANAME PALUMNUS
DEG CHAR --- > DEGREE PALUMNUS
MAJ CHAR --- > MAJOR PALUMNUS

Going to Query Editor from Main Menu

... skipping some output

Loading a sample query from a query file

System P: A Polygen Database Management System Page 22

Query Editor
1. Execute Query:
NIL

2. T-oggle Data Tag Display [ON]
3. Enter New Query
4. Save Query to File
5. Load Query from File (i.e. sampql)
6. Quit to Previous Menu
Choice: 5
Filename: sampql

A single query is in the system at any given time and this is the query that we've been following
ithroughout the thesis.

Query Editor
1. Execute Query:

(((PALUMNUS (DEGREE = "MBA")) (ANAME = CEO) PORGANIZATION) (ONAME CEO))
2. Toggle Data Tag Display [ON]
3. Enter New Query
4. Save Query to File
5. Load Query from File (i.e. sampql)
6. Quit to Previous Menu
Choice: 1

Stages of the Polygen Query Translator printing values as we proceed...

Notice that in the LHR of R-5 there are three relations being merged, later there will be an example where

there is only two.

Pass One:
(#S (IOM-LINE
#S(IOM-LINE
#S(IOM-LINE

Pass Two:
(#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE

R-1 OP
R-0 OP
FOO OP

R-1
R-2
R-3
R-4
R-5
R-7
FOO

SELECTION LHR ALUMNUS LHA DEG THETA = RHA MBA RHR NIL EL AD)
JOIN LHR R-1 LHA ANAME THETA = RHA CEO RHR PORGANIZATION EL PQP)
PROJECTION LHR R-0 LHA (ONAME CEO) THETA NIL RHA NIL RHR NIL EL PQP))

SELECTION LHR ALUMNUS LHA DEG THETA = RHA MBA RHR NIL EL AD)
RETRIEVE LHR BUSINESS LHA NIL THETA NIL RHA NIL RHR NIL EL AD)
RETRIEVE LHR FIRM LHA NIL THETA NIL RHA NIL RHR NIL EL CD)
RETRIEVE LHR CORPORATION LHA NIL THETA NIL RHA NIL RHR NIL EL PD)
MERGE LHR (R-2 R-3 R-4) LHA NIL THETA NIL RHA NIL RHR NIL EL PQP)
JOIN LHR R-1 LHA ANAME THETA = RHA CEO RHR R-5 EL PQP)
PROJECTION LHR R-7 LHA (ONAME CEO) THETA NIL RHA NIL RHR NIL EL PQP))

Now, the Polygen Query Processor begins to start reading from the query execution plan.

LQPCALL:Getting Relation from Local-Schema
Doing SELECTION DB: AD REL: ALUMNUS
Changing to Polygen Attribute Names for ALUMNUS
Database: NIL Relation: (SELECT ALUMNUS)

Result from each line in the QEP is printed. In this case we are printing with the Data Source Tags. For

example, under "JOHN MCCAULEY", there is a #(AD ALUMNUS 0 1), this denotes that the datum

"JOHN MCCAULEY" comes from first attribute of the zeroeth tuple of the ALUMNUS relation of AD

(Alumni Database).

Notice that this is the result from the first operation

#S(IOM-LINE PR R-1 OP SELECTION LHR ALUMNUS LHA DEG THETA = RHA MBA RHR NIL EL AD)

System P: A Polygen Database Management System Page 23

specifying a selection such that DEG = "MBA".

Also notice that the attribute name has been changed to the polygen one in the solution as opposed to the

local one in the IOM entry, e.g. DEG (local name) vs. DEGREE (polygen name).

I AID# - INT I ANAME - CHAR I DEGREE - CHAR I MAJOR - CHAR

| 12 1 JOHN MCCAULEY I MBA I IS

I #(AD ALUMNUS 0 0) 1 #(AD ALUMNUS 0 1) | #(AD ALUMNUS 0 2) 1 #(AD ALUMNUS 0 3)

I AD I AD I AD I AD

| 123 | BOB SWANSON I MBA I MGT

I #(AD ALUMNUS 1 0) | #(AD ALUMNUS 1 1) | #(AD ALUMNUS 1 2) 1 #(AD ALUMNUS 1 3)

| AD | AD | AD | AD

1 234 | STU MADNICK I MBA I IS

I #(AD ALUMNUS 2 0) 1 #(AD ALUMNUS 2 1) 1 #(AD ALUMNUS 2 2) 1 #(AD ALUMNUS 2 3)

| AD I AD I AD | AD

| 456 | DAVE HORTON I MBA I IS

I #(AD ALUMNUS 4 0) | #(AD ALUMNUS 4 1) 1 #(AD ALUMNUS 4 2) 1 #(AD ALUMNUS 4 3)

I AD I AD I AD | AD

1 567 1 JOHN REED I MBA I MGT

I #(AD ALUMNUS 5 0) | #(AD ALUMNUS 5 1) | #(AD ALUMNUS 5 2) 1 #(AD ALUMNUS 5 3)

I AD I AD | AD AD

Performing the RETRIEVE operation as it begins to gather the data to construct the PORGANIZATION

relation.

LQPCALL:Getting Relation from Local-Schema
Retrieving BUSINESS from local database...
Changing to Polygen Attribute Names for BUSINESS
Database: AD Relation: BUSINESS

I ONAME - CHAR I INDUSTRY - CHAR

I GENENTECH I HIGH TECH

I #(AD BUSINESS 8 0) | #(AD BUSINESS 8 1)

I BP I ENERGY

I #(AD BUSINESS 7 0) #(AD BUSINESS 7 1)

I DEC I HIGH TECH

System P: A Polygen Database Management System Page 24

1 #(AD BUSINESS 6 0) 1 #(AD BUSINESS 6 1)

------ --

I FORD I AUTOMOBILE

I #(AD BUSINESS 5 0) 1 #(AD BUSINESS 5 1)

------ --

I ORACLE I HIGH TECH

I #(AD BUSINESS 4 0) 1 #(AD BUSINESS 4 1)

I CITICORP I BANKING

I #(AD BUSINESS 3 0) 1 #(AD BUSINESS 3 1)

------ --

I MIT | EDUCATION

I #(AD BUSINESS 2 0) | #(AD BUSINESS 2 1)

IBM I HIGH TECH

#(AD BUSINESS 1 0) #(AD BUSINESS 1 1)

LANGLEY CASTLE | HOTEL

I #(AD BUSINESS 0 0) 1 #(AD BUSINESS 0 1)

------ --

Second RETRIEVE operation...

LQPCALL:Getting Relation from Local-Schema
Retrieving FIRM from local database...
Changing to Polygen Attribute Names for FIRM
Database: CD Relation: FIRM

I ONAME - CHAR I CEO - CHAR I HEADQUARTERS - CHAR

| GENENTECH I BOB SWANSON I CA

I #(CD FIRM 9 0) 1 #(CD FIRM 9 1) 1 #(CD FIRM 9 2)

------ --

I DEC I KEN OLSEN I MA

I #(CD FIRM 8 0) 1 #(CD FIRM 8 1) | #(CD FIRM 8 2)

ORACLE I LAWRENCE ELLISON I CA

I #(CD FIRM 7 0) 1 #(CD FIRM 7 1) | #(CD FIRM 7 2)

------- --

APPLE I JOHN SCULLEY I CA
--

I #(CD FIRM 6 0) 1 #(CD FIRM 6 1) 1 #(CD FIRM 6 2)

System P: A Polygen Database Management System Page 25

1 IBM I JOHN ACKERS I NY

I #(CD FIRM 5 0) 1 #(CD FIRM 5 1) 1 #(CD FIRM 5 2)

------ --

| FORD I DONALD PETERSON | MI

I #(CD FIRM 4 0) 1 #(CD FIRM 4 1) 1 #(CD FIRM 4 2)

------ --

I CITICORP I JOHN REED I NY

I #(CD FIRM 3 0) | #(CD FIRM 3 1) | #(CD FIRM 3 2)

------ --

| BANKER'S TRUST I CHARLES SANFORD | NY

I #(CD FIRM 2 0) I #(CD FIRM 2 1) - I #(CD FIRM 2 2)

------ --

I LANGLEY CASTLE I STU MADNICK | MA

I #(CD FIRM 1 0) 1 #(CD FIRM 1 1) 1 #(CD FIRM 1 2)

I AT&T I ROBERT ALLEN I NY

I #(CD FIRM 0 0) 1 #(CD FIRM 0 1) | #(CD FIRM 0 2)

------ --

Third RETRIEVE Operation...

LQPCALL:Getting Relation from Local-Schema
Retrieving CORPORATION from local database...
Changing to Polygen Attribute Names for CORPORATION
Database: PD Relation: CORPORATION

| ONAME - CHAR | INDUSTRY - CHAR I HEADQUARTERS - CHAR

I BANKER'S TRUST I FINANCE NY

I #(PD CORPORATION 6 0) | #(PD CORPORATION 6 1) #(PD
CORPORATION 6 2

)--

I DEC | HIGH TECH I MA

I #(PD CORPORATION 5 0) I #(PD CORPORATION 5 1) #(PD
CORPORATION 5 2

I CITICORP I BANKING I NY

I #(PD CORPORATION 4 0) 1 #(PD CORPORATION 4 1) #(PD
CORPORATION 4 2

--

| IBM ' HIGH TECH I NY

System P: A Polygen Database Management System

I #(PD CORPORATION 3 0)
CORPORATION 3 2

I AT&T I HIGH TECH

I #(PD CORPORATION 2 0)
CORPORATION 2 2

I #(PD CORPORATION 3 1)

I NY

I #(PD CORPORATION 2 1)

I ORACLE I HIGH TECH I CA

I #(PD CORPORATION 1 0)
CORPORATION 1 2

I APPLE I HIGH TECH

I #(PD CORPORATION 1 1)

I CA

I #(PD CORPORATION 0 0) 1 #(PD CORPORATION 0 1)
CORPORATION 0 2

Doing OTJ on BUSINESS and
Taking X-PRODUCT DB: AD

WITH DB: CD
Doing RESTRICTION DB: NIL
Doing PROJECTION DB: NIL
Doing RDIFFERENCE DB: AD

WITH DB: NIL
Doing PROJECTION DB: NIL
Doing RDIFFERENCE DB: CD

WITH DB: NIL
Taking X-PRODUCT DB: NIL

WITH DB: NIL
Taking X-PRODUCT DB: NIL

WITH DB: NIL
Doing RUNION DB: NIL

WITH DB: NIL
Doing RUNION DB: NIL

WITH DB: NIL
Doing COALESCE DB: NIL

FIRM...
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:
REL:

BUSINESS
FIRM
(X-PROD BUSINESS FIRM)
(RESTRICT (X-PROD BUSINESS FIRM))
BUSINESS
(PROJECT (RESTRICT (X-PROD BUSINESS FIRM)))
(RESTRICT (X-PROD BUSINESS FIRM))
FIRM
(PROJECT (RESTRICT (X-PROD BUSINESS FIRM)))
(DIFFERENCE BUSINESS (PROJECT (RESTRICT (X-
NIL-REL
NIL-REL
(DIFFERENCE FIRM (PROJECT (RESTRICT (X-PROD
(X-PROD (DIFFERENCE BUSINESS (PROJECT (REST
(X-PROD NIL-REL (DIFFERENCE FIRM (PROJECT
(RESTRICT (X-PROD BUSINESS FIRM))
(UNION (X-PROD (DIFFERENCE BUSINESS (PROJEC
(UNION (RESTRICT (X-PROD BUSINESS FIRM)) (U

Here begins the second Outer-Total-Join between the result from the above OTJ and with the third

component of PORGANIZATION, the CORPORATION relation.

Doing OTJ on (COALESCE (UNION
Taking X-PRODUCT DB: NIL

WITH DB: PD
Doing RESTRICTION DB: NIL

(RESTRICT (X-PROD BUSINESS FIRM)) (UNION (X-PROD
REL: (COALESCE (UNION (RESTRICT (X-PROD BUSINESS
REL: CORPORATION
REL: (X-PROD (COALESCE (UNION (RESTRICT (X-PROD

Page 26

| #(PD

I #(PD

I #(PD

I #(PD

Going into the MERGE Operation... we demonstrate here that all high-level operations are based upon the

six primitive polygen operators. We see here the first Outer-Total-Join operation being performed on the

first two components.

NOTE: the descriptive messages have been truncated as to save space in this sample.

System P: A Polygen Database Management System

Doing PROJECTION DB: NIL
Doing RDIFFERENCE DB: NIL

WITH DB: NIL
Doing PROJECTION DB: NIL
Doing RDIFFERENCE DB: PD

WITH DB: NIL
Taking X-PRODUCT DB: NIL

WITH DB: NIL
Taking X-PRODUCT DB: NIL

WITH DB: NIL
Doing RUNION DB: NIL

WITH DB: NIL
Doing RUNION DB: NIL

WITH DB: NIL
Doing COALESCE DB: NIL
Doing COALESCE DB: NIL
Doing COALESCE DB: NIL

REL:

REL:
REL:
REL:
REL:

REL:

REL:
REL:
REL:

REL:

REL:

REL:
REL:

REL:

REL:
REL:
REL:

(RESTRICT (X-PROD (COALESCE (UNION (RESTRIC
(COALESCE (UNION (RESTRICT (X-PROD BUSINESS
(PROJECT (RESTRICT (X-PROD (COALESCE (UNION
(RESTRICT (X-PROD (COALESCE (UNION (RESTRIC
CORPORATION
(PROJECT (RESTRICT (X-PROD (COALESCE (UNION
(DIFFERENCE (COALESCE (UNION (RESTRICT (X-P
NIL-REL
NIL-REL
(DIFFERENCE CORPORATION (PROJECT (RESTRICT
(X-PROD (DIFFERENCE (COALESCE (UNION (RESTR
(X-PROD NIL-REL (DIFFERENCE CORPORATION (PR
(RESTRICT (X-PROD (COALESCE (UNION (RESTRIC
(UNION (X-PROD (DIFFERENCE (COALESCE (UNION
(UNION (RESTRICT (X-PROD (COALESCE (UNION (
(COALESCE (UNION (RESTRICT (X-PROD (COALESC
(COALESCE (COALESCE (UNION (RESTRICT (X-PRO

The PORGANIZATION relation as returned from the MERGE Operation.

Notice at this stage, we have the first Intermediate Data Source Tags. For example, under ONAME, the

datum "DEC" has three originating data source tags:

#(CD FIRM 8 0), #(AD BUSINESS 6 0), and #(PD CORPORATION 5 0)

and three intermediate dat source tags: CD, AD and PD.

This temporary relation display is difficult to read because the originating data source tags are wide.

Database: NIL Relation: (COALESCE (COALESCE (COALESCE (UNION (RE

| ONAME - CHAR | INDUSTRY - CHAR I CEO - CHAR I HEADQUARTERS - CHAR

DEC I HIGH TECH I KEN OLSEN | MA

I #(CD FIRM 8 0) | #(AD BUSINESS 6 1) | #(CD FIRM 8 1)
I #(AD BUSINESS 6 0) | #(PD CORPORATION 5 1)
#(PD CORPORATION 5 2)
| #(PD CORPORATION 5 0) 1 NIL | NIL

|CD | CD CD | CD
lAD I AD AD lAD

PD | PD PD PD

| ORACLE | HIGH TECH I LAWRENCE ELLISON I CA

I #(CD FIRM 7 0) 1 #(AD BUSINESS 4 1) | #(CD FIRM 7 1)
I #(AD BUSINESS 4 0) 1 #(PD CORPORATION 1 1)
#(PD CORPORATION 1 2)
| #(PD CORPORATION 1 0) NIL | NIL

|CD |CD lCD CD
lAD lAD lAD AD

PD PD PD PD

CITICORP I BANKING | JOHN REED | NY

I #(CD FIRM 3 0) 1 #(AD BUSINESS 3 1) 1 #(CD FIRM 3 1)
I #(AD BUSINESS 3 0) | #(PD CORPORATION 4 1)

#(PD CORPORATION 4 2)
| #(PD CORPORATION 4 0) | NIL NIL

CD |CD |CD CD
lAD AD lAD lAD

PD PD PD PD

I #(CD FIRM 8 2)
| NIL

| NIL

I #(CD FIRM 7 2)
NIL

| NIL

I #(CD FIRM 3 2)
| NIL

| NIL

Page 27

I IBM I HIGH TECH | JOHN ACKERS I NY

System P: A Polygen Database Management System

| #(CD FIRM 5 0) 1 #(AD BUSINESS 1 1) | #(CD FIRM 5 1)
| #(AD BUSINESS 1 0) | #(PD CORPORATION 3 1)

#(PD CORPORATION 3 2)
1 #(PD CORPORATION 3 0) | NIL | NIL

I CD | CD I CD |CD
lAD AD AD lAD

PD PD PD PD

AT&T | HIGH TECH I ROBERT ALLEN | NY

I #(CD FIRM 0 0) 1 #(PD CORPORATION 2 1) 1 #(CD FIRM 0 1)
(PD CORPORATION 2 0) | NIL I NIL

lCD I CD |CD CD
PD PD PD PD

| BANKER'S TRUST | FINANCE | CHARLES SANFORD I NY

| #(CD FIRM 2 0) | #(PD CORPORATION 6 1) | #(CD FIRM 2 1)
#(PD CORPORATION 6 0) | NIL | NIL

|CD |CD I CD |CD
PD PD I PD PD

APPLE | HIGH TECH | JOHN SCULLEY I CA

#(CD FIRM 6 0) | #(PD CORPORATION 0 1) | #(CD FIRM 6 1)
(PD CORPORATION 0 0) | NIL NIL

|CD | CD CD |CD
PD I PD PD PD

|BP ENERGY NIL NIL

I # (AD BUSINESS 7 0) | # (AD BUSINESS 7 1)

I NIL

I NIL

I #(NIL NIL-REL 1 2)
1 NIL

I NIL

I# (NIL NIL-REL 0 1)

I #(NIL NIL-REL 2 1)

I #(CD FIRM 5 2)
1 NIL

I NIL

I #(CD FIRM 0 2)
1 #(PD CORPORATION 2 2

| #(CD FIRM 2 2)
| #(PD CORPORATION 6 2

#(CD FIRM 6 2)
#(PD CORPORATION 0 2

| #(NIL NIL-REL 1 1)

| #(NIL NIL-REL 0 2)

| #(NIL NIL-REL 2 2)

lAD AD |AD NIL
NIL NIL NIL NIL
CD |CD |CD NIL

MIT | EDUCATION | NIL | NIL

I #(AD BUSINESS 2 0) 1 #(AD BUSINESS 2 1)
I #(NIL NIL-REL 1 2)

1 NIL

I NIL

| #(NIL NIL-REL 0 1)

| # (NIL NIL-REL 2 1)

I #(NIL NIL-REL 1 1)

I # (NIL NIL-REL 0 2)

| # (NIL NIL-REL 2 2)

AD AD lAD NIL
NIL NIL NIL NIL

|CD CD |CD NIL

LANGLEY CASTLE | HOTEL | STU MADNICK | MA

(AD BUSINESS 0 0) | #(AD BUSINESS 0 1)
#(CD FIRM 1 2)
| #(CD FIRM 1 0) | NIL | NIL | NIL

lAD lAD lAD lAD
NIL NIL NIL NIL

lCD |CD |CD |CD

I #(CD FIRM 1 1)

Page 28

| NIL

NIL

System P: A Polygen Database Management System

I FORD | AUTOMOBILE DONALD PETERSON | MI

I #(AD BUSINESS 5 0) | #(AD BUSINESS 5 1)
#(CD FIRM 4 2)
1 #(CD FIRM 4 0) 1 NIL | NIL I NIL

|AD |AD I AD I AD
NIL NIL NIL NIL
CD CD CD CD

| GENENTECH | HIGH TECH I BOB SWANSON | CA

I # (AD BUSINESS 8 0) 1 # (AD BUSINESS 8 1)
#(CD FIRM 9 2)
| #(CD FIRM 9 0) | NIL | NIL I NIL

|AD I AD AD AD
NIL I NIL NIL NIL
CD CD CD CD

I #(CD FIRM 4 1)

I #(CD FIRM 9 1)

Here we perform the JOIN operation form the QEP. Note that the JOIN is being translated into a

restriction of a cross-product.

Taking X-PRODUCT DB: NIL REL: (SELECT ALUMNUS)

WITH DB: NIL REL: (COALESCE (COALESCE (COALESCE (UNION (RESTR
Doing RESTRICTION DB: NIL REL: (X-PROD (SELECT ALUMNUS) (COALESCE (COALESC
Database: NIL Relation: (RESTRICT (X-PROD (SELECT ALUMNUS) (COAL

I AID# - INT I ANAME - CHAR I DEGREE - CHAR I MAJOR - CHAR ONAME - CHAR
INDUSTRY - CHAR I CEO - CHAR I HEADQUARTERS - CHAR

I 123
HIGH TECH

I BOB SWANSON
| BOB SWANSON

MBA
| CA

I MGT

I #(AD ALUMNUS 1 0) 1 #(AD ALUMNUS 1 1) | #(AD ALUMNUS 1 2) 1 #(AD ALUMNUS 1 3)
#(AD BUSINESS 8 1) I #(CD FIRM 9 1) | #(CD FIRM 9 2)

NIL | NIL | NIL | NIL
NIL I NIL I NIL

I AD
NIL
I CD
AD

I NIL
CD

AD
NIL
CD
AD
NIL
CD

AD
NIL
CD
AD

NIL
CD

lAD

| CD

| NIL

1 234 |STU MADNICK MBA IS
HOTEL STU MADNICK | MA

I #(AD ALUMNUS 2 0) | #(AD ALUMNUS 2 1) | #(AD ALUMNUS 2 2) 1 #(AD ALUMNUS 2 3)
#(AD BUSINESS 0 1) 1 #(CD FIRM 1 1) | #(CD FIRM 1 2)

| NIL NIL I NIL NIL
NIL | NIL I NIL

| AD |AD |AD |AD
NIL | NIL I NIL
I CD |CD CD CD
AD lAD lAD
I NIL NIL NIL NIL
CD CD |CD

1 567 |JOHN REED MBA |MGT
BANKING | JOHN REED I NY

I #(AD ALUMNUS 5 0) | #(AD ALUMNUS 5 1) | #(AD ALUMNUS 5 2) 1 #(AD ALUMNUS 5 3)
#(AD BUSINESS 3 1) I #(CD FIRM 3 1) 1 #(CD FIRM 3 2)
| NIL I NIL | NIL I NIL

I GENENTECH

I #(AD BUSINESS 8 0)

I #(CD FIRM 9 0)

I NIL

I AD

| CD

LANGLEY CASTLE

I #(AD BUSINESS 0 0)

| #(CD FIRM 1 0)

| NIL

| AD

| CD

I CITICORP

I #(CD FIRM 3 0)

I #(AD BUSINESS 3 0)

Page 29

System P: A Polygen Database Management System Page 30

1 #(PD CORPORATION 4 1) 1 NIL | #(PD CORPORATION 4 2

| NIL | NIL I NIL I NIL | #(PD CORPORATION 4 0
NIL I NIL | NIL

I AD | AD | AD | AD | PD
PD PD PD
I CD CD CD CD |AD

AD |AD |AD
I NIL NIL NIL NIL CD
CD CD CD

Performing the last operation of the QEP, the PROJECTION of our solution, we have the result to our

query with both sets of data tags displayed.

Doing PROJECTION DB: NIL REL: (RESTRICT (X-PROD (SELECT ALUMNUS) (COALESC
Database: NIL Relation: (PROJECT (RESTRICT (X-PROD (SELECT ALUMN

I ONAME - CHAR I CEO - CHAR

I GENENTECH I BOB SWANSON

I #(AD BUSINESS 8 0) | #(CD FIRM 9 1)
I #(CD FIRM 9 0) | NIL

I NIL I NIL
I AD I AD
| CD I CD

I LANGLEY CASTLE I STU MADNICK

I #(AD BUSINESS 0 0) 1 #(CD FIRM 1 1)
I #(CD FIRM 1 0) 1 NIL

I NIL I NIL
I AD l AD
I CD I CD

I CITICORP I JOHN REED

I #(CD FIRM 3 0) | #(CD FIRM 3 1)
I #(AD BUSINESS 3 0) | NIL
I #(PD CORPORATION 4 0) | NIL

I PD I PD
I AD I AD
I CD I CD

We execute the exact same query without the data tags display for a simple display.

... skipping some output

Doing PROJECTION DB: NIL REL: (RESTRICT (X-PROD (SELECT ALUMNUS) (COALESC
Database: NIL Relation: (PROJECT (RESTRICT (X-PROD (SELECT ALUMN

I ONAME - CHAR I CEO - CHAR

I GENENTECH I BOB SWANSON

I LANGLEY CASTLE I STU MADNICK

System P: A Polygen Database Management System

I CITICORP

Page 31

I JOHN REED

Changing the USER also changes the Polygen Schema. In this case YEUK used all three databases but

RICH prefers to use only Alumni Database and Corporate Database.

skipping some output

3. Change User - (present: YEUK)
Choice: 3
User Name: RICH
Logging in RICH ... setting up custom polygen schema...

System Configuration
1. Turn Data Tag Display On
2. Turn Verbose Mode Off
3. Change User - (present: RICH)
4. Quit to Previous Menu
Choice: 4

Displaying PORGANIZATION reveals the changes to the Polygen Schema

Polygen Relation: PORGANIZATION
Attributes: ONAME INDUSTRY CEO HEADQUARTERS

Local Attribute Mapping Information for PORGANIZATION
Polygen Attribute: ONAME

> DB: AD Rel: BUSINESS Attribute: BNAME
--- > DB: CD Rel: FIRM Attribute: FNAME

Polygen Attribute: INDUSTRY
--- > DB: AD Rel: BUSINESS Attribute: IND

Polygen Attribute: CEO
--- > DB: CD Rel: FIRM Attribute: CEO

Polygen Attribute: HEADQUARTERS
--- > DB: CD Rel: FIRM Attribute: HQ

We verify this change by examining the result to the same query used by Yeuk.

First notice that the TOM result is different in that it does not contain the FIRM relation and the MERGE is

only for two relations.

Pass Two:
(#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE
#S(IOM-LINE

R-1
R-2
R-3
R-4
R-6
FOO

OP SELECTION LHR ALUMNUS LHA DEG THETA = RHA MBA RHR NIL EL AD)
OP RETRIEVE LHR BUSINESS LHA NIL THETA NIL RHA NIL RHR NIL EL AD)

OP RETRIEVE LHR FIRM LHA NIL THETA NIL RHA NIL RHR NIL EL CD)
OP MERGE LHR (R-2 R-3) LHA NIL THETA NIL RHA NIL RHR NIL EL PQP)
OP JOIN LHR R-1 LHA ANAME THETA = RHA CEO RHR R-4 EL PQP)
OP PROJECTION LHR R-6 LHA (ONAME CEO) THETA NIL RHA NIL RHR NIL EL PQP))

And second, notice that the solution does not use any data outside of the two selected databases, AD and

CD.

Doing PROJECTION DB: NIL REL: (RESTRICT (X-PROD (SELECT ALUMNUS) (COALESC
Database: NIL Relation: (PROJECT (RESTRICT (X-PROD (SELECT ALUMN

I ONAME - CHAR I CEO - CHAR

1

System P: A Polygen Database Management System Page 32

I GENENTECH I BOB SWANSON

| #(AD BUSINESS 8 0) | #(CD FIRM 9 1)
| #(CD FIRM 9 0) 1 NIL

|AD AD
lCD lCD

I LANGLEY CASTLE STU MADNICK

I #(AD BUSINESS 0 0) #(CD FIRM 1 1)
#(CD FIRM 1 0) 1 NIL

AD lAD
lCD lCD

| CITICORP | JOHN REED

#(AD BUSINESS 3 0) | #(CD FIRM 3 1)
| #(CD FIRM 3 0) | NIL

lAD AD
lCD |CD

System P: A Polygen Database Management System

6. CONCLUDING REMARKS

6.1. CONCLUSIONS

In this thesis we presented a polygen database management system called System P. The motivation for
System P was to develop a system that could solve the problems of data conflicts and data reliability. As
discussed in [WAN90], these problems could be solved by a system that had knowledge of where the data
came from and how the data was being manipulated, i.e. a system that tagged its data. In the context of the
CIS system this led to System P, a data tag handling database management system that also provided the
capability of creating a virtual single database environment from a distributed heterogeneous database
network.

The present implementation of System P solves the data source tagging problem. It schedules and executes
operations to collect and manipulate data to answer the query with a result that is tagged so that further
analysis of the data for reliability, cost, etc. can be done.

6.2. FUTURE WORK

In the design and development of System P, other issues, outlined below, arose which merit future
investigation and research.

Query Optimization - Since commercial or even private databases may become very large and
communication and retrieval costs are high, it is important that we can determine the minimal set of data
necessary to solve a query, so that less time and costs are used to retrieve data from the remote databases.

LQP Interface Refinement -Upon completion of this phase of development for the LQP's, in particular, the
LQP Manager, a review of the LQP interface needs to be performed. At present there is the simple interface
outlined in 4.2.2.; but as more features are added to the LQP modules, the interface may have to change to
allow the PQP to access these features.

Data Conflict Resolution - Due to the lack of standards in real world databases data consistency across
databases becomes a problem. Thus in a CIS, mechanisms for resolving these inconsistencies are required.

Inter-Domain Translation - A CIS needs to be able to modify queries to fit to the data provided by the
remote databases, because queries may contain forms that are not found as is in a database but there exists
some semantically close form that which it may map. To bridge this gap, a CIS needs to be able to swap
not only units, scales as in the Data Catalog, but also between domains.

6.2.1. Query Optimization

At present the Query Execution Plan is taken directly from the IOM but this is not optimal since an
overwhelming large amount of data may be retrieved from the LQP invocation even though only a fraction
of it may be used. These optimizations will require a substantial subsystem that can generate the parse tree,
examine it, and find the applicable optimizations to be made.

Two of the optimizations to be made include:
- Move as many filtering conditional expressions to the LQP, i.e. form complex

conditional expressions for the LQP invocation.
- Find the minimal set of data necessary for the query and project away useless data at the

LQP level.i.e. before it is retrieved.

6.2.2. Conflict Resolution Rules

In System P, conflicting data can occur when the coalesce operation is executed; and an error is signalled.
A more robust CIS system would be able to resolve this conflict with information given by the user, i.e. to
trust the data from database A and not B. At present this problem has not been fully investigated and has
been left for future work.

Page 33

System P: A Polygen Database Management System Page 34

A preliminary proposal is to query the user for a set of specifications on conflict resolution and from this
information, formulate rules that would be used in the POE to handle conflicts when they occur.

6.2.3. Inter-Domain Translation

The Inter-Domain Translator (IDT) facility is necessary for any robust CIS but would be quite complex in
nature and as such is beyond the scope of this thesis. The IDT would convert between data types or
domains, e.g. zip code -> state, or state -> capital; not change the syntax or units of a data cell, which is
the function of the Data Catalog Subsystem (Intra-Domain Translation). The IDT would be necessary
because different databases may not have data as specified in the query but may have some other information
which is semantically close to it, e.g. querying for New York City as opposed to a 10003 zip code.

A Data Translation Facility from CISfTK 3.0 which functioned as described above was not be used for
System P because (1) it was quite complicated and poorly organized and (2) a more well designed one will
be needed once the CIS begins to add more LQP's as each will require its own set of synonyms and
conversions. For these reasons the translations facility has been omitted from the present version of
System P.

System P: A Polygen Database Management System

7. REFERENCES

[CHA90] Chan, Merwin. An SQL to Relational Algebra Translator. MIT, 1990.

[DAT83] Date, C. J. The outer join. In Proceedings of the 2nd International Conference on Databases
(Cambridge, England, September, 1983).

[ELM89] Elmasri, R. & Navathe. S.B. Fundamentals of database systems. 1989.

[RIG90] Rigaldies, B. Technologies and Policies for the Development of Composite Information
Systems in Decentralized Organizations. S.M. Thesis in Technology and Policy (Sloan
School of Management, MIT, Cambridge, MA. May 1990).

[MAD88] Madnick, S. & Wang, Y. R. Integrating disparate databases for composite answers. In
Proceedings of the 21st Annual Hawaii International Conference on System Sciences (January,
1988).

[TUN90] Tung, M. Local Query Processor Manager for the Composite Information System / Tool Kit.
S.B. Thesis. (MIT, Cambridge, MA. May 1990).

[WAN88] Wang, Y. R. & Madnick, S. Connectivity among information systems. Composite
Information Systems (CIS) Project 1 (1988).

[WAN89] Wang, Y. R. & Madnick, S. A polygen data model for data source tagging in composite
information systems. WP # 3100-89 MSA. (Sloan School of Management, MIT, Cambridge,
MA. November 1989).

[WAN90] Wang, Y. R. & Madnick, S. A polygen model for heterogeneous database systems: the source
tagging perspective. In the Proceedings of the International Conference on Very Large
Databases. (Brisbane, Australia. August, 1990). Also WP#CIS-90-01 (Sloan School of
Management, MIT, Cambridge, MA. February 1990).

[WON89] Wong, T. K. Data connectivity for the composite information system/tool kit. WP # CIS-89-
03 (Sloan School of Management, MIT, Cambridge, MA. 1989), CISL Project.

Page 35

System P: A Polygen Database Management System

APPENDIX A: SYSTEM P CODE LISTINGS

FILE ORGANIZATION

The files are maintained in the /usr/cistk/syspdemo/code directory on the MIT2E. Organization of
procedures and files are shown in Table 3 below.

Table 3: Code Files Organization Table

Appendix Filename Description
A.1 control.lisp procedures related to the routing and reading of operations in the PQP
A.2 data.lisp contains the Polygen and Local Schema definitions as well as some test

A.3 misc.lisp procedures that did not fit well logically into any of the other files
A.4 ops.lisp procedures that comprised the data engine of the POE, including the six

primitive polygen operators and the higher-level ones.as well as a set of
tag manipulation procedures that are called from the polygen operators

A.5 pdbms.lisp the initial load up file
A.6 pp.lisp procedures that perform various pretty printing functions, including the

relation printing functions as well as some border printing functions
A.7 qtrans.lisp procedures related to the query translation process, including the polygen

algebra analyzer and the polygen operation interpreter
A.8 sim.lisp a set of random relation generation procedures that were written to

simulate extensive System P use. Never used.
A.9 structs.lisp all the structure definitions essential to System P operations as well as

structure related operations, i.e. some recursive structure copying
pr__cedures.

A.10 user.lisp all components of the menu interface including the struct definitions,
I _ __ Ivariable settings and menu declarations

Page 36

System P: A Polygen Database Management System Page 37

A.1 CONTROL.LISP

;; EXECUTE-QUERY takes a polygen algebra expression, runs it
;; through the query translator and the data engine, and returns
;; the result relation

(defun execute-query (alg)
(iom-lisp (alg-iom alg)))

;; IOM-LISP - changes iom table to lisp commands and executes them
;; return the result relation

;; temprels is used to hold temporary relations generated
;; by intermediate steps in the processing - entries in
;; temprels are ordered pairs where the car is the relation's
;; PR name and the cadr is the relation (of type struct lr-relation)

;; source-lr is used to get relations if the relation is a
;; temp, if not, will return the name of the relation to be
;; loaded if necessary

(defun iom-lisp (iom)
(let* (temprels)

(mapc #'(lambda (iom-entry)
(let* ((el (ioml-el iom-entry))

(lr (source-lr (ioml-lhr iom-entry)
el temprels))

(rr (source-lr (ioml-rhr iom-entry)
el temprels))

(la (ioml-lha iom-entry))
(theta (convert-theta (ioml-theta iom-entry)))
(ra (ioml-rha iom-entry))
(op (ioml-op iom-entry))
(tempname (ioml-pr iom-entry))
rslt)

(setf rslt
(if (equal el 'pqp)

;; Operation to take place in PQP -
;; PQP operations must be added here

(case op
('restriction
(restriction lr la ra theta))

('selection
(selection lr la ra theta))

('projection
(projection lr la))

('join
(theta-join lr rr la ra #'equalp))

('merge
(apply #'rmerge lr))

(t
(eprint " - Unknown Operator - iom-lisp")))

;; non-PQP operation - get values into newlr
;; then rename attributes to Polygen ones
(let ((newlr (execute-lqp-op op lr la theta ra el)))

(change-attrs newlr lr el))))
(print-lr rslt)

(push (cons tempname rslt)
temprels)))

iom)
(cdar temprels)))

;; source-lr determines what the nature of the LHR
;; argument it, i.e. if it's a list then it's a merge

System P: A Polygen Database Management System

;; list else if it's an intermediate then get that
;; intermediate relation or return its name - in cases
;; where the lhr is a relation that needs to be retrieved
;; from the LQP's

(defun source-lr (lhr trels)
(cond ((listp lhr) (mapcar #'(lambda (1)

(source-lr 1 trels))
lhr))

((intermediate-p lhr)
(cdr (assoc lhr trels)))
(t lhr)))

(defun execute-lqp-op (op lr la theta ra el)
(let ((newrel (get-lr el lr)))
(case op

('restriction
(restriction newrel la ra theta))

('selection
(selection newrel la ra theta))

('projection
(projection newrel la))

('retrieve
(retrieve el newrel))

(t
(eprint " - Unknown Operator - EXECUTE-LQP-OP")))))

;; tests if an rname is-a temporary by looking in a list
;; of all relations *all-rels*

(defun intermediate-p (rname)
(not (member rname *all-rels* :test #'equal)))

;; poly-a-name takes a db name and a local attribute name
;; and tries to find the polygen attribute name in the
;; polygen schema; returns column name and relation name

(defun poly-a-name (db rel lname)
(block match

;; if does not find polygen name returns original
(dolist (psch *p-schema* lname)

;; att is list of polygen attributes
(dolist (att (cadr psch))

;; lschs is list of local attributes for a polygen one
(let ((lschs (cadr att)))

;; checks if db, rel and att names match
(if (member (list db rel lname) lschs :test #'equalp)

;; return global attribute name
(return-from match (values (car att) (car psch)))))))))

;; CHANGE-ATTRS - takes a relation a database name and
;; a relation name and for each column header of that
;; relation changes the column name to the polygen one

(defun change-attrs (rel r db)

(vprint
(format nil

"Changing to Polygen Attribute Names for -A-%"
r))

(mapc #'(lambda (cspec)
(setf (colhead-cname cspec)

(poly-a-name db r (colhead-cname cspec))))
(lr-cols rel))

rel)

Page 38

System P: A Polygen Database Management System Page 39

;; CONVERT-THETA takes an operation from the IOM or QUERY-PLAN
;; and selects a LISP usable operator

(defun convert-theta (theta)
;; more operators may be needed, also generalized operators
;; may be preferred to basic lisp ones.
(case theta

('= #'equalp)
(' ())
(t (eprint " - Unknown Operator - CONVERT-THETA"))))

System P: A Polygen Database Management System

A.2 DATA.LISP

;; local database base definitions - grouped by database

(defconstant *base-l-schema*
'((AD

,(cons 'business (m-l-rel 'AD
'business
'((bname char) (ind char))

'(("LANGLEY CASTLE" "HOTEL"
("IBM" "HIGH TECH"
("MIT" "EDUCATION"
("CITICORP" "BANKING"
("ORACLE" "HIGH TECH"
("FORD" "AUTOMOBILE"
("DEC" "HIGH TECH"
("BP" "ENERGY")
("GENENTECH" "HIGH TECH"))))

,(cons 'alumnus (m-l-rel 'AD
'alumnus
'((aid# int) (aname char) (deg char) (maj char))

'((012 "JOHN MCCAULEY" "MBA" "IS"
(123 "BOB SWANSON" "MBA" "MGT"
(234 "STU MADNICK" "MBA" "IS")
(345 "JAMES YAO" "BS" "EECS")
(456 "DAVE HORTON" "MBA" "IS"
(567 "JOHN REED" "MBA" "MGT")
(678 "BOB HORTON" "SF" "MGT")
(789 "KEN OLSEN" "MS" "EE"))))

,(cons 'career (m-l-rel 'AD
'career
'((aid# int) (bname char) (pos char))

'((012 "CITICORP" "MIS DIRECTOR"
(123 "GENENTECH" "CEO")
(234 "LANGLEY CASTLE" "CEO"
(345 "ORACLE" "MANAGER"
(456 "FORD" "MANAGER"
(567 "CITICORP" "CEO"
(678 "BP" "CEO"
(789 "DEC" "CEO"
(234 "MIT" "PROFESSOR")))))

(CD
,(cons 'firm (m-l-rel 'CD

'firm
'((fname char) (ceo char) (hq char))

'(("AT&T" "ROBERT ALLEN" "NY")
("LANGLEY CASTLE" "STU MADNICK" "MA")
("BANKER'S TRUST" "CHARLES SANFORD" "NY"
("CITICORP" "JOHN REED" "NY")
("FORD" "DONALD PETERSON" "MI")
("IBM" "JOHN ACKERS" "NY")
("APPLE" "JOHN SCULLEY" "CA")
("ORACLE" "LAWRENCE ELLISON" "CA")
("DEC" "KEN OLSEN" "MA")
("GENENTECH" "BOB SWANSON" "CA"))))

,(cons 'finance (m-l-rel 'CD
'finance
'((fname char) (yr int) (profit int))

'(("AT&T" 1989 "-1.7 BIL")
("LANGLEY CASTLE" 1989 "1 MIL")
("BANKER'S TRUST" 1989 "648 MIL")
("CITICORP" 1989 "1.7 BIL")
("FORD" 1989 "5.3 BIL")
("IBM" 1989 "5.5 BIL")

Page 40

System P: A Polygen Database Management System

("APPLE" 1989 "400 MIL"
("ORACLE" 1989 "43 MIL"
("DEC" 1989 "1.3 BIL")
("GENENTECH" 1989 "21 MIL")))))

(PD
,(cons 'student (m-1-rel 'pd

'student
'((sid# int) (sname char) (gpa int) (major char))

'((01 "FOREA WANG" "3.5" "MATH"
(12 "YEUK YUAN" "3.9" "EECS")
(23 "RICH BOLSKY" "3.2" "FINANCE"
(34 "JOHN SMITH" "3.9" "FINANCE"
(45 "MIKE LAVINE" "3.7" "IS"))))

,(cons 'interview (m-l-rel 'pd
'interview
'((sid# int) (cname char) (job char))

'((01 "IBM" "SYSTEM ANALYST")
(12 "ORACLE" "PRODUCT MANAGER"
(23 "BANKER'S TRUST" "CFO")
(34 "CITICORP" "FAR EAST MANAGER"))))

,(cons 'corporation (m-l-rel 'pd
'corporation
'((cname char) (trade char) (state char))

'(("APPLE" "HIGH TECH" "CA")
("ORACLE" "HIGH TECH" "CA")
("AT&T" "HIGH TECH" "NY"
("IBM" "HIGH TECH" "NY"
("CITICORP" "BANKING" "NY"
("DEC" "HIGH TECH" "MA")
("BANKER'S TRUST" "FINANCE" "NY")))))))

;; Polygen Relation Base Definitions

(defconstant *base-p-schema*
'((porganization

((oname ((ad business bname)
(cd firm fname)
(pd corporation cname)))

(industry ((ad business ind)
(pd corporation trade)))

(ceo ((cd firm ceo)))
(headquarters ((cd firm hq)

(pd corporation state)))))
(pfinance
((oname ((cd finance fname)))
(year ((cd finance yr)))
(profit ((cd finance profit)))))

(palumnus
((aid# ((ad alumnus aid#)))
(aname ((ad alumnus aname)))
(degree ((ad alumnus deg)))
(major ((ad alumnus maj)))))

(pcareer
((aid# ((ad career aid#)))
(oname ((ad career bname)))
(position ((ad career pos)))))

(pstudent
((sid# ((pd student sid#)))
(sname ((pd student sname)))
(gpa ((pd student gpa)))
(major ((pd student major)))))

(pinterview
((sid# ((Pd interview sid#)))
(oname ((pd interview cname)))

Page 41

System P: A Polygen Database Management System Page 42

(job ((pd interview job)))
(location ((pd interview loc)))))))

;; User Schemes

(defvar *bad-dbs* '())
(defvar *l-schema* *base-1-schema*)
(defvar *p-schema* (user-filter *bad-dbs* *base-p-schema*))

(defvar *all-rels*
(append (mapcar #'car

p-schema)
(flatten
(mapcar '(lambda (x)

(mapcar #'car (cdr x)))
l-schema))))

System P: A Polygen Database Management System

A.3 MISC.LISP

;; flatten takes any list of any depth and returns a one-level list
(defun flatten (1st)

(if (null 1st)
nil

(if (atom lst)
(list lst)

(apply 'append (mapcar 'flatten lst)))))

nsubseq takes (1) a sequence (2) start index and
;; (3) end index and returns that part of the sequence
;; NOTE: We use this because if subseq gets an end spec
;; that is greater than the length of the sequence
;; it errors and we don't want that error

(defun nsubseq (str st end)
(if (> end (length str))

str
(subseq str st end)))

;; new-pr returns a new symbol with R- prefix
(defun new-pr ()

(gentemp "R-"))

;; range returns a list of numbers starting from
;; st to en omitting numbers in drplst
;; USED IN: Projection Operations
(defun range (st en &optional (drplst '())

(let (ans '0)
(dotimes (n (- en st) ans)

(let ((x (+ n st)))
(if (not (member x drplst))

(setf ans (append ans (list x))))))))

;; sequal is equal test but nil is NOT equal to nil
(defun sequal (op1 op2)

(if (and (null opl) (null op2))
nil
(equal opl op2)))

;; src-equal - checks if srctags are equal
;; This procedure is not necessary on some implementations
;; of LISP, but the MAC DEFINITELY needs it.

(defun src-equal (tgl tg2)
(and (equal (srctag-db tgl) (srctag-db tg2))

(equal (srctag-rel tgl) (srctag-rel tg2))
(equal (srctag-row tgl) (srctag-row tg2))
(equal (srctag-col tgl) (srctag-col tg2))))

;; erase removes ALL data occurence of tple in lst
(defun erase (tple 1st)

(if (endp lst)

S()

(if (equalp (mapcar #'cell-data tple)
(mapcar #'cell-data (car lst)))

(cdr lst)
(cons (car lst) (erase tple (cdr 1st))))))

;; COLLOOKUP checks if the col is a number and if
;; not, does a lookup in the colhead to find the position number
;; else checks numbers validity and in both sets the col spec
;; to the number as necessary.

Page 43

System P: A Polygen Database Management System

;; COLLOOKUP2 is a two col version that handles ambiguities if the
;; other col spec is the duplicate

(defmacro collookup (collst coll)
(if (numberp ,coll)

(check-bounds ,collst ,coll)
(let ((ans (position ,coll ,collst :key #'colhead-cname

:test #'equalp)))
(cond ((not ans)

(eprint " - Column name not found - COLLOOKUP"))

((> (count ,coll ,collst :key #'colhead-cname
:test #'equalp)

1)
;; ignore and return leftmost
(setf ,coll ans))
;;(eprint " - Ambiguous Column Name - COLLOOKUP"))

(t (setf ,coll ans))))))

(defmacro collookup2 (collst coll col2)
'(let* ((ansla (if (numberp ,coll)

(check-bounds ,collst ,coll)
(position ,coll ,collst :key #'colhead-cname

:test #'equalp)))
(ansib (if (numberp ,coll) ,coll

(position ,coll ,collst :key #'colhead-cname

:test #'equalp :from-end t)))
(ans2 (if (numberp ,col2)

(check-bounds ,collst ,col2)
(position ,col2 ,collst :key #'colhead-cname

:test #'equalp :from-end t))))
;; if coll is found and either col2 was not bound
;; or col2 was found
(if (and ansla ans2)

;; if there is a unique ansla and ans2
;; or there are two cols by same name - anslb = ans2
;; and they are both specified

;; ignore and return leftmost
;;(if (or (= ansla anslb) (= anslb ans2))
(and (setf ,coll ansla)

(setf ,col2 ans2))
;; else all three are different or ansla = ans2
;; (eprint " - Ambiguous Column Name - COLLOOKUP"))

;; if either no coll match was found or
;; no col2 match could not be found
(eprint " - Column name not found - COLLOOKUP"))))

(defmacro check-bounds (clst c)
(if (numberp ,c)

(cond ((< ,c 0)
(eprint " - Colnum less than zero - COLLOOKUP"))

((>= ,c (list-length ,clst))
(eprint " - Colnum greater than no. of cols - COLLOOKUP"))

(t ,c))))

Page 44

System P: A Polygen Database Management System Page 45

A.4 OPS.LISP

;; Six Basic Relational Operators

;; Projection, Restriction, Selection, Coalesce
;; allow colnumbers or colnames
;; checks both x-ool and y-col separately so they do not
;; have to be the same type
;; note: location of colnumber from -col will find
;; only LEFTMOST column named attribute
;; collookup is a macro - see misc.lisp

(defun projection (rel collist)
(vprint (format nil "Doing PROJECTION DB: -A-30,10TREL: -A-%"

(lr-db rel) (lr-rel rel)))
(let* ((relname (format nil "(PROJECT -A)" (lr-rel rel)))

(olddata (lr-data rel))
(oldhead (lr-cols rel))
(ncollist (mapcar #'(lambda (colspec)

(collookup oldhead colspec))
collist))

(newdata (mapcar #'(lambda (tuple)
(mapcar #'(lambda (idx)

(nth idx tuple))
ncollist))

olddata)))
(make-l-relation
:rel relname
:cols (mapcar #'(lambda (idx)

(copy-colhead (nth idx oldhead)))
ncollist)

:data (join-duplicate-tuples newdata))))

(defun cross-product (rell rel2)
(vprint
(format nil "Taking X-PRODUCT DB: -A-30,10TREL: -A-%"

(lr-db rell) (lr-rel rell))
(format nil "-12,OTWITH DB: -A-30,10TREL: -A-%"

(lr-db rel2) (lr-rel rel2)))
(let* ((relname (format nil "(X-PROD -A -A)" (lr-rel rell) (lr-rel rel2)))

(r1 (copy-l-relation rell))
(r2 (copy-l-relation rel2))
(olddatal (lr-data rl))
(olddata2 (lr-data r2))
(tempdata '0))

(mapc #'(lambda (tuplel)
(mapc #'(lambda (tuple2)

(push (append tuplel tuple2)
tempdata))

olddata2))
olddatal)

(make-l-relation
:rel relname
:cols (append (lr-cols rl)

(lr-cols r2))
:data tempdata)))

(defun restriction (rel x-col y-col theta)
(vprint (format nil "Doing RESTRICTION DB: -A-30,10TREL: -A-%"

(lr-db rel) (lr-rel rel)))
(let* ((relname (format nil "(RESTRICT -A)" (lr-rel rel)))

(r (copy-l-relation rel))

System P: A Polygen Database Management System

(oldcols (lr-cols r))
(olddata (lr-data r))
(tempdata '0))

(collookup2 oldcols x-col y-col)
(mapc #'(lambda (tuple)

(let ((x-cell (nth x-col tuple))
(y-cell (nth y-col tuple)))

(if (apply theta
(list (cell-data x-cell)

(cell-data y-cell)))
(progn

(let ((srcs (mapcar #'srctag-db
(union (cell-srctags x-cell)

(cell-srctags y-cell)

:test #'src-equal))))
(mapc #'(lambda (cell)

(setf (cell-inttags cell)
(union (cell-inttags cell) srcs)))

tuple)
(push tuple tempdata))))))

olddata)
;; returns a relation even if its empty
(make-l-relation :rel relname

:cols oldcols
:data tempdata)))

(defun selection (rel x-col const theta)
(vprint (format nil "Doing SELECTION DB: -A-30,10TREL: -A-%"

(lr-db rel) (lr-rel rel)))
(let* ((relname (format nil "(SELECT -A)" (lr-rel rel)))

(r (copy-l-relation rel))
(olddata (lr-data r))
(oldcols (lr-cols r))
(tempdata '0))

(collookup oldcols x-col)
(mapc #'(lambda (tuple)

(let ((x-cell (nth x-col tuple)))
(if (apply theta (list (cell-data x-cell)

const))
(progn

(let ((srcs (mapcar #'srctag-db
(cell-srctags x-cell))))

(mapc #'(lambda (cell)
(setf (cell-inttags cell)

(union (cell-inttags cell) srcs)))
tuple)

(push tuple tempdata))))))
olddata)

;; returns a relation even if its empty
(make-l-relation :rel relname

:cols oldcols
:data tempdata)))

(defun runion (rell rel2)
(vprint
(format nil "Doing RUNION DB: -A-30,10TREL: -A-%"

(lr-db rell) (lr-rel rell))
(format nil "-8,OTWITH DB: -A-30,10TREL: -A-%"

(lr-db rel2) (lr-rel rel2)))
(if (compatible rell rel2)

(make--relation
:rel (format nil "(UNION -A -A)" (lr-rel rell) (lr-rel rel2))
:cols (copy-cols (lr-cols rell))
:data (join-duplicate-tuples

Page 46

System P: A Polygen Database Management System

(append (copy-data (lr-data rell))
(copy-data (lr-data rel2)))))

(eprint " - Relations not union-compatible - runion")))

(defun rdifference (rell rel2)
(vprint
(format nil "Doing RDIFFERENCE DB: -A-30,10TREL: -A-%"

(lr-db rell) (lr-rel rell))
(format nil "~13,0TWITH DB: -A-30,10TREL: -A-%"

(lr-db rel2) (lr-rel rel2)))
(if (compatible rell rel2)

(let* ((relname (format nil "(DIFFERENCE -A -A)"
(lr-rel rell) (lr-rel rel2)))

(allsrcs (get-all-srcs rel2))
(tempdata.(copy-data (lr-data rell))))

(mapc #'(lambda (tuple)
(setf tempdata

(erase tuple tempdata)))
(lr-data rel2))

(make-l-relation :rel relname
:cols (copy-cols (lr-cols rell))
:data (addinttags tempdata allsrcs)))

(eprint " - Relations not union-compatible - rdifference")))

(defun coalesce (rel coll col2)
(vprint (format nil "Doing COALESCE DB: -A-30,10TREL: -A-%"

(lr-db rel) (lr-rel rel)))
(let* ((nrel (copy-l-relation rel))

(relname (format nil "(COALESCE -A)" (lr-rel nrel)))
(rellen (rel-cols nrel))
(relcnt (rel-rows nrel))
(oldcols (lr-cols nrel))
(olddata (lr-data nrel))
newdata
newcols)

(collookup2 oldcols coll col2)
(setf newcols (range 0 rellen (list col2)))
(dotimes (rownum relcnt)

(let* ((celll (nth coll (nth rownum olddata)))
(datal (cell-data celll))
(cell2 (nth col2 (nth rownum olddata)))
(data2 (cell-data cell2)))

(cond ((null datal)
;; cell level copy - when x is nil
(setf (nth coll (nth rownum olddata))

(nth col2 (nth rownum olddata))))
((equal datal data2)
(setf (cell-srctags ceill)

(union (cell-srctags celll)
(cell-srctags cell2)
:test #'src-equal))

(setf (cell-inttags celll)
(union (cell-inttags celll)

(cell-inttags cell2)
:test #'equal)))

((null data2))
(t
(eprint " - Data not compatible - Coalesce")))))

(make-l-relation
:rel relname
:data (join-duplicate-tuples

(mapcar #'(lambda (tuple)
(mapcar #'(lambda (idx)

(nth idx tuple))

Page 47

System P: A Polygen Database Management System

newcols))
olddata))

:cols (mapcar #'(lambda (idx)
(copy-colhead (nth idx oldcols)))

newcols))))

(defun retrieve (db rel)
(vprint (format nil "Retrieving -A from local database...~%"

(lr-rel rel)))
(copy-l-relation rel))

;; Compound Relational Operators

;; All compound operators here allow column specifications
;; either (a) as a colnum for the respective relation

(b) as a column name for the respective relation

;; RINTERSECTION
(defun rintersection (rell rel2)

(vprint
(format nil "Doing RINTERSECTION DB: -A-30,10TREL: -A-

(lr-db rell) (lr-rel rell))
(format nil "-15,OTWITH DB: -A-30,10TREL: -A-%"

(lr-db rel2) (lr-rel rel2)))
(if (compatible rell rel2)

(let* ((relname (format nil "(INTERSECTION -A -A)"
(lr-rel rell) (lr-rel rel2)))

(mtchlstl (lr-cols rell))
(mtchlst2 (lr-cols rel2))
(nocols (length mtchlst2))

(temprel (cross-product rell rel2)))
(dotimes (n (length mtchlstl))

(setf temprel
(restriction temprel n (+ nocols n) #'eqi

(dotimes (n (length mtchlstl))
(setf temprel

(coalesce temprel n nocols)))
(make-l-relation :rel relname

:cols (lr-cols temprel)
:data (lr-data temprel)))

(eprint " - Relations not union-compatible - rinterse

(defun theta-join (rell rel2 coll col2 op)
(restriction (cross-product rell rel2)

(collookup (lr-cols rell) coll)
(+ (rel-cols rell)

(collookup (lr-cols rel2) col2))

op))

;; Natural Join can only be an EQUI-join

(defun natural-join (rell rel2 coll col2)
(let* ((temp (theta-join rell

rel2
(collookup (lr-cols rell) coll)
(collookup (lr-cols rel2) col2)
#'equalp))

(xlen (+ (rel-cols rell) col2)))
(projection temp

(range 0
(rel-cols temp)
(list xlen)))))

ualp)))

ection")))

Page 48

~%"1

System P: A Polygen Database Management System

(defun outer-theta-join (R S col1 col2 op)
(let* ((Ti (theta-join R

S
(collookup (lr-cols R) coll)
(collookup (lr-cols S) col2)

op))
(Rlen (rel-cols R))
(Slen (rel-cols S))
(R1 (rdifference

R
(projection Ti (range 0 Rlen))))

(Si (rdifference
S
(projection T1 (range Rlen (+ Rlen Slen))))))

(runion
Ti
(runion
(cross-product Ri (mnr (lr-cols S)))
(cross-product (mnr (lr-cols R)) Sl)))))

(defun outer-natural-join (R S r-col s-col &optional (theta #'sequal))
(coalesce (outer-theta-join R

S
(collookup (lr-cols R) r-col)
(collookup (lr-cols S) s-col)
theta)

r-col
(+ s-col (rel-cols R))))

;; OUTER-TOTAL-JOIN - both relations are in polygen based form
;; since all attributes are renamed upon entry into PQP
;; and this is only called after retrieves are executed.

(defun outer-total-join (R S)
(vprint
(format nil "Doing OTJ on -A and -A...-%" (lr-rel R) (lr-rel S)))

(let* (temprel
(Scols (lr-cols S))
(Rcols (lr-cols R)))

(block matchcols
;; find first match from R and S to be join attributes
(dolist (Rc Rcols (eprint " - No matching columns - OTJoin"))

(let ((n (position Rc Scols :test #'equalp)))
;; if found return minimal info to OTJ operation

e.g. a column name specifier and a column no. spec
(if n (return-from

matchcols
(setf temprel

(outer-natural-join R S (colhead-cname Rc) n)))))))
(dolist (Rc Rcols temprel)

;; n first occurence of rc - from R
;; m second attribute - from S
(let* ((cols (lr-cols temprel))

(n (position Rc cols :test #'equalp))
(m (position Rc cols :test #'equalp :start (+ n 1))))

(if (and n m)
(setf temprel

(coalesce temprel n m)))))))

(defun rmerge (&rest rels)
(reduce #'outer-total-join rels))

Page 49

System P: A Polygen Database Management System Page 50

;; Utility Functions

(defun nulllist (n)
(let ((st '))

(dotimes (x n st)
(push nil st))))

;; make nil relation

(defun mnr (collst)
(m-l-rel '()

'nil-rel
collst
(nulllist (list-length collst))))

;; COMPATIBLE - checks for union-compatibility
(defun compatible (rell rel2)

(equalp (lr-cols rell) (lr-cols rel2)))

;; JOIN-DUPLICATE-TUPLES
(defun join-duplicate-tuples (datalist)

(let ((dataonly (mapcar #'(lambda (tuple)
(mapcar #'cell-data tuple))

datalist)))
(if (equal (remove-duplicates dataonly :test #equal) dataonly)

datalist
(let ((i 0))
(loop
(let ((idx (position (nth i dataonly)

(nthcdr (+ 1 i) dataonly) :test #'equal)))
(if idx

(progn
(setf (nth (+ 1 idx i) datalist)

(join-tuple (nth i datalist)
(nth (+ 1 idx i) datalist)))

(setf dataonly (remove (nth i dataonly) dataonly))
(setf datalist (remove (nth i datalist) datalist :count 1))

(setf i (- i 1)
(setf i (+ i 1)
(if (> i (length dataonly))

(return datalist))))))))

(defun join-tuple (t1.t2)
(mapcar #'(lambda (c1 c2)

(make-cell :srctags (union (cell-srctags cl)
(cell-srctags c2)
:test #'src-equal)

:inttags (union (cell-inttags cl)
(cell-inttags c2)

:test #'equal)
:data (cell-data c1)))

t1 t2))

;; ADDINTTAGS - changes all cells in the data matrix to have the
;; inttags unioned to their existing ones

(defun addinttags (datmat tags)
(mapcar #'(lambda (tple)

(mapcar #'(lambda (cell)
(setf (cell-inttags cell)

(union (cell-inttags cell)

tags :test #'equal))
cell)

System P: A Polygen Database Management System Page 51

tple))
datmat))

;; GET-ALL-SRCS - takes a relation and returns a list of all sources
;; for all the cells of the relation - only db names

(defun get-all-srcs (rel)
(remove-duplicates
(mapcar #'srctag-db

(flatten
(mapcar #'(lambda (tple)

(mapcar #'cell-srctags tple))
(lr-data rel))))

:test #'equal))

System P: A Polygen Database Management System Page 52

A.5 PDBMS.LISP

(setf *load-verbose* t)
(setf *print-pretty* t)
(setf *line-width* 80)

;; System Esentials

(load "user.lisp")
(load "misc.lisp")
(load "structs.lisp")
(load "control.lisp")

;; Parsers

(load "qtrans.lisp")

;; Engine

(load "ops.lisp")
(load "sim.lisp")
(load "pp.lisp")

;; Data Loading

(load "data.lisp")

;; Testing Stuff

(if (y-or-n-p "Load Test Data?")
(load "testdata.lisp"))

(if (y-or-n-p "Test stuff?")
(load "debug.lisp"))

System P: A Polygen Database Management System Page 53

A.6 PP.LISP

;; User Interface

;; Schema and Relation Display Functions

;; Printing Polygen Schemes and Relations
;; la-flg controls printing of local attributes

(defun print-p-schema (ps &optional la-flg)
(mapc #'(lambda (rel) (print-p-relation rel la-flg)) ps)
(values))

(defun print-p-relation (poly-rel &optional la-flg)
(printline)
(format t "Polygen Relation:-24,OT-A-%" (car poly-rel))
(format t "Attributes: -{-18,12T-A-)-%"

(mapcar #'car (cadr poly-rel)))
(printline)
(if la-flg

(progn
(format t "-79:@<Local Attribute Mapping Information for -A->-%"

(car poly-rel))
(mapc
#'(lambda (mapinfo)

(format t " Polygen Attribute: -A-%" (car mapinfo))
(format t "-:{ --->-20,OTDB: -A-35,5TRel: -A-55,5TAttribute: -A-%-)"

(cadr mapinfo)))
(cadr poly-rel))))

(values))

;; Printing Local Schemes and Relation and Data
;; d-flg controls printing of data
;; pa-flg controls printing of polygen attributes

(defun print-l-schema (ls &optional pa-flg d-flg)
(mapc #'(lambda (rel) (print-l-relation rel pa-flg d-flg))

(mapcar #'cdr (reduce #'append (mapcar #'cdr ls))))
(values))

(defun print-l-relation (r &optional pa-flg d-flg)
(let* ((db (lr-db r))

(rel (lr-rel r)))
(printline)
(if d-flg

(pp r)
(progn

(format t "Local Database:-29,OT-A-~%" db)
(format t "Local Relation:-29,OT-A-%" rel)
(if pa-flg

(format t "Attribute-20,OTDomain-37,OTPolygen Relation-60,OTPolygen Attribute-%-
~:{ ~A~21,0T~A~30,0T --- > ~A~61,0T~A~%~)"1

(mapcar P'(lambda (pr)
(let* ((cname (colhead-cname pr)))

(multiple-value-bind

(pname rname)
(poly-a-name db rel cname)
(list cname

(colhead-domain pr)
pname
rname))))

(lr-cols r)))

System P: A Polygen Database Management System Page 54

(format t "Attributes: -{-0,12T-A-}-%"
(mapcar #'colhead-cname (lr-cols r))))))

(printline)
(values)))

;; Main Menu

;; Pretty printing operations

(defun pp (rel)
(let ((cols (lr-cols rel))

(data (lr-data rel)))
(format t "Database: -A -20,OTRelation: -A-%"

(lr-db rel)
(nsubseq (string (lr-rel rel))

0 40))
(printline)
;; print header information
(if cols

(progn
(format t "-:{I -A - -A-0,10T--%"

(mapcar #'(lambda (chead)
(list (colhead-cname chead)

(colhead-domain chead)))
cols))

(printdline)
(if data

;; print the data - nested iteration forms in format
(mapc #'(lambda (tple)

(format t "-{I -A-0,20T-}-%"
(mapcar #'cell-data tple))

(printline))
data)

(format t "PP: No data in relation-%"))
(values))

(format t "PP: No attributes in relation-%"))
(values)))

(defun ppp (rel)
(let ((cols (lr-cols rel))

(data (lr-data rel)))
(format t "Database: -A -20,OTRelation: -A-%"

(lr-db rel)
(nsubseq (string (lr-rel rel))

0 40))
(printline)
;; print header information
(if cols

(progn
(format t "-:(I -A - ~A~0,10T~}~%"

(mapcar #'(lambda (chead) (list (colhead-cname chead)
(colhead-domain chead)))

cols))
;; print the data - nested iteration forms in format
(if data

(progn
(mapc #'(lambda (tple)

(let* ((data (mapcar #'cell-data tple))
(stags (mapcar #'cell-srctags tple))
(nostgs

(apply #'max (mapcar #'list-length stags)))
(itags (mapcar #'cell-inttags tple))

System P: A Polygen Database Management System Page 55

(noitgs
(apply #'max (mapcar #'list-length itags))))

(printdline)
(format t "-(I ~A-0,20T-}-%" data)
(mapc #'(lambda (1st cnt)

(printline)
(dotimes (no cnt)

(format t "-{I -A-0,20T-}-%"

(mapcar #'(lambda (tags)
(nth no tags))

lst))))
(list stags itags)
(list nostgs noitgs))))

data)
(printdline))

(format t "PPP - No data in relation-%"))
(values))

(format t "PPP - No attributes in relation-%"))
(values)))

;; VPRINT - printing trace info - checks *verbose-mode*
;; if strlst is a list of strings then chops and prints
;; each line in strlst else does it once only

(defun vprint (&rest strlst)
(if *verbose-mode*

(mapc #'(lambda (line)
(let ((1 (length line)))

(if (> 1 79)
(format t "~A~%"

(subseq line 0 78))
(format t "-A" line))))

strlst)))

;; TPRINT

(defun tprint (str)
(let ((s (make-string (length str) :initial-element '#\-)))

(format t "-A-%-A-%-A-%" s str s))
(values))

;; TTPRINT

(defun ttprint (str)
(let ((s (make-string (length str) :initial-element '#\=)))
(format t "-A-%-A-%-A-%" s str s))

(values))

;; EPRINT

(defun eprint (str)
(format t "-%System P ERROR: -A-%" str)
(throw 'sysperror nil))

;; printline

(defun printline ()
(format t "-A-%"

(make-string 79 :initial-element '#\-)))

(defun printdline ()
(format t "-A-%"

(make-string 79 :initial-element '#\=)))

System P: A Polygen Database Management System

A.7 QTRANS.LISP

;;; Syntax Analyzer

(defmacro qprint ()
'(if *verbose-mode*

(progn
(format t "-%Pass One:-%-A" pass-one)
(format t "-%Pass Two:-%-A-%" pass-two))))

;; gen-pom makes a single line of pom for the algebra that it is inputted,
;; if there are any nested expressions, they are moved either into the lhr
;; location or the rhr depending on the query. The output is a pom-line
;; that parses only the top level algebra expression.
;; NOTES: only handles the following operations:

restriction selection join projection
;; more operations can be added as deemed necessary

(defun gen-pom (rel-alg &optional (pr 'finis))
(let* ((condition (cadr rel-alg))

(lhr (car rel-alg))
(op (cadr condition))
(lha (car condition))
(rha (caddr condition))
(rhr (caddr rel-alg)))

(if (= (list-length rel-alg) 2)
(if (member (cadr condition) *ops*)

(if (or (stringp rha) (numberp rha))
(make-pom-line :pr pr :op 'selection :lhr lhr

:lha (car condition) :theta (cadr condition)
:rha (caddr condition) :rhr '0)

(make-pom-line :pr pr :op 'restriction :lhr lhr
:lha (car condition) :theta (cadr condition)
:rha (caddr condition) :rhr '0))

(make-pom-line :pr pr :op 'projection :lhr lhr
:lha condition :theta '() :rha '() :rhr '())

(make-pom-line :pr pr :op 'join :lhr lhr
:lha (car condition) :theta (cadr condition)
:rha (caddr condition) :rhr (caddr rel-alg)))))

;; parse-alg takes a general relation albegra query and recursively parses
;; it to its lowest level, i.e. to the base polygen relation level, and
;; returns a list of pom entries in the necessary order for execution.

(defun parse-alg (alg &optional (pr 'foo))
(let* ((base-line (gen-pom alg pr))

lhr-line rhr-line
(lhr (poml-lhr base-line))
(rhr (poml-rhr base-line)))

(if (consp lhr)
(let ((tempr (new-pr)))

(setf lhr-line (parse-alg lhr tempr))
(setf (poml-lhr base-line) tempr)))

(if (consp rhr)
(let ((tempr (new-pr)))

(setf rhr-line (parse-alg rhr tempr))
(setf (poml-rhr base-line) tempr)))

(append lhr-line rhr-line (list base-line))))

;; Polygen Operation Interpreter

;;; pass-one takes a list of POM-lines and outputs the half-processed
;;; IOM table (as a list of IOM-lines)

Page 56

System P: A Polygen Database Management System Page 57

(defun parse-pom (POM)
(let* ((r-pairs (mapcar #'(lambda (pomline)

(let ((pr (poml-pr pomline)))
(list pr pr)))

POM))
;; r-pairs tracks potential changes to the PR values for the case
;; where r(#) has to be changed if there is a merge operation performed
;; on a previous r(#) and the
(pass-one (flatten
(mapcar #'(lambda (line)

(let* ((oldpr (poml-pr line))
(lhr (poml-lhr line))
(lha (poml-lha line))
(schme (assoc lhr *p-schema*))
(attinschme (assoc lha (cadr schme)))
(mcol (cadr (find-if #'(lambda (x)

(> (list-length (cadr x)) 1))
(cadr schme))))

(lattlst (cadr attinschme))
mrgeprs)

(if (and schme attinschme)
if the lhr is a polygen relation and the attribute
is in the attributes list ---

(if mcol
;; if there is more than one local attribute that the
;; polygen attribute corresponds to, then we need to
;; retrieve the local relations and perform joins as
;; necessary.
(let ((retlines

(mapcar #'(lambda (triplet)
(let ((retpr (new-pr)))

(setf mrgeprs (append mrgeprs
(list retpr)))

(make-iom-line :pr retpr

:op 'retrieve
:lhr (cadr triplet)
:el (car triplet))))

mcol)))
(append retlines

(let ((mergepr (new-pr)))
(list (make-iom-line :pr mergepr

:op 'merge
:lhr mrgeprs
:el 'pqp)

(let ((finpr (new-pr)))
(rplacd (assoc oldpr r-pairs) (list finpr))
;; changes references to oldpr to the
;; post-merge result
(make-iom-line :pr finpr

:op (poml-op line)
:lhr mergepr
:lha lha
:theta (poml-theta line)
:rha (poml-rha line)
:rhr (poml-rhr line)
:el 'pqp))))))

;; case where the polygen schema maps directly to a
;; single local attribute
(make-iom-line :pr oldpr

:op (poml-op line)
:lhr (cadar lattlst)
:lha (caddar lattlst)
:theta (poml-theta line)
:rha (poml-rha line)

POM)))
(pass-two (flatten
(mapcar '(lambda

(let*

Page 58

:rhr (poml-rhr line)
:el (caar lattlst)))

;; case where the lhr is an intermediate, i.e. an
;; result from a operation that left the result in the PQP
(make-iom-line :pr oldpr

:op (poml-op line)
:lhr (cadr (assoc lhr r-pairs))
:lha lha
:theta (poml-theta line)
:rha (poml-rha line)
:rhr (poml-rhr line)
:el 'pqp))))

(line)
((oldpr (ioml-pr line))
(lhr (ioml-lhr line))
(lha (ioml-lha line))
(rhr (ioml-rhr line))
(rha (ioml-rha line))
(el (ioml-el line))
(schme (assoc rhr *p-schema*))
(attinschme (assoc rha (cadr schme)))
(mcol (cadr (find-if #'(lambda (x)

(> (list-length
(cadr schme))))

(cadr x)) 1))

(lattlst (cadr attinschme))
mrgeprs)

(if (and schme attinschme)
;; if the rhr is a polygen relation and the attribute
;; is in the attributes list ---
(if mcol

;; if there is more than one local attribute that the
;; polygen attribute corresponds to, then we need to
;; retrieve the local relations and perform joins as
;; necessary.
(let ((retlines

(mapcar #'(lambda (triplet)

(let ((retpr (new-pr)))
(setf mrgeprs (append mrgeprs

(list retpr)))
(make-iom-line :pr retpr

:op 'retrieve
:lhr (cadr triplet)

:el (car triplet))))
mcol)))

(append retlines
(let ((mergepr (new-pr))

(intpr (new-pr))
(finpr (new-pr)))

;(print mergepr)
; (print intpr)
;(print finpr)
(rplacd (assoc oldpr r-pairs) (list
(list (make-iom-line :pr mergepr

finpr))

:op 'merge

:lhr mrgeprs
:el 'pqp)

changes references to oldpr to the
post-merge result

(if (equal el 'pqp)

(make-iom-line :pr finpr

:op (ioml-op line)
:lhr lhr

System P: A Polygen Database Management System

System P: A Polygen Database Management System Page 59

:lha lha
:theta (ioml-theta line)
:rha rha
:rhr mergepr
:el 'pqp)

(list (make-iom-line :pr intpr

:op 'retrieve
:lhr lhr
:el el)

(make-iom-line :pr finpr

:op (ioml-op line)
:lhr intpr
:lha (poly-a-name el lhr

lha)

:theta (ioml-theta line)
:rha rha
:rhr mergepr
:el 'pqp)))))))

;; case where the polygen schema maps directly to a
;; single local attribute
(let ((ltmppr (new-pr))

(rtmppr (new-pr)))
(if (equal el 'pqp)

(list (make-iom-line :pr rtmppr
:op 'retrieve
:lhr (cadar lattlst)

:el (caar lattlst))
(make-iom-line :pr oldpr

:op (ioml-op line)
:lhr (cadr (assoc lhr r-pairs))
:lha lha
:theta (ioml-theta line)
:rha rha
:rhr rtmppr
:el 'pqp))

(list (make-iom-line :pr ltmppr
:op 'retrieve
:lhr lhr
:el el)

(make-iom-line :pr rtmppr

:op 'retrieve
:lhr (cadar lattlst)
:el (caar lattlst))

(make-iom-line :pr oldpr
:op (ioml-op line)
:lhr ltmppr
:lha (poly-a-name el lhr lha)
:theta (ioml-theta line)
:rha rha
:rhr rtmppr
:el 'pqp)))))

;; case where the rhr is an intermediate, i.e. an
;; result from a operation that left the result in the PQP
(make-iom-line :pr oldpr

:op (ioml-op line)
;; list check allows special forms in lhr i.e. merge
;; to be passed through
:lhr (if (intermediate-p lhr)

(cadr (assoc lhr r-pairs))
lhr)

:lha lha
:theta (ioml-theta line)
:rhr (cadr (assoc rhr r-pairs))
:rha rha

System P: A Polygen Database Management System

(qprint)
pass-two))

pass-one))))

(defun alg-iom (algexp)
(parse-pom (parse-alg algexp)))

:el el))))

Page 60

System P: A Polygen Database Management System Page 61

A.8 SIM.LISP

;; Relation Constructors

(defun mrr (rws cls &optional
(db (format nil "-A-A" 'db- (random *dbmax*)))
(rel (string (gentemp "rel-"))))

(let (tempcols tempdata)
(dotimes (i cls)

(push (make-colhead :cname (random-colname i)

:domain (random-domain))
tempcols))

(setf tempcols (reverse tempcols))
(dotimes (j rws)

(push (mapcar #'random-data
(mapcar #'colhead-domain tempcols))

tempdata))
(m-l-rel db rel tempcols tempdata)))

;; Internal Procedures

(defun random-domain ()
(nth (random (list-length *domains*)) *domains*))

(defun random-colname (cls)
(format nil "col-~A" cls))

(defun random-data (dom)
(if (> (random 1.0) *nil-prob*)

(cond ((equal dom 'int) (random 20))
((equal dom 'char) (string (code-char (+ 65 (random 26)))))
(t (eprint " - illegal domain - random-data")))

nil))

System P: A Polygen Database Management System

A.9 STRUCTS.LISP

;; Data Structure Definitions and Operations

;;; RELATIONS

(defstruct (1-relation (:conc-name lr-))
db
rel
(cols () :type list)
(data () :type list))

(defun rel-rows (rel)
(list-length (lr-data rel)))

(defun rel-cols (rel)
(list-length (lr-cols rel)))

;; m-l-rel makes creating relations easier
;; The nested loop below tags each data as it is passed in
;; so that all data is tagged at the end of this procedure
;; NOTE: collst can be a list of colheads of a list of pairs where
;; the car is a cname and the cadr is the domain

(defun m-l-rel (db rel collst datalst)
(let ((norows (list-length datalst))

(nocols (list-length collst)))
(make-l-relation
:db db
:rel rel
:cols (mapcar #'(lambda (x)

(if (colhead-p x)
(make-colhead :cname (colhead-cname x)

:domain (colhead-domain x))
(make-colhead :cname (car x)

:domain (cadr x))))
collst)

:data (do* ((rnum 0 (1+ rnum))
(rslt '() rslt))

((= rnum norows) rslt)
(push (do* ((cnum 0 (1+ cnum))

(tple '() tple))
((= cnum nocols) (reverse tple))
(push (make-cell

:data (nth cnum (nth rnum datalst))
:srctags (list (make-srctag

:db db
:rel rel
:row rnum
:col cnum))

:inttags '0)
tple))

rslt)))))

;; Recursive full copying copy-l-relation - all cells are copied
;; not just the pointers

(defun copy-l-relation (rel)
(make-l-relation :db (lr-db rel)

:rel (lr-rel rel)
:cols (copy-cols (lr-cols rel))
:data (copy-data (lr-data rel))))

Page 62

System P: A Polygen Database Management System Page 63

;; PRINT-LR prints a relation using *verbose-mode* to determine
;; whether or not to print tags

(defun print-lr (rel)
(if *ptags*

(ppp rel)
(pp rel)))

;; GET-LR retrieves the relation itself based on a database
;; and a relation name

(defun get-lr (db rel)
(format t "***LQPCALL***:Getting Relation from Local-Schema'%")
(cdr (assoc rel (cdr (assoc db *l-schema*)))))

;; Recursive copy of data matrix only

(defun copy-data (datmat)
(mapcar P(lambda (tple)

(mapcar #'copy-cell tple))
datmat))

;;; CELL - cells

(defstruct cell
data
(srctags () :type list)
(inttags () :type list))

;; Copies cells all the way down - i.e. tags are copied

(defun copy-cell (cl)
(make-cell :data (cell-data cl)

:srctags (mapcar #'copy-srctag (cell-srctags cl))
:inttags (copy-tree (cell-inttags cl))))

;;; SRCTAG - source tag

(defstruct (srctag (:type vector))
db rel row col)

;;; COLHEAD - column header

(defstruct colhead
cname domain)

;; Copies cols of relations such that all colheads are copied

(defun copy-cols (chead)
(mapcar #'copy-colhead chead))

;;; POM-LINE - Polygen Operations Matrix

(defstruct (pom-line (:conc-name poml-))
pr op lhr lha theta rha rhr)

;;; IOM-LINE - Intermediate Operations Matrix

(defstruct (iom-line (:conc-name ioml-)

(:include pom-line))
el)

System P: A Polygen Database Management System

A.10 USER.LISP

;; Constants and Variables

;;; *OPS* - Operators for thetas in relational algebra expression

(defconstant *ops* (!= >= > < <))

;;; *DOMAINS* - list of valid domains

(defconstant *domains* '(int char))

;;; *DBMAX* - max number for random dbname genereation

(defconstant *dbmax* 3)

;;; *NIL-PROB* - probability of random nil being generated

(defvar *nil-prob* 0.1)

;;; *PTAGS* - flag to print tags in pretty print or not

(defvar *ptags* nil)

;;; *VERBOSE-MODE* - flag to print messages as operations are done

(defvar *verbose-mode* t)

;;; *USER* - present user of system P

(defvar *user* "YEUK")

;;; *USERS* - users that are recognized by system

(defvar *users*
'(("RICH" (pd)

("STU" ()
("YEUK" ()))

;;; *QUERY* - in memory query

(defvar *query* nil)

;;; Menues

(defstruct menu
;; header - string on top of menu
header
;; list of pairs where car is string and
;; cadr is the procedure to execute
choices
;; help string
help)

(defun sysp ()
(reset-p-schema)

(catch 'exit (exec-menu top-menu)))

(defun exec-menu (menu)

(let* (in
(choices (menu-choices menu))
(nochoices (+ 1 (length choices))))

Page 64

System P: A Polygen Database Management System

(catch '1-exit
(loop

(format t "-8%-79:@<-A->-4%" (menu-header menu))
(format t "-:(-15T-D. -A-2%-)"

(mapcar f'(lambda (pr n)
(list n (eval (car pr))))

choices
(range 1 nochoices)))

(format t "-%-15TChoice: ")
(setf in (read))
(cond ((not (numberp in))

(format t "-%-A-'%" (menu-help menu)))
((or (>= in nochoices)

(< in 1))
(format t "-4%-79:@<Not a legal selection - Try again-%->")
(sleep 3))

(t
(eval (cadr (nth (- in 1) choices)))))))))

(setf top-menu
(make-menu
:header "System P Top Menu"

:choices '(("Query Editor" (exec-menu q-editor))
("Schema Displays" (exec-menu schema-disp))
("System Configuration" (exec-menu sysp-config))

("Quit" (quit-menu)))
:help "this is helpful"))

(defun get-rel-spec-user ()
(let (db rel)

(format t "-%-15TLocal Database: ")

(setf db (read))
(format t "-%-15TLocal Relation: ")

(setf rel (read))
(get-lr db rel)))

(defun get-filename-user (suffix)
(format t "-%-15TFilename: ")

(concatenate 'string (read-line) suffix))

(defun get-query-filename-user ()

(get-filename-user ".qry"))

(defun quit-menu ()

(throw '1-exit nil))

(setf schema-disp
(make-menu
:header "Schema Displays"
:choices '(("Polygen Schema"

(print-p-schema *p-schema*))
("Polygen Relation"
(progn

(format t "-%-15TRelation Name: ")

(setf ans (read))
(let ((rans (assoc ans *p-schema*)))

(if rans
(print-p-relation rans t)

(format t "-%-15A no found." ans)))))

("Local Schema"
(print-l-schema *l-schema*))

("Local Relation"

(let ((rans (get-rel-spec-user)))
(if rans

Page 65

System P: A Polygen Database Management System

(print-l-relation rans t)
(format t "-%-15TNot found."))))

("Local Relation Data"
(let ((rans (get-rel-spec-user)))

(if rans
(print-l-relation rans t t)
(format t "-%-15TNot found."))))

("Quit to Previous Menu"

(quit-menu)))
:help "Schema disp help"))

(setf sysp-config
(make-menu
:header "System Configuration"

:choices '(((if *ptags*
"Turn Data Tag Display Off"

"Turn Data Tag Display On")

(setf *ptags* (not *ptags*)))
((if *verbose-mode*

"Turn Verbose Mode Off"

"Turn Verbose Mode On")
(setf *verbose-mode*

(not *verbose-mode*)))

((format nil "Change User - (present: -A)" *user*)

(progn
(format t "-%-15TUser Name: ")

(setf *user* (read-line))
(new-user-environment *user*)))

("Quit to Previous Menu"

(quit-menu)))
:help "System P help"))

(setf q-editor
(make-menu
:header "Query Editor"
:choices '(((format nil "Execute Query:-2%-17T-S"

query)

(catch 'sysperror
(execute-query *query*)))

((if *ptags*
"Toggle Data Tag Display [ON]"

"Toggle Data Tag Display [OFF]")
(setf *ptags* (not *ptags*)))

("Enter New Query"

(progn
(format t "-%-15TNew Query:-%-16T")
(setf *query* (read))))

("Save Query to File"

(let ((fname (get-query-filename-user)))

(save-query *query* fname)))

("Load Query from File (i.e. sampq1)"
(let ((fname (get-query-filename-user)))

(load-query *query* fname)))
("Quit to Previous Menu"
(quit-menu)))

:help "Q-editor help"))

(defun user-filter (bad-dbs in-schema)
(let ((temp-p-schema in-schema))
(dolist (db bad-dbs temp-p-schema)

(setf temp-p-schema
(mapcar
#'(lambda (poly-rel)

(list (car poly-rel)

Page 66

System P: A Polygen Database Management System

(mapcar
f'(lambda (att)

(list (car att)
(remove db

(cadr att)
:key #'car)))

(cadr poly-rel))))
temp-p-schema)))))

(defun new-user-environment (user)

(let ((specs (assoc user *users* :test #'equal)))
(if specs

(login-user user)
(format t "-%-15TUnknown User... using full system-%"))

(setf *bad-dbs* (cadr specs))
(reset-p-schema)))

(defun login-user (uname)
(format t "-%-15TLogging in -A ... ~

setting up custom polygen schema...-%"

uname))

(defun reset-p-schema ()
(setf *p-schema* (user-filter *bad-dbs* *base-p-schema*)))

(defun save-query (qry fname)

(let ((outst
(open fname :direction :output

:if-does-not-exist :create

:if-exists :supersede)))
(format outst "-S" qry)
(close outst)))

(defmacro load-query (qry fname)
'(let ((inst (open ,fname)))

(setf ,qry
(read-from-string (read-line inst)))

(close inst)))

Page 67

System P: A Polygen Database Management System Page 68

APPENDIX B: BNF'S FOR SYSTEM P STRUCTURES

The BNF's in this chapter follow standard BNF listing specifications and use the additional following base
definitions:

<?? name> denotes a string that is a name of a ??. <??_name> symbols are also
terminating symbols.

<datum> represents a single unit of data.
<?? list> denotes a list of elements of type ?? of length greater than 0. Each list is

also surrounded by a set of parentheses.

B.1 POLYGEN SCHEMA

<PolygenSchema> ::= <Polygen._RelationDescr_list>

<PolygenRelation_Descr> ::=(<PolygenRelationname> <PolygenAttributeDescrjlist>)

<PolygenAttributeDescr> ::=(<PolygenAttribute_name> <LocalAttributeDescrjlist>)

<LocalAttributeDescr> ::= (<database_name> <localrelationname> <localattributename>)

B.2 POLYGEN RELATION

<PolygenRelation> ::= (<Header> <PolygenData>)

<Header>::= <ColumnHeadlist>

<ColumnHead> ::=(<PolygenAttributename> <DataTypejname>)

<PolygenData>::= <DataTuple-list>

<DataTuple>::= <DataCelllist>

<DataCell> ::= (<datum> <riginatingSourceTagilist> <IntermediateSourceTag-list>)

B.3 TAGS

<Originating_SourceTag> ::=(<databasename> <relation-name>)

<IntermediateSourceTag> ::=(<databasename>)

B.4 LOCAL SCHEMA

<LocalSchema>::= <LocalRelation list>

<LocalRelation> ::= <LocalColumnlist>

<LocalColumn>::= (<LocalAttributename> <DataType-name>)

B.5 POLYGEN OPERATIONS MATRIX

<Polygen_OperationsMatrix> ::= <POMOperationlist>

<POMOperation>::= (<PR> <POM-OP> <POM-LHR> <POM-LHA> <THETA> <POM-RHA>
<POM-RHR>)

<PR> ::= <temporaryjrelationname> I FOO

System P: A Polygen Database Management System

<POM-OP>::= SELECT I RESTRICT I JOIN I PROJECTION

<POM-LHR> <temporaryrelation_name> I <PolygenRelationname>

<POM-LHA> <PolygenAttributename> I <PolygenAttributenamelist> I NIL

<THETA>::= > I < I = I NIL

<POM-RHR> <temporaryrelaion_name> I <Polygen_Relationname> I NIL

<POM-RHA> <PolygenAttribute_name> I NIL

B.6 INTERMEDIATE OPERATIONS MATRIX

<IntermediateOperationsMatrix>::= <IOMOperationlist>

<IOMOperation>::= (<IOM-PR> <IOM-OP> <IOM-LHR> <IOM-LHA> <THETA> <IOM-RHA>
<IOM-RHR> <EL>)

<IOM-OP>::= <POM-OP> I MERGE I RETRIEVE

<IOM-LHR> <POM-LHR> I <Local Relation name> I <PR list>

<IOM-LHA> <POM-LHA> I <LocalAttribute name>

<IOM-RHR> <POM-LHR> I <LocalRelation name>

<IOM-RHA>::= <IOM-LHA>

<EL>::= <databasename> I PQP

B.7 POLYGEN ALGEBRAIC EXPRESSION

<PolygenAlgebraicExpression>::= <SelectionExpr> I <RestrictionExpr> I <ProjectionExpr> I
<JoinExpr>

<SelectionExpr> (<Relation_Expr> <SelectionConditionalExpr>)

<RestrictionExpr>::= (<RelationExpr> <RestrictionConditionalExpr>)

<ProjectionExpr> (<RelationExpr> <PolygenAttributenamelist>)

<JoinExpr>::= (<RelationExpr> <SelectionConditionalExpr> <RelationExpr>)

<RelationExpr>::= <PolygenAlgebraicExpression> I <PolygenRelationname>

<SelectionConditionalExpr>::= (<PolygenAttributename> <THETA> <PolygenAttributename>)

<RestrictionConditionalExpr>::= (<PolygenAttributename> <THETA> <datum>)

Page 69

