
Toward Quality Data:
An Attribute-based Approach

December 1992 WP #3515-93
CISL WP# 92-04

Richard Y. Wang
M.P. Reddy

H.B. Kon

Sloan School of Management, MIT
* see page bottom for complete address

Richard Y. Wang E53-317
Henry B. Kon E53-322

M. Prabhakara Reddy E53-322

Sloan School of Management
Massachusetts Institute of Technology

Cambridge, MA 01239

Toward Quality Data: An Attribute-Based Approach

Richard Y. Wang
M. P. Reddy
Henry B. Kon

November 1992

(CIS-92-04, revised)

Composite Information Systems Laboratory
E53-320, Sloan School of Management
Massachusetts Institute of Technology

Cambridge, Mass. 02139
ATTN: Prof. Richard Wang

(617) 253-0442
Bitnet Address: rwang@sloan.mit.edu

@ 1992 Richard Y. Wang, M.P. Reddy, and Henry B. Kon

ACKNOWLEDGEMENTS Work* reported herein has been supported, in part, by MIT's
International Financial Service Research Center, MIT's Center for Information Systems
Research, Fujitsu Personal Systems, Inc. and Bull-HN. The authors wish to thank Stuart Madnick
and Amar Gupta for their comments on earlier versions of this paper. Thanks are also due to
Amar Gupta for his support and Gretchen Fisher for helping prepare this manuscript.

1. Introduction .. 1
1.1. Dimensions of data quality... 2
1.2. Data quality: an attribute-based example 4
1.3. Research focus and paper organization .. 4

2. Research background... 5
2.1. Rationale for cell-level tagging...5
2.2. Work related to data tagging .. 6
2.3. Term inology .. 7

3. Data quality requirements analysis..8
3.1. Step 1: Establishing the applications view....................................9
3.2. Step 2: Determine (subjective) quality parameters....................9
3.3. Step 3: Determine (objective) quality indicators 10
3.4. Step 4: Creating the quality schema .. 11

4. The attribute-based model of data quality...12
4.1. D ata structure... 12
4.2. D ata integrity.. .15
4.3. Data manipulation.. 15

4.3.1. QI-Compatibility and QIV-Equal 15
4.3.2. Quality Indicator Algebra......................18

4.3.2.1. Selection........................... 18
4.3.2.2. Projection...... 19
4.3.2.3. Union 20
4.3.2.4. Difference......................... o . 22
4.3.2.5. Cartesian Product.... o 24

5. Discussion and future directions................................25
6. References ... 27

7. Appendix A: Premises about data quality requirements analysis.............29
7.1. Premises related to data quality modeling......................29
7.2. Premises related to data quality definitions and standards across
users................... 30

7.3. Premises related to a single user.....30

Toward Quality Data: An Attribute-Based Approach

1. Introduction

Organizations in industries such as banking, insurance, retail, consumer marketing, and health

care are increasingly integrating their business processes across functional, product, and geographic

lines. The integration of these business processes, in turn, accelerates demand for more effective

application systems for product development, product delivery, and customer service (Rockart & Short,

1989). As a result, many applications today require access to corporate functional and product

databases. Unfortunately, most databases are not error-free, and some contain a surprisingly large

number of errors (Johnson, Leitch, & Neter, 1981). In a recent industry executive report, Computerworld

surveyed 500 medium size corporations (with annual sales of more than $20 million), and reported that

more than 60% of the firms had problems in data quality.1 The Wall Street Journal also reported that:

Thanks to computers, huge databases brimming with information are at our fingertips, just
waiting to be tapped. They can be mined to find sales prospects among existing customers; they
can be analyzed to unearth costly corporate habits; they can be manipulated to divine future
trends. Just one problem: Those huge databases may be full of junk. ... In a world where people
are moving to total quality management, one of the critical areas is data.2

In general, inaccurate, out-of-date, or incomplete data can have significant impacts both

socially and economically (Laudon, 1986; Liepins & Uppuluri, 1990; Liepins, 1989; Wang & Kon, 1992;

Zarkovich, 1966). Managing data quality, however, is a complex task. Although it would be ideal to

achieve zero defect data,3 this may not always be necessary or attainable for, among others, the

following two reasons:

First, in many applications, it may not always be necessary to attain zero defect data. Mailing

addresses in database marketing is a good example. In sending promotional materials to target

customers, it is not necessary to have the correct city name in an address as long as the zip code is correct.

Second, there is a cost/quality tradeoff in implementing data quality programs. Ballou and

Pazer found that "in an overwhelming majority of cases, the best solutions in terms of error rate

reduction is the worst in terms of cost" (Ballou & Pazer, 1987). The Pareto Principle also suggests that

losses are never uniformly distributed over the quality characteristics. Rather, the losses are always

distributed in such a way that a small percentage of the quality characteristics, "the vital few,"

always contributes a high percentage of the quality loss. As a result, the cost improvement potential is

1 Computerworld, September 28,1992, p. 80-84.
2 The Wall Street Journal, May 26, 1992, page B6.
3 just like the well publicized concept of zero defect products in the manufacturing literature.

high for "the vital few" projects whereas the "trivial many" defects are not worth tackling because the

cure costs more than the disease (Juran & Gryna, 1980). In sum, when the cost is prohibitively high, it is

not feasible to attain zero defect data.

Given that zero defect data may not always be necessary nor attainable, it would be useful to be

able to judge the quality of data. This suggests that we tag data with quality indicators which are

characteristics of the data and its manufacturing process. From these quality indicators, the user can

make a judgment of the quality of the data for the specific application at hand. In making a financial

decision to purchase stocks, for example, it would be useful to know the quality of data through quality

indicators such as who originated the data, when the data was collected, and how the data was

collected.

In this paper, we propose an attribute-based model that facilitates cell-level tagging of data.

Included in this attribute-based model are a mathematical model description that extends the

relational model, a set of quality integrity rules, and a quality indicator algebra which can be used to

process SQL queries that are augmented with quality indicator requirements. From these quality

indicators, the user can make a better interpretation of the data and determine the believability of the

data. In order to establish the relationship between data quality dimensions and quality indicators, a

data quality requirements analysis methodology that extends the Entity Relationship (ER) model is

also presented.

Just as it is difficult to manage product quality without understanding the attributes of the

product which define its quality, it is also difficult to manage data quality without understanding the

characteristics that define data quality. Therefore, before one can address issues involved in data

quality, one must define what data quality means. In the following subsection, we present a definition

for the dimensions of data quality.

1.1. Dimensions of data quality

Accuracy is the most obvious dimension when it comes to data quality. Morey suggested that

"errors occur because of delays in processing times, lengthy correction times, and overly or insufficiently

stringent data edits" (Morey, 1982). In addition to defining accuracy as "the recorded value is in

conformity with the actual value," Ballou and Pazer defined timeliness (the recorded value is not out

of date), completeness (all values for a certain variables are recorded), and consistency (the

representation of the data value is the same in all cases) as the key dimensions of data quality (Ballou

& Pazer, 1987). Huh et al. identified accuracy, completeness, consistency, and currency as the most

important dimensions of data quality (Huh, et al., 1990).

It is interesting to note that although methods for quality control have been well established in

the manufacturing field (e.g., Juran, 1979), neither the dimensions of quality for manufacturing nor for

data have been rigorously defined (Ballou & Pazer, 1985; Garvin, 1983; Garvin, 1987; Garvin, 1988;

Huh, et al., 1990; Juran, 1979; Juran & Gryna, 1980; Morey, 1982; Wang & Guarrascio, 1991). It is also

interesting to note that there are two intrinsic characteristics of data quality:

(1) Data quality is a multi-dimensional concept.

(2) Data quality is a hierarchical concept.

We illustrate these two characteristics by considering how a user may make decisions based on

certain data retrieved from a database. First the user must be able to get to the data, which means that

the data must be accessible (the user has the means and privilege to get the data). Second, the user

must be able to interpret the data (the user understands the syntax and semantics of the data). Third,

the data must be useful (data can be used as an input to the user's decision making process). Finally, the

data must be believable to the user (to the extent that the user can use the data as a decision input).

Resulting from this list are the following four dimensions: accessibility, interpretability, usefulness,

and believability. In order to be accessible to the user, the data must be available (exists in some form

that can be accessed); to be useful, the data must be relevant (fits requirements for making the decision);

and to be believable, the user may consider, among other factors, that the data be complete. timely

consistent credible and accurate. Timeliness, in turn, can be characterized by currency (when the data

item was stored in the database) and volatility (how long the item remains valid). Figure 1 depicts

the data quality dimensions illustrated in this scenario.

Figure 1: A Hierarchy of Data Quality Dimensions

These multi-dimensional concepts and hierarchy of data quality dimensions provide a

conceptual framework for understanding the characteristics that define data quality. In this paper, we

focus on interpretability and believability, as we consider accessibility to be primarily a function of the

information system and usefulness to be primarily a function of an interaction between the data and the

application domain. The idea of data tagging is illustrated more concretely below.

1.2. Data quality: an attribute-based example

Suppose an analyst maintains a database on technology companies. The schema used to support

this effort may contain attributes such as company name, CEO name, and earnings estimate (Table 1).

Data may be collected over a period of time and come from a variety of sources.

Table 1: Company Information

Company Name CEO name Earnings Estimate
IBM Akers 7
DELL Dell 3

As part of determining the believability of the data (assuming high interpretability), the

analyst may want to know when the data was generated, where it came from, how it was originally

obtained, and by what means it was recorded into the database. From Table 1, the analyst would have

no means of obtaining this information. We illustrate in Table 2 an approach in which the data is

tagged with quality indicators which may help the analyst determine the believability of the data.

Table 2: Company information with quality indicators

Company Name [CEO name Earnings Estimate
IBM Akers 7

<source: Barron's, reporting-date: 10-05-92, data-entry operator: Joe>
DELL Dell 3

<source: WSJ, reportingdate: 10-06-92, dataentry-operator: Mary>

As shown in Table 2, "7, (source: Barron's, reporting-date: 10-05-92, data.entryoperator: Joe)"

in Column 3 indicates that "$7 was the Earnings Estimate of IBM" was reported by the Barron's on

October 5, 1992 and was entered by Joe. An experienced analyst would know that Barron's is a credible

source; that October 5, 1992 is timely (assuming that October 5 was recent); and that Joe is experienced,

therefore the data is likely to be accurate. As a result, he may conclude that the earnings estimate is

believable. This example both illustrates the need for, and provides an example approach for,

incorporating quality indicators into the database through data tagging.

1.3. Research focus and paper organization

The goal of the attribute-based approach is to facilitate the collection, storage, retrieval, and

processing of data that has quality indicators. Central to the approach is the notion that an attribute

value may have a set of quality indicators associated with it. In some applications, it may be

necessary to know the quality of the quality indicators themselves, in which case a quality indicator

may, in turn, have another set of associated quality indicators. As such, an attribute may have an

arbitrary number of underlying levels of quality indicators. This constitutes a tree structure, as shown in

Figure 2 below.

(attribute)

indicator indicator

ndicator (indicator)

Figure 2: An attribute with quality indicators

Conventional spreadsheet programs and database systems are not appropriate for handling

data which is structured in this manner. In particular, they lack the quality integrity constraints

necessary for ensuring that quality indicators are always tagged along with the data (and deleted

when the data is deleted) and the algebraic operators necessary for attribute-based query processing.

In order to associate an attribute with its immediate quality indicators, a mechanism must be

developed to facilitate the linkage between the two, as well as between a quality indicator and the set

of quality indicators associated with it.

This paper is organized as follows. Section 2 presents the research background. Section 3

presents the data quality requirements analysis methodology. In section 4, we present the attribute-

based data model. Discussion and future directions are made in Section 5.

2. Research background

In this section we discuss our rationale for tagging data at the cell level, summarize the

literature related to data tagging, and present the terminology used in this paper.

2.1. Rationale for cell-level tagging

Any characteristics of data at the relation level should be applicable to all instances of the

relation. It is, however, not reasonable to assume that all instances (i.e., tuples) of a relation have the

same quality. Therefore, tagging quality indicators at the relation level is not sufficient to handle

quality heterogeneity at the instance level.

By the same token, any characteristics of data tagged at the tuple level should be applicable

to all attribute values in the tuple. However, each attribute value in a tuple may be collected from

different sources, through different collection methods, and updated at different points in time.

Therefore, tagging data at the tuple level is also insufficient. Since the attribute value of a cell is the

basic unit of manipulation, it is necessary to tag quality information at the cell level.

We now examine the literature related to data tagging.

2.2. Work related to data tagging

A mechanism for tagging data has been proposed by Codd. It includes NOTE, TAG, and

DENOTE operations to tag and un-tag the name of a relation to each tuple. The purpose of these

operators is to permit both the schema information and the database extension to be manipulated in a

uniform way (Codd, 1979). It does not, however, allow for the tagging of other data (such as source) at

either the tuple or cell level.

Although self-describing data files and meta-data management have been proposed at the

schema level (McCarthy, 1982; McCarthy, 1984; McCarthy, 1988), no specific solution has been offered

to manipulate such quality information at the tuple and cell levels.

A rule-based representation language based on a relational schema has been proposed to store

data semantics at the instance level (Siegel & Madnick, 1991). These rules are used to derive meta-

attribute values based on values of other attributes in the tuple. However, these rules are specified at

the tuple level as opposed to the cell level, and thus cell-level operations are not inherent in the

model.

A polygen model (poly = multiple, gen = source) (Wang & Madnick, 1990) has been proposed to

tag multiple data sources at the cell level in a heterogeneous database environment where it is

important to know not only the originating data source but also the intermediate data sources which

contribute to final query results. The research, however, focused on the "where from" perspective and

did not provide mechanisms to deal with more general quality indicators.

In (Sciore, 1991), annotations are used to support the temporal dimension of data in an object-

oriented environment. However, data, quality is a multi-dimensional concept. Therefore, a more

general treatment is necessary to address the data quality issue. More importantly, no algebra or

calculus-based language is provided to support the manipulation of annotations associated with the

data.

The examination of the above research efforts suggests that in order to support the

functionality of our attribute-based model, an extension of existing data models is required.

2.3. Terminology

To facilitate further discussion, we introduce the following terms:

e An application attribute refers to an attribute associated with an entity or a relationship in an

entity-relationship (ER) diagram. This would include the data traditionally associated with

an application such as part number and supplier.

* A quality parameter is a qualitative or subjective dimension of data quality that a user of data

defines when evaluating data quality. For example, believability and timeliness are such

dimensions.

e As introduced in Section 1, quality indicators provide objective information about the

characteristics of data and its manufacturing process.4 Data source, creation time and

collection method are examples of such objective measures.

* A quality parameter value is the value determined (directly or indirectly) by the user of data

for a particular quality parameter based on underlying quality indicators. Functions can be

defined by users to map quality indicators to quality parameters. For example, the quality

parameter credibility may be defined as high or low depending on the quality indicator source

of the data.

* A quality indicator value is a measured characteristic of the stored data. For example, the

data quality indicator source may have a quality indicator value The Wall Street Journal.

We have discussed the rationale for cell-level tagging, summarized work related to data

tagging, and introduced the terminology used in this paper. In the next section, we present a

methodology for the specification of data quality parameters and indicators. The intent is to allow

users to think through their data quality requirements, and to determine which quality indicators

would be appropriate for a given application.

4 We consider an indicator objective if it is generated using a well defined and widely accepted measure.

3. Data quality requirements analysis

In general, different users may have different data quality requirements, and different types of

data may have different quality characteristics. The reader is referred to Appendix A for a more

thorough treatment of these issues.

Data quality requirements analysis is an effort similar in spirit to traditional data

requirements analysis (Batini, Lenzirini, & Navathe, 1986; Navathe, Batini, & Ceri, 1992; Teorey,

1990), but focusing on quality aspects of the data. Based on this similarity, parallels can be drawn

between traditional data requirements analysis and data quality requirements analysis. Figure 3

depicts the steps involved in performing the proposed data quality requirements analysis.

- application requirements

Step 1
determine the application view of data

V
* application view

application's Step 2
quality requirments~'..

q i determine (subjective) quality parameters for the

candidate quality app
paramaters

- parameter view

Step3
determine (objective) quality indicators for the
application

quality view (1) - quality view (I) - quality view (n)

Step'4 '0'
quality view integration

- quality schema

Figure 3: The process of data quality requirements analysis

The input, output and objective of each step are described in the following subsections.

3.1. Step 1: Establishing the applications view

Step 1 is the whole of the traditional data modeling process and will not be elaborated upon in

this paper. A comprehensive treatment of the subject has been presented elsewhere (Batini, Lenzirini,

& Navathe, 1986; Navathe, Batini, & Ceri, 1992; Teorey, 1990).

For illustrative purposes, suppose that we are interested in designing a portfolio management

system which contains companies that issue stocks. A company has a company name, a CEO, and an

earnings estimate, while a stock has a share price, a stock exchange (NYSE, AMS, or OTC), and a ticker

symbol. An ER diagram that documents the application view for our running example is shown below in

Figure 4.

COMPANY ISSUES STOCK

N AME K XCHAGE

EARNINGS ESTIMATE -:T:ICKER SYBMOL

Figure 4: Application view (output from Step 1)

3.2. Step 2: Determine (subjective) quality parameters

The goal in this step is to elicit quality parameters from the user given an application view.

These parameters need to be gathered from the user in a systematic way as data quality is a multi-

dimensional concept, and may be operationalized for tagging purposes in different ways. Figure 5

illustrates the addition of the two high level parameters, interpretability and believability, to the

application view. Each quality parameter identified is shown inside a "cloud" in the diagram.

COMPANY ISUSSTOCK Interpretable

-OMPA----- SHARE PRICE

Believable

EARNINGS ESTIMATE TICKER SYBMOL

Believable

Figure 5: Interpretability and believability added to the application view

Interpretability can be defined through quality indicators such as data units (e.g., in dollars)

and scale (e.g., in millions). Believability can be defined in terms of lower-level quality parameters

such as completeness timeliness, consistency, credibility, and accuracy. Timeliness, in turn, can be

defined through currency and volatility. The quality parameters identified in this step are added to

the application view. The resulting view is referred to as the parameter view. We focus here on the

stock entity which is shown in Figure 6.

Figure 6: Parameter view for the stock entity (partial output from Step 2)

3.3. Step 3: Determine (objective) quality indicators

The goal in Step 3 is to operationalize the primarily subjective quality parameters identified

in Step 2 into objective quality indicators. Each quality indicator is depicted as a tag (using a dotted-

rectangle) and is attached to the corresponding quality parameter (from Step 2), creating the quality

view. The portion of the quality view for the stock entity in the running example is shown in Figure 7.

Figure 7: The portion of the quality view

'Imeliness Cedibit- SOURC

urrency REPORTING DATE'
for the stock entity (output from Step 3)

STOCKrretab

4 UNITS
-- -- I

Corresponding to the quality parameter interpretable are the more objective quality indicators

currency units in which share price is measured (e.g., $ vs. Y) and status which says whether the share

price is the latest closing price or latest nominal price. Similarly, the believability of the share price

is indicated by the quality indicators source and reporting date.

For each quality indicator identified in a quality view, if it is important to have quality

indicators for a quality indicator, then Steps 2-3 are repeated, making this an iterative process. For

example, the quality of the attribute Earnings Estimate may depend not only on the first level source

(i.e., the name of the journal) but also on the second level source (i.e., the name of the financial analyst

who provided the Earnings Estimate figure to the journal and the Reporting date). This scenario is

depicted below in Figure 8.

EARNINGS ESTIMATE

Believable

REPORTING DATE'

SOURCE I

Bellvabe

,ANALYSTS NAME REPORTING DATE'

Figure 8: Quality indicators of quality indicators

All quality views are integrated in Step 4 to generate the quality schema, as discussed in the

following subsection.

3.4. Step 4: Creating the quality schema

When the design is large and more than one set of application requirements is involved,

multiple quality views may result. To eliminate redundancy and inconsistency, these quality views

must be consolidated into a single global view, in a process similar to schema integration (Batini,

Lenzirini, & Navathe, 1986), so that a variety of data quality requirements can be met. The resulting

single global view is called the quality schema.

This involves the integration of quality indicators. In simpler cases, a union of these indicators

may suffice. In more complicated cases, it may be necessary to examine the relationships among the

indicators in order to decide what indicators to include in the quality schema. For example, it is likely

that one quality view may have age as an indicator, whereas another quality view may have creation

time for the same quality parameter. In this case, creation time may be chosen for the quality schema

because age can be computed given current time and creation time.

We have presented a step-by-step procedure to specify data quality requirements. We are now

in a position to present the attribute-based data model for supporting the storage, retrieval, and

processing of quality indicators as specified in the quality schema.

4. The attribute-based model of data quality

We choose to extend the relational model because the structure and semantics of the relational

approach are widely understood. Following the relational model (Codd, 1982), the presentation of the

attribute-based data model is divided into three parts: (a) data structure, (b) data integrity, and (c)

data manipulation. We assume that the reader is familiar with the relational model (Codd, 1970;

Codd, 1979; Date, 1990; Maier, 1983).

4.1. Data structure

As shown in Figure 2 (Section 1), an attribute may have an arbitrary number of underlying

levels of quality indicators. In order to associate an attribute with its immediate quality indicators, a

mechanism must be developed to facilitate the linkage between the two, as well as between a quality

indicator and the set of quality indicators associated with it. This mechanism is developed through

the quality key concept. In extending the relational model, Codd made clear the need to uniquely

identify tuples through a system-wide unique identifier, called the tuple ID (Codd, 1979; Khoshafian

& Copeland, 1990).5 This concept is applied in the attribute-based model to enable this linkage.

Specifically, an attribute in a relation scheme is expanded into an ordered pair, called a quality

attribute, consisting of the attribute and a quality key.

For example, the attribute Earnings Estimate (EE) in Table 3 is expanded into (EE, EEt) in Table

4 where EEt is the quality key for the attribute EE (Tables 3-6 are embedded in Figure 9). This

expanded scheme is referred to as a quality scheme. In Table 4, ((CN, nile), (CEO, nile), (EE, EEt))

defines a quality scheme for the quality relation Company. The "nilt" indicates that no quality

indicators are associated with the attributes CN and CEO; whereas EEt indicates that EE has

associated quality indicators.

Correspondingly, each cell in a relational tuple is expanded into an ordered pair, called a

quality cell, consisting of an attribute value and a quality key value. This expanded tuple is referred to

5 Similarly, in the object-oriented literature, the ability to make references through object identity is considered a basic
property of an object-oriented data model.

as a quality tuple and the resulting relation (Table 4) is referred to as a quality relation. Each quality

key value in a quality cell refers to the set of quality indicator values immediately associated with

the attribute value. This set of quality indicator values is grouped together to form a kind of quality

tuple called a quality indicator tuple. A quality relation composed of a set of these time-varying

quality indicator tuples is called a quality indicator relation. The quality scheme that defines the

quality indicator relation is referred to as the quality indicator scheme.

Under the relational model

Table 3: Relation for Company

tid Company "EO Name Earnings
Name (CN) (CEO) Estimate (EE)

idOO1 IBM Akers 7
id002t DELL Dell 3

Under the attribute-based modelN F
Table 4: Qua ' Relatio forVmpany

tid (CN, nile) (C O, nilt (EE," EEt)

id001t (IBM, nilt) (Akers, nilq) (7, id101t)
id002t (Dell, nilto) .(Dell, nilt). g(3, id102c)

Table 5: Level-One QIR for the EE attribute
EEt (SRC1, SRCIt) (News Date, nile (Entry Clerk, nile

idlOlt (Barron's, id201o) (Oct 5'92, nilt) (Joe, nilt)
-- id102t r (Wall St Jnl, id2024 (Oct 6'92, nile) (Mary, nilt)

Tables 6: Level-Two QIR for the EE attribute

SRClt SRC2 nilt e rt date nilt'

id20l (Zacks, nilt) (Sep 1 '92, nile)
- id202 (Zacks, nilt) (Sep 15'92, nilt

Figure 9: The Quality Scheme Set for Company

The quality key thus serves as a foreign key, relating an attribute (or quality indicator) value

to its associated quality indicator tuple. For example, Table 5 is a quality indicator relation for the

attribute Earnings Estimate and Table 6 is a quality indicator relation for the attribute SRC1 (source of

data) in Table 5. The quality cell (Wall St Jnl, id202c) in Table 5 contains a quality key value, id202e,

which is a tuple id (primary key) in Table 6.

Let qri be a quality relation and a an attribute in qri. If a has associated quality indicators,

then its quality key must be non-null (i.e., not "nilt"). Let qr2 be the quality indicator relation

containing a quality indicator tuple for a, then all the attributes of qr2 are called level-one quality

indicators for a. Each attribute in qr2 , in turn, can have a quality indicator relation associated with it.

In general, an attribute can have n-levels of quality indicator relations associated with it, n > 0. For

example, Tables 5-6 are referred to respectively as level-one and level-two quality indicator relations

for the attribute Earnings Estimate.

We define a quality scheme set as the collection of a quality scheme and all the quality

indicator schemes that are associated with it. In Figure 9, Tables 3-6 collectively define the quality

scheme set for Company. We define a quality database as a database that stores not only data but also

quality indicators. A quality schema is defined as a set of quality scheme sets that describes the

structure of a quality database. Figure 10 illustrates the relationship among quality schemes, quality

indicator schemes, quality scheme sets, and the quality schema.

Quality Scheme Quality Scheme

Quaity<aq ...-1<a, - - - <a~q~ ... I<aM

Quality / e000-o ult

1 dctrScheme /S''ch''emQaltSet Quality Indicator Schem Qua ity IniaoSceechm
<aqR ... I<a~q3 <aqj ... I<aqk5

Figure 10 Quality schemes, quality indicator schemes, quality scheme sets, and the quality schema

We now present a mathematical definition of the quality relation. Following the constructs

developed in the relational model, we define a domain as a set of values of similar type. Let ID be the

domain for a system-wide unique identifier (in Table 4, idl01< e ID). Let D be a domain for an attribute

(in Table 4, 7 e EE where EE is a domain for earnings estimate). Let DID be defined on the Cartesian

product D X ID (in Table 4, (7, id101t) E DID).

Let id be a quality key value associated with an attribute value d where d E D and id E ID. A

quality relation (qr) of degree m is defined on the m+1 domains (m>O; in Table 4, m=3) if it is a subset of

the Cartesian product:

ID X DID1 X DID2 X ... X DIDm.

Let qt be a quality tuple, which is an element in a quality relation. Then a quality relation qr

is designated as:

qr = (qt I qt = (id, didi, did2, ..., didm) where id E ID, didj E DIDj, j = 1, ... ,m)

The integrity constraints for the attribute-based model is presented next.

4.2. Data integrity

A fundamental property of the attribute-based model is that an attribute value and its

corresponding quality (including all descendant) indicator values are treated as an atomic unit. By

atomic unit we mean that whenever an attribute value is created, deleted, retrieved, or modified, its

corresponding quality indicators also need to be created, deleted, retrieved, or modified respectively.

In other words, an attribute value and its corresponding quality indicator values behave atomically.

We refer to this property as the atomicity property hereafter. This property is enforced by a set of

quality referential integrity rules as defined below.

Insertion: Insertion of a tuple in a quality relation must ensure that for each non-null quality

key present in the tuple (as specified in the quality schema definition), the corresponding quality

indicator tuple must be inserted into the child quality indicator relation. For each non-null quality key

in the inserted quality indicator tuple, a corresponding quality indicator tuple must be inserted at the

next level. This process must be continued recursively until no more insertions are required.

Deletion: Deletion of a tuple in a quality relation must ensure that for each non-null quality

key present in the tuple, corresponding quality information must be deleted from the table

corresponding to the quality key. This process must be continued recursively until a tuple is encountered

with all null quality keys.

Modification: If an attribute value is modified in a quality relation, then the descendant

quality indicator values of that attribute must be modified.

We now introduce a quality indicator algebra for the attribute-based model.

43. Data manipulation

In order to present the algebra formally, we first define two key concepts that are fundamental

to the quality indicator algebra: 01-compatibility and OIV-Equal.

4.3.1. QI-Compatibility and QIV-Equal

Let a1 and a2 be two application attributes. Let QI(a) denote the set of quality indicators

associated with ai. Let S be a set of quality indicators. If S C QI(al) and S C QI(a 2), then a1 and a2

are defined to be QI-Compatible with respect to S.6 For example, if S = (qi1 , qi2 , qi 21), then the

attributes a1 and a2 shown in Figure 11 are QI-Compatible with respect to S. Whereas if S = (qi1 , qi22),

then the attributes a, and a2 shown in Figure 11 are not QI-Compatible with respect to S.

6 We assume that the numeric subscripts (e.g., qi1j) map the quality indicators to unique positions in the
quality indicator tree.

a a

qij qi qj 1
2 3 /192 qi 3

\l \q\\

q11 q, 12 9i 21 qi22 q'31 911 1 9112 qi 21 q131

Figure 11: QI-Compatibility Example

Let a1 and a2 be QI-Compatible with respect to S. Let w, and w2 be values of a1 and a2

respectively. Let qi(w1) be the value of quality indicator qi for the attribute value w, where qi e S

(qi2(w1) = v2 in Figure 12). Define w, and w2 to be QIV-Equal with respect to S provided that qi(w1) =

qi(w2) V qi e S, denoted as w1 =s w2. In Figure 12, for example, w1 and w2 are QIV-Equal with respect to

S = (qi1 , qi21}, but not QIV-Equal with respect to S = (qi1, qi31) because qi31(w1) = v31 whereas qi31(w2) =

X31.

a ,w 1) (a 2 ,w2)

(qi1, v 1) (qi 2,V 2) (qi 3 v3) (qi 1 v1) (qi 2,v 2) (qi3'V 3)

(9 j, v j) (qi ,2 v 1) (qi21 , v 21 q9i2 , v 2) (gi31, -v31) (991 , v, 1) (qi12 , v12) (q 21' 21) (q991 ' 31)

Figure 12: QIV-Equal Example

In practice, it is tedious to explicitly state all the quality indicators to be compared (i.e., to

specify all the elements of S). To alleviate the situation, we introduce i-level QI-compatibility (i-

level QIV-Equal) as a special case for QI-compatibility (QIV-equal) in which all the quality

indicators up to a certain level of depth in a quality indicator tree are considered.

Let a1 and a2 be two application attributes. Let a1 and a2 be QI-Compatible with respect to S.

Let w, and w2 be values of a1 and a2 respectively, then w, and w2 are defined to be i-level QI-

Compatible if the following two conditions are satisfied: (1) a1 and a2 are QI-Compatible with respect

to S , and (2) S consists of all quality indicators present within i levels of the quality indicator tree of

a1 (thus of a2).

By the same token, i-level QIV-Equal between w, and w2, denoted by w, =i w2, can be defined.

If 'i' is the maximum level of depth in the quality indicator tree, then a1 and a2 are defined to

be maximum-level 01-Compatible. Similarly, maximum-level OIV-Equal between w, and w2, denoted

by w1 =" w2, can also be defined.

To exemplify the algebraic operations in the quality indicator algebra, we introduce two

quality relations having the same quality scheme set as shown in Figure 9. They are referred to as

LargeandMedium (Tables 7, 7.1, 7.2 in Figure 13) and SmallandMedium (Tables 8, 8.1, and 8.2 in

Figure 14).

<CN, nile>

Table 7 <IBM, nilt>
<DEC, nile>
<TI, nile>

<CEO, nilt>
<J Akers, nilt>
<K Olsen, nile>
<J Junkins, nile>

=|<EE, EEt>
<6.08, id0101t>
<-0.32, id0102t>
<2.51, id0103t>

<EEt, nile> <SRC1, SRC1t> <Reporting~date, nilt>

1 <id101t, nil> <Nexis, id0201t> <10-07-92, nile>
<id0102t, nil> <Nexis, id0202t> <10-07-92, nile>
<id0103t, nil> <Lotus, id0203t> <10-07-92, nile>

<SRC1t, nile> <SRC2, nilt> <Reprting_date, nile>
<id0201t, nile> <Zacks, nile> <1-07-92, nile>
<id0202t, nile> <First Boston, nile> <1-07-92, nile>
<id0203t, nile> <First Boston, nilt> <1-07-92, nilt>

Figure 13: The Quality Relation Large-andMedium

<CN, nilt>
<Apple, nile>
<DEC, nile>

<TI, nile>

<EEt, nil>
<idlOlt, nilt>
<id1102t, nile>
<id1103t, nilt>

<CEO, nile> <EE, EEt>

<J Sculley, nile> <5.69, id1101t>
<K Olsen, nil> <-0.32,id1102t>

<J Junkins, nile> <2.51, id1103t>

<SRC1, SRClt> <Reportin date, nilt>
<Lotus, id1201o> <10-07-92, nile>
<Nexis, id1202t> <10-07-92, nile>
<Lotus, id1203t> <10-07-92, nilt>

<SRC1t, nile>
<id1201t, nile>
<id1202t, nilt>
<id1203t, nilt>

<SRC2, nile>
<Zacks, nile>

<First Boston, nile>
<Zacks, nilt>

-I--
<Reporting-date, nil>

<1-07-92, nile>
<1-07-92, nile>
<1-07-92, nile>

Figure 14: The Quality Relation Small_and_Medium

These two quality relations will be used to illustrate various operations of the quality

indicator algebra. In order to illustrate the relationship between the quality indicator algebraic

operations and the high-level user query, the SELECT, FROM, WHERE structure of SQL is extended

with an extra clause "with QUALITY." This extra clause enables a user to specify the quality

requirements regarding an attributes referred to in a query.

Table 7.:

Table 7.2

U

Table 8

Table 8.1

Table 8.2

If the clause "with QUALITY" is absent in a user query, then it means that the user has no

explicit constraints on the quality of data that is being retrieved. In that case quality indicator values

would not be compared in the retrieval process; however, the quality indicator values associated with

the applications data would be retrieved as well.

In the extended SQL syntax, the dot notation is used to identify a quality indicator in the

quality indicator tree. In Figure 9, for example, EE.SRC1.SRC2 identifies SRC2 which is a quality

indicator for SRC1, which in turn is a quality indicator to EE.

The quality indicator algebra is presented in the following subsection.

4.3.2. Quality Indicator Algebra

Following the relational algebra (Klug, 1982), we define the five orthogonal quality relational

algebraic operations, namely selection, projection, union, difference, and Cartesian product.

In the following operations, let QR and QS be two quality schemes and let qr and qs be two

quality relations associated with QR and QS respectively. Let a and b be two attributes in both QR and

QS. Let t, and t2 be two quality tuples. Let Sa be a set of quality indicators specified by the user for the

attribute a. (That is, Sa is constructed form the specifications given by the user in the "with

QUALITY" clause.) Let the term tl.a = t2.a denote that the values of the attribute a in the tuples t, and

t2 are identical. Let ti.a Sa t2.a denote that the values of attribute a in the tuples t1 and t2 are QIV-

equal with respect to Sa. Similarly, let t1 .a = t2.a and ti.a = ' t2.a denote i-level QIV-equal and

maximum-level QIV-equal respectively between the values of tl.a and t2 .a.

4.3.2.1. Selection

Selection is a unary operation which selects only a horizontal subset of a quality relation (and

its corresponding quality indicator relations) based on the conditions specified in the Selection

operation. There are two types of conditions in the Selection operation: regular conditions for an

application attribute and quality conditions for the quality indicator relations corresponding to the

application attribute. The selection, aqc (qr), is defined as follows:

doC (qr)= {t I V t1 e qr, V ae QR, ((t.a = tl.a) A (t.a =m tl.a)) A C(ti))

where C(t 1)= ei D e2 D ... D en Del 1 4 e(...(ep ; ei is in one of the forms: (ti.a 8 constant)

or (t1.a 8 ti .b); eiq is of the forms (qik = constant) or (ti.a =sa,b t 1.b) or (ti.a =1 ti.b) or (ti. a

="ti.b); qik E QI(a); 0 e (A,v,,}; 9= {5, : , <, >, =; and Sa,b is the set of quality

indicators to be compared during the comparison of ti.a and t1 .b.

Example 1: Get all LargeandMedium companies whose earnings estimate is over 2 and is supplied by

Zacks Investment Research.

A corresponding extended SQL query is shown as follows:

SELECT CN, CEO, EE
FROM LARGEANDMEDIUM
WHERE EE>2
with QUALITY EE.SRC1.SRC2='Zacks'

This SQL query can be accomplished through a Selection

algebra. The result is shown below.

operation in the quality indicator

<CN,nit>
Table 9 | <IBM, nilo> |

<CEO, nilt>
<J Akers, nilt>

<EE, EEt>
<6.08, id0101t>

<EEt, nile> <SRC1, SRClt> <Reportingdate, nile>
Table 9.1 <id0101t, nil> <Nexis, idO20l> <10-07-92, nil>

T <SRC1,
nilt> I

Table 9.2 1<id0201 t, nile> |
<SRC2, nilt> <Reportingdate, nilt>
<Zacks, nilt> <1-07-92, nilt>

Note that in the conventional relational model, only Table 9 would be produced as a result of

this SQL query. Whereas, in the quality indicator algebra, Tables 9.1, 9.2 are also produced. Table 9

shows that the earnings estimate for IBM is 6.08; and the quality indicator values in Tables 9.1 and 9.2

show that the data is retrieved from the Nexis database on October 7, 1992, which, in turn, is based on

data reported by Zacks Investment Research on January 7, 1992. An experienced user could infer from

these quality indicator values that the estimate is credible, given that Zacks is a reliable source of

earnings estimates.

4.3.2.2. Projection

Projection is a unary operation which selects a vertical subset of a quality relation based on the

set of attributes specified in the Projection operation. The result includes the projected quality relation

and the corresponding quality indicator relations that are associated with the set of attributes

specified in the Projection operation.

Let PJ be the attribute set specified, then the Projection, -IqpJ (qr), is defined as follows:

IH pj(qr)= (t I Vt, E qr, ya E PJ, ((t.a = tl.a) A (t.a =m tl.a))}

Example 2: Get company names and earnings estimates of all Large andMedium companies

A corresponding SQL query is shown as follows:

I

|

SELECT CN,EE
FROM LARGE andMEDIUM

This SQL query can be accomplished through a Projection operation. The result is shown below.

<CN, nile> <EE, EEt>
<IBM, nilt> <6.08, id0101t>
<DEC, nile> <-0.32, id0102t>

<TI, nilt> <2.51, id0103t>

<EEt, nile> <SRC1, SRC1t> <Reportingdate, nil>
<id0101t, nile> <Nexis, id0201t> <10-07-92, nile>
<id0102t, nil> <Nexis, id0202t> <10-07-92, nile>
<id0103t, nile> <Lotus, id0203t> <10-07-92, nile>

<SRC1t, nilt> <SRC2, nile> <Reprting date, nile>
<id0201t, nile> <Zacks, nile> <1-07-92, nile>
<id0202t, nil> <First Boston, nilt> <1-07-92, nile>
<id0203t, nilt> <First Boston, nilt> <1-07-92, nile>

4.3.2.3. Union

In Union, the two operand quality relations must be QI-Compatible. The result includes (1)

tuples from both qr and qs after elimination of duplicates, and (2) the corresponding quality indicator

relations that are associated with the resulting tuples.

qr'J'qs= qru (t I V t2 e qs,3t, Eqr,

V ae QR, ((t.a = t2 .a)A (t.a ="' t2 .a) A -, ((tl.a = t2 .a) A (tl.a =Sa t2 .a))))

In the above expression, "-, (tl.a = t2.a A tl.a =sa t2 .a)" is meant to eliminate duplicates. Tuples

t, and t2 are considered duplicates provided that (1) there is a match between their corresponding

attribute values (i.e., ti.a = t2.a) and (2) these values are QIV-equal with respect to the set of quality

indicators (Sa) specified by the user (i.e., tl.a =Sa t2.a).

Example 3-1: Get company names, CEO names, and earnings estimates of all Large-andMedium and

SmallandMedium companies.

A corresponding extended SQL query is shown as follows:

SELECT LM.CN, LM.CEO, LM.EE
FROM LARGE andMEDIUM LM
UNION
SELECT SM.CN, SM.CEO, SM.EE
FROM SMALL andMEDIUM SM
with QUALITY (LM.EE.SRC1.SRC2= SM.EE.SRC1.SRC2)

This SQL query can be accomplished through a Union operation. The result is shown below.

<CN, nile> <CEO, nile> <EE, EEt>
<IBM, nile> <J Akers, nile> <6.08, id0101o>
<DEC, nilt> <K Olsen, nile> <-0.32, id0102t>

<TI, nilt> <J Junkins, nile> <2.51, id0103t>
<Apple, nilt> <J Sculley, nile> <5.69, id1101o>

<TI, nile> <J Junkins, nile> <2.51, idl13t>

<EEt, nile> <SRC1, SRC1t> <Reporting-date, nilt>
<id0101t, nil> <Nexis, id0201t> <10-07-92, nilt>
<id0102t, nile> <Nexis, id0202t> <10-07-92, nile>
<id0103t, nile> <Lotus, id0203t> <10-07-92, nilt>
<idllOlt, nilt> <Lotus, id1201o> <10-07-92, nile>
<id1103t, nile> <Lotus, id1203e> <10-07-92, nile>

<SRC1t, nile> <SRC2, nilt> <Reporting date, nile>
<id0201t, nilt> <Zacks, nile> <1-07-92, nile>
<id0202t, nilt> <First Boston, nilt> <14-07-92, nile>
<id0203t, nilt> <First Boston, nile> <1-07-92, nile>
<id1201t, nile> <Zacks, nile> <1-07-92, nilt>
<id1203t, nilt> <Zacks, nile> <1-07-92, nile>

Note that there are two tuples corresponding to the company TI in the result because their

quality indicator values are different with respect to SRC2.

Example 3-2: If the quality requirement were (LM.EE.SRC1= SM.EE.SRC1) then these two

tuples would be considered duplicates and only one tuple for TI is retained in the result. The result of

this query is shown below:

<CN, nile> <CEO, nile> <EE, EEt>
<IBM, nile> <J Akers, nile> <6.08, id0101o>
<DEC, nilt> <K Olsen, nile> <-0.32, id0102e>

<TI, nilt> <J Junkins, nile> <2.51, id0103e>
<Apple, nile> <J Sculley, nilt> <5.69, idlOl >

<EEt, nile> <SRC1, SRClt> <Reportingdate, nile>
<id0101t, nile> <Nexis, id0201t> <10-07-92, nile>
<id0102t, nile> <Nexis, id0202t> <10-07-92, nile>
<id0103t, nilt> <Lotus, id0203t> <10-07-92, nile>
<idl1Olt, nile> <Lotus, id1201t> <10-07-92, nilt>

<SRC1t, nilt> <SRC2, nile> <Reporting--date, nile>
<id0201t, nilt> <Zacks, nile> <14-07-92, nile>
<idO202t, nilt> <First Boston, nile> <1-07-92, nile>
<id0203t, nile> <First Boston, nile> <1-07-92, nile>
<id1201t, nile> <Zacks, nilt> <1-07-92, nile>

Note also that unlike the relational union, the quality union operation is not commutative.

This is illustrated in Example 3-3 below.

Example 3-3: Consider the following extended SQL query which switches the order of the union

operation in Example 3-b:

SELECT
FROM
UNION
SELECT
FROM
with QUALITY

SM.CN, SM.CEO, SM.EE
SMALL andMEDIUM SM

LM.CN, LM.CEO, LM.EE
LARGE and MEDIUM LM
(LM.EE.SRC1= SM.EE.SRC1)

The result is shown below.

<CN, nilt> <CEO, nile> <EE, EEt>
<IBM, nilt> <J Akers, nilt> <6.08, idOlOlt>
<DEC, nilt> <K Olsen, nile> <-0.32, id0102t>

<Apple, nilt> <J Sculley, nile> <5.69, idlOlt>
<TI, nile> <J Junkins, nilt> <2.51, id1103t>

<EEt, nilt> <SRC1, SRC1t> <Reporting-date, nile>
<id0101t, nilt> <Nexis, idO2Olt> <10-07-92, nile>
<id0102t, nilt> <Nexis, id0202t> <10-07-92, nilt>
<id1101t, nilt> <Lotus, idl201o> <10-07-92, nilt>
<id1103t, nilt> <Lotus, id1203t> <10-07-92, nilt>

<SRClt, nilt> J <SRC2, nile>)<Reporting-date, nile>
<id0201t, nilt> <Zacks, nile> <1-07-92, nilt>
<id0202t, nilt> <First Boston, nile> <1-07-92, nile>
<id1201t, nilt> <Zacks, nile> <1-07-92, nile>
<id1202t, nile> <Zacks, nile> <1-07-92, nilt>

In the above result the tuple corresponding to TI is taken from SMALL andMEDIUM

companies. On the other hand, in Example 3-2 it is taken from the LARGEandMEDIUM companies.

4.3.2.4. Difference

In Difference, the two operand quality relations must be QI-Compatible. The result of this

operation consists of all tuples from qr which are not equal to tuples in qs. During this equality test the

quality of attributes specified by the user for each attribute value in the tuples t1 and t2 will also be

taken into consideration.

qr -q qs= { t I V ti e qr, 3t 2 E qs,

V ae QR, ((t.a = tl.a)A (t.a =m tl.a) A -, ((ti.a = t2 .a) A (ti.a =sa t2 .a)))}

Example 4: Get all the companies which are classified as only Large-andMedium companies but not

as SmallandMedium companies.

A corresponding SQL query is shown as follows:

SELECT LM.CN, LM.CEO, LM.EE
FROM LARGE andMEDIUM LM
DIFFERENCE
SELECT SM.CN, SM.CEO, SM.EE
FROM SMALL andMEDIUM SM
with QUALITY (LM.EE.SRC1.SRC2 = SM.EE.SRC1.SRC2)

This SQL query can be accomplished through a Difference operation. The result is shown

below.
<CN, nil> <CEO, nil> <EE, EE>
<IBM, nilt> <J Akers, nilt> <6.08, id0101t>
<TI, nile> <J Junkins, nilt> <2.51, id0103t>

<EEt, nil> <SRC1, SRC1> <Reporting date, nile>
<id0101t, nilt> <Nexis, id0201t> <10-07-92, nilt>
<id0103t, nile> <Lotus, id0203t> <10-07-92, nilt>

<SRC1t, nil> <SRCZ nile> <Reporting_date, nilt>
<id0201t, nil> <Zacks, nilt> <1-07-92, nilt>
<id0203t, nilt> <Zacks, nilt> <1-07-92, nile>

Note here that according to the conventional relational algebra, the tuple corresponding to the

company TI must not be included in the result. But in quality indicator algebra the tuple corresponding

to the company TI from the relation Large-andMedium is included in the result because the

corresponding tuple in the relation SmallandMedium has different quality indicators than those of

the relation LargeandMedium. In the following paragraph, an example is provided to demonstrate

the change in the contents of results when quality requirements changes.

If the constraint in the QUALITY part of the query were (LM.EE.SRC1 = SM.EE.SRC1) then the

result is as follows:

<CN, nile> <CEO, nilt> <EE, EE>
<IBM, nile> <J Akers, nilt> <6.08, id0101t>

<EEt, nile> <SRC1, SRC1> <Reporting date, nile>
<id0101t, nil> <Nexis, id0201 > <10-07-92, nil>

<SRC1t, nile> <SRC2, nile> <Reporting date, nile>
<id0201t, nilt> <Zacks, nile> <1-07-92, nil>

4.3.2.5. Cartesian Product

The Cartesian product is also a binary operation. Let QR be of degree r and QS be of degree s.

Let t1 E qr t2 E qs. Let t1 (i) denote the ith attribute of the tuple ti and t2 (i) denote the ith attribute of

the tuple t2 . The tuple t in the quality relation resulting from the Cartesian product of qr and qs will be

of degree r+s. The Cartesian product of qr and qs, denoted as qr X qs, is defined as follows:

qr X qs=(t I V tj e qr, Vt2 E qs,

t(1) = t1(1) A t(1) =m t1(1) A t(2) = t1(2) At(2) =m t1(2) A ... t(r) = t1(r) A t(r) =m t1(r) A

t(r+1) = t2(1) A t(r+1) =' t2(1) A t(r+2) = t2(2) At(r+2) =" t2(2) A ... t(r+s) = t2(s) A t(r+s) =m t2(s)

The result of the Cartesian product between Large.andMedium and SmallandMedium is

shown below.

<LM.CN, nile> <LM.CEO, nil> <LM.EE, EEt> <SM.CN, nilt> <SM.CEO, nile> <SM.EE, EEt>
<IBM, nil> 4 Akers, nilty <6.08,id0101t> <Apple, nil> <J Sculley, nile> <5.69, idl1l1>
<IBM, nile> <J Akers, nilet <6.08,id0101o> <DEC, nile> <K Olsen, nil> <-0.32, id1102o>
<IBM, nile> <J Akers, nil> <6.08,id0101t> <TI, nile> <J Junkins, niley <251, id1103>
<DEC, nile> <K Olsen, nilty <-0.32,id0102t> <Apple, nil> <J Sculley, nile> <5.69, id1101o>
<DEC, nile> <K Olsen, niley <-0.32,id0102t> <DEC, nile> <K Olsen, nile> <-0.32, id1102>
<DEC. nile> <K Olsen, nilt> <-0.32,id0102t> <TI, nilt> <J Junkins, niley <2.51, id1103t>

<TI, nile> <J Junkins, nile> <2.51,id0103t> <Apple, nil> <J Sculley, nile> <5.69, id1101o>
<TI, niley <J Junkins, niley <2.51,id0103> <DEC, nile> <K Olsen, nile> <-0.32, id1102>
<TI, nile> <J Junkins, nilt> <2.51,id0103t> <TI, nilt> <j Junkins, niley <2.51, id1103>

<LM.EEt, nile> <LM.SRC1, SRCIt> <LM.Reporting_date,nile>
<id0101t, nile> <Nexis, d0201o> <10-07-92,nile>
dd0102t, nilt> <Lotus, id0202t> <10-07-92,nilt>
<id0103, nile> <Nexis, id0203t> <10-07-92,nilt>

<LM.SRC1t, nil> <LM.SRC2, nilt> <LM.Reporting date,nile>
<id0201t, nil> <Zacks,nile> <1-07-92,nile>
<id0202t, nile> <First Bostonniley <1-07-92,nilt>
<id0203t, nilty <First Boston,nilt> <1-07-92,nilt>

<5 . Et, nil> <M.S R1, 5 Cle> <SM.Rep rtin ate, nile>

<id1101t, nile> <Lotus, id1201> <10-07-92, nilt>
<id1102t, nil> <Nexis, id1202> <10-07-92, nilt>
<id1103, nily <Lotus, id1203t> <10-07-92, nile>

<SM.SRC1U, nilt> <SM.SRC2, nilty <SM.Reorting_date, nile>
-<id1201, nilt> <Zacks, nile> <1-07-92, nilt>
<id1202t, nil> <First Boston, nile> <1-07-92, nilt>

. <id1203t, niley <Zacks, niley <1-07-92, nile>

The set of quality indicator tables associated with each attribute in the table resulting from

the Cartesian product are retrieved as part of the result.

Other algebraic operators such as Intersection and Join can be derived from these five

orthogonal operators, as does in the relational algebra.

We have presented the attribute-based model including a description of the model structure, a

set of integrity constraints for the model, and a quality indicator algebra. In addition, each of the

algebraic operations are exemplified in the context of the SQL query. The next section discusses some of

the capabilities of this model and future research directions.

5. Discussion and future directions

The attribute-based model can be applied in many different ways and some of them are listed

below:

e The ability of the model to support quality indicators at multiple levels makes it possible to

retain the origin and intermediate data sources. The example in Figure 9 illustrates this.

* A user can filter the data retrieved from a database according to quality requirements. In

Example 1, for instance, only the data furnished by Zacks Investment Research is retrieved as

specified in the clause "with QUALITY EE.SRC1.SRC2='Zacks'."

* Data authenticity and believability can be improved by data inspection and certification. A

quality indicator value could indicate who inspected or certified the data and when it was

inspected. The reputation of the inspector will enhance the believability of the data.

* The quality indicators associated with data can help clarify data semantics, which can be used

to resolve semantic incompatibility among data items received from different sources. This

capability is very useful in an interoperable environment where data in different databases

have different semantics.

* Quality indicators associated with an attribute may facilitate a better interpretation of null

values. For example, if the value retrieved for the spouse field is empty in an employee record,

it can be interpreted (i.e., tagged) in several ways, such as (1) the employee is unmarried, (2)

the spouse name is unknown, or (3) this tuple is inserted into the employee table from the

materialization of a view over a table which does not have spouse field.

e In a data quality control process, when errors are detected, the data administrator can identify

the source of error by examining quality indicators such as data source or collection method.

In this paper, we have investigated how quality indicators may be specified, stored, retrieved,

and processed. Specifically, we have (1) established a step-by-step procedure for data quality

requirements analysis and specification, (2) presented a model for the structure, storage, and processing

of quality relations and quality indicator relations (through the algebra), and (3) touched upon

functionalities related to data quality administration and control.

We are actively pursuing research in the following areas: (1) In order to determine the quality

of derived data (e.g., combining accurate monthly data with less accurate weekly data), we are

investigating mechanisms to determine the quality of derived data based on the quality indicator

values of its components. (2) In order to use this model for existing databases, which do not have

tagging capability, they must be extended with quality schemas instantiated with appropriate

quality indicator values. We are exploring the possibility of making such a transformation cost-

effective. (3) Though we have chosen the relational model to represent the quality schema, an object-

oriented approach appears natural to model data and its quality indicators. Because many of the

quality control mechanisms are procedure oriented and o-o models can handle procedures (i.e.,

methods), we are investigating the pros and cons of the object-oriented approach.

'I

6. References

[1] Ballou, D. P. & Pazer, H. L. (1985). Modeling Data and Process Quality in Multi-input, Multi-
output Information Systems. Management Science, 31(2), pp. 150-162.

[2] Ballou, D. P. & Pazer, H. L. (1987). Cost/Quality Tradeoffs for Control Procedures in Information
Systems. International Journal of Management Science, 15(6), pp. 509-521.

[3] Batini, C., Lenzirini, M., & Navathe, S. (1986). A comparative analysis of methodologies for
database schema integration. ACM Computing Survey, 5(4), pp. 323 - 364.

[4] Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the
ACM, 11(6), pp. 377-387.

[5] Codd, E. F. (1979). Extending the relational database model to capture more meaning. ACM
Transactions on Database Systems, 4(4), pp. 397-434.

[61 Codd, E. F. (1982). Relational database: A practical foundation for productivity, the 1981 ACM
Turing Award Lecture. Communications of the ACM, 2J(2), pp. 109-117.

[7] Date, C. J. (1990). An Introduction to Database Systems (5th ed.). Reading, MA: Addison-Wesley.

[8] Garvin, D. A. (1983). Quality on the line. Harvard Business Review, (September- October), pp. 65-
75.

[91 Garvin, D. A. (1987). Competing on the eight dimensions of quality. Harvard Business Review,
(November-December), pp. 101-109.

[10] Garvin, D. A. (1988). Managing Quality-The Strategic and Competitive Edge (1 ed.). New York:
The Free Press.

[11] Huh, Y. U., et al. (1990). Data Quality. Information and Software Technology, 3(8), pp. 559-565.

[12] Johnson, J. R., Leitch, R. A., & Neter, J. (1981). Characteristics of Errors in Accounts Receivable and
Inventory Audits. Accounting Review, a(April), pp. 270-293.

[13] Juran, J. M. (1979). Quality Control Handbook (3rd ed.). New York: McGraw-Hill Book Co.

[14] Juran, J. M. & Gryna, F. M. (1980). Quality Planning and Analysis (2nd ed.). New York: McGraw
Hill.

[15] Khoshafian, S. N. & Copeland, G. P. (1990). Object Identity. In S. B. Zdonik& D. Maier (Ed.), (pp.
37-46). San Mateo, CA: Morgan Kaufmann.

[16] Klug, A. (1982). Equivalence of relational algebra and relational calculus query languages having
aggregate functions. The Journal of ACM, 2, pp. 699-717.

[17] Laudon, K. C. (1986). Data Quality and Due Process in Large Interorganizational Record Systems.
Communications of the ACM, 22(1), pp. 4-11.

[18] Liepins, G. E. & Uppuluri, V. R. R. (1990). Data Quality Control: Theory and Pragmatics (pp. 360).
New York: Marcel Dekker, Inc.

[19] Liepins, 0. E. (1989). Sound Data Are a Sound Investment. Quality Programs, (September), pp. 61-
63.

[20] Maier, D. (1983). The Theory of Relational Databases (1st ed.). Rockville, MD: Computer Science
Press.

[21] McCarthy, J. L. (1982). Metadata Management for Large Statistical Databases. Mexico City,
Mexico. 1982. pp. 234-243.

[22] McCarthy, J. L. (1984). Scientific Information = Data + Meta-data. U.S. Naval Postgraduate
School, Monterey, CA. 1984. pp.

[23] McCarthy, J. L. (1988). The Automated Data Thesaurus: A New Tool for Scientific Information.
Proceedings of the 11th International Codata Conference, Karlsruhe, Germany. 1988. pp.

[24] Morey, R. C. (1982). Estimating and Improving the Quality of Information in the MIS.
Communications of the ACM, 21(May), pp. 337-342.

[25] Navathe, S., Batini, C., & Ceri, S. (1992). The Entity Relationshiip Approach . New york: Wiley
and Sons.

[26] Rockart, J. F. & Short, J. E. (1989). IT in the 1990s: Managing Organizational Interdependence.
Sloan Management Review, Sloan School of Management, MIT, 3(2), pp. 7-17.

[27] Sciore, E. (1991). Using Annotations to Support Multiple Kinds of Versioning in an Object-Oriented
Database System. ACM Transactions on Database Systems, IA(No. 3, September 1991), pp. 417-438.

[281 Siegel, M. & Madnick, S. E. (1991). A metadata approach to resolving semantic conflicts.
Barcelona, Spain. 1991. pp.

[29] Teorey, T. J. (1990). Database Modeling and Design: The Entity-Relationship Approach . San
Mateo, CA : Morgan Kaufman Publisher.

[30] Wang, R. Y. & Kon, H. B. (1992). Towards Total Data Quality Management (TDQM). In R. Y.
Wang (Ed.), Information Technology in Action: Trends and Perspectives Englewood Cliffs, NJ:
Prentice Hall.

[31] Wang, Y. R. & Guarrascio, L. M. (1991). Dimensions of Data Quality: Beyond Accuracy. (CISL-91-
06) Composite Information Systems Laboratory, Sloan School of Management, Massachusetts
Institute of Technology, Cambridge, MA, 02139 June 1991.

[32] Wang, Y. R. & Madnick, S. E. (1990). A Polygen Model for Heterogeneous Database Systems: The
Source Tagging Perspective. Brisbane, Australia. 1990. pp. 519-538.

[33] Zarkovich. (1966). Quality of Statistical Data . Rome: Food and Agriculture Organization of the
United Nations.

7. Appendix A: Premises about data quality requirements analysis

Below we present premises related to data quality modeling and data quality requirements

analysis. To facilitate further discussion, we define a data quality attribute as a collective term that

refers to both quality parameters and quality indicators as shown in Figure A.l. (This term is referred

to as a quality attribute hereafter.)

Data Data Data
uality Quality Quality

Parameters indicators & Attributes
(subjective) (objective) (collective)

Figure A.1: Relationship among quality attributes, quality parameters, and quality indicators.

7.1. Premises related to data quality modeling

Data quality modeling is an extension of traditional data modeling methodologies. As data
modeling captures many of the structural and semantic issues underlying data, data quality modeling
captures many of the structural and semantic issues underlying data quality. The following four

premises relate to these data quality modeling issues.

(Premise 1.1) (Relatedness between entity and quality attributes): In some cases a quality
attribute can be considered either as an entity attribute (i.e., an application entity's attribute) or as a
quality attribute. For example, the name of a teller who performs a transaction in a banking
application may be an entity attribute if initial application requirements state that the teller's name
be included; alternatively, it may be modeled as a quality attribute.

From a modeling perspective, whether an attribute should be modeled as an entity attribute or

a quality attribute is a judgment call on the part of the design team, and may depend on the initial

application requirements as well as eventual uses of the data, such as the inspection of the data for

distribution to external users, or for integration with other data of different quality. The relevance of
distribution and integration of the information is that often the users of a given system "know" the
quality of the data they use. When the data is exported to their users, however, or combined with
information of different quality, that quality may become unknown.

A guideline to this judgment is to ask what information the attribute provides. If the attribute
provides application information such as a customer name and address, it may be considered an entity
attribute. If, on the other hand, the information relates more to aspects of the data manufacturing

process, such as when, where, and by whom the data was manufactured, then this may be a quality
attribute.

In short, the objective of the data quality requirement analysis is not strictly to develop quality
attributes, but also to ensure that important dimensions of data quality are not overlooked entirely in

requirement analysis.

(Premise 1.2) (Quality attribute non-orthogonality): Different quality attributes need not be
orthogonal to one another. For example, the two quality parameters credibility and timeliness are

related (i.e., not orthogonal), such as for real time data.

(Premise 1.3) (Heterogeneity and hierarchy in the quality of supplied data): Quality of data
may differ across databases, entities, attributes, and instances. Database example: information in a
university database may be of higher quality than data in John Doe's personal database. Entity
example: data about alumni (an entity) may be less reliable than data about students (an entity).
Attribute example: in the student entity, grades may be more accurate than are addresses. Instance
example: data about an international student may be less interpretable than that of a domestic student.

7.2. Premises related to data quality definitions and standards across users

Because human insight is needed for data quality modeling and different people may have
different opinions regarding data quality, different quality definitions and standards may result. We
call this phenomenon "data quality is in the eye of the beholder." The following two premises entail
this phenomenon.

(Premise 2.1) (Users define different quality attributes): Quality parameters and quality
indicators may vary from one user to another. Quality parameter example: for a manager the quality
parameter for a research report may be inexpensive, whereas for a financial trader, the research report
may need to be credible and timely. Quality indicator example: the manager may measure
inexpensiveness in terms of the quality indicator (monetary) cost, whereas the trader may measure
inexpensiveness in terms of opportunity cost of her own time and thus the quality indicator may be
retrieval time.

(Premise 2.2) (Users have different quality standards): Acceptable levels of data quality may
differ from one user to another. For example, an investor following the movement of a stock may
consider a fifteen minute delay for share price to be sufficiently timely, whereas a trader who needs
price quotes in real time may not consider fifteen minutes to be timely enough.

7.3. Premises related to a single user

A single user may have different quality attributes and quality standards for the different
data used. This phenomenon is summarized in Premise 3 below.

(Premise 3) (For a single user; non-uniform data quality attributes and standards): A user may
have different quality attributes and quality standards across databases, entities, attributes, or

instances. Across attributes example: A user may need higher quality information for the phone number
than for the number of employees. Across instances example: A user may need high quality information
for certain companies, but not for others due to the fact that some companies are of particular interest.

