
IWrap: Instant Web Wrapper Generator

Aykut Firat, Denis Peleshchuk, Prakash Rao

Working Paper CISL# 2000-10
June 2000

Composite Information Systems Laboratory (CISL)
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02142

IWrap: Instant Web Wrapper Generator

Aykut Firat', Denis Peleshchuk 2, Prakash Rao2

'MIT Sloan School of Management
Cambridge, MA 02139

aykut@mit.edu

2Computer Science Department
Harvard University

Cambridge, MA 02139
dpeleshc@fas.harvard.edu, prakash.rao@tfn.com

Abstract
In this paper, we describe an automatic Web wrapper
generator that creates specification files, which contain the
schema information and extraction rules for a class of Web
pages. These specification files can then used by a wrapper
engine (e.g. MIT COIN Grenouille) to extract information
from the semi-structured Web sites. We create specification
files through a WYSIWYG GUI with minimal user
interaction. Two different algorithms are developed that map
the user input to extraction rules in terms of Regular
Expressions. We also present example cases used to test the
effectiveness of our two approaches.

Introduction

World Wide Web is becoming the standard environment
for information publishing as the number of data sources on
the Web is growing at a rapid rate. These semi-structured
data sources provide an opportunity to exploit extensive
valuable data in various domains. For example free data
sources such as Edgar, Quicken, Zacks and Hoovers
provide comprehensive financial information about US
companies. These sources, however, are often displayed in
HTML, which is primarily designed for human interaction
through a browser. Because HTML mixes the content and
the presentation format, the task of identifying and
retrieving the content becomes a non-trivial task for a
computer program. Wrapper engines are thus developed by
various researchers that apply different algorithms to
extract the requested content from these data sources.

Wrapper engines usually take as input a specification file
that consists of declarative extraction rules - usually in
terms of Regular Expressions- and schema information. For
people, who are expert in Regular Expressions these files
can be easily created probably in less than fifteen minutes
in most cases. For people with little Regular Expressions
expertise, it could take hours depending on the complexity
of the page. For other people who do not have any Regular
Expressions knowledge, the task is not at all practical and
they have to rely on others. In this paper we describe

IWrap, an automatic wrapper generator that generates
specification files based on high-level user input, which
makes spec-file generation a trivial task. The specification
files produced by IWrap are directly used with the MIT
COIN Group's Grenouille (Bressan 98) wrapper engine
without any modification. Specification files for other
engines using Regular Expressions can also be generated
with little modification in our source code.

In the next section, we first give background information
about the Grenouille wrapper engine and spec-file creation.
Then we provide an operational scenario describing how
IWrap GUI works. After mentioning related work, we
explain the two algorithms we have used to map user inputs
into extraction rules in terms of Regular Expressions. Next
we provide test results based on a collection of Web pages.
Finally we talk about the current limitations and future
plans.

Background

In this study, we are only interested in extraction engines
that mainly use Regular Expressions in their execution plan.
In particular we generate spec files for the Grenouille
wrapper engine. The basic architecture of the Grenouille is
shown in figure 1. Grenouille, aiming to treat Web as a
giant database, provides a Structured Query Language
(SQL) interface to users. Each specification file is in fact a
combination of the schema information and the extraction
rule for a class of Web pages. An example spec file is
shown in figure 2. In this spec file, the export and the
relation tags provide the schema information. The second
HREF tag is the combination of the address and the method
used in the http connection. It is used to locate the Web
page and usually requires a user input like a ticker symbol.
The extraction rule, which is a pattern constructed using
Regular Expressions, is expressed in the content tag. The
wrapper engine uses the spec-files grouped under a
database and registered with the system to extract the
requested information during run time. It can be tested in

http://context.mit.edu/denos/wrapper/interfae.sHTML.

Query Results

interpreter

Specifications Web documents

Figure 1. Grenouille Web Wrapper Architecture
(Adopted from Shah 98)

#HEADER
#RELATION=profile
#HREF=GET http://quicken.elogic.com
#EXPORT=profile.Ticker profile.Name profile.Description
profile.Address profile.Phone #ENDHEADER
#BODY

#PAGE
#HREF=GET

http://www.quicken.com/investments/snapshot/?symbol=
##profile.Ticker##

#CONTENT=Company\s*Name: [All]* "Arial">##pro
file.Name##</TD>.*Address:[A"]*"Arial"><
B>##profile.Address##</TD>.*Telephone:[
A"] *"Arial">##profile.Phone##.*</TD>

#ENDPAGE
#ENDBODY

Figure 2. Example Spec File for Company Profiles

Operational Description
Grenouille is a quite flexible system and people are

usually impressed with its abilities. We have used it
successfully in Personal Investor Wizard, a Java
application that integrates financial information from
various Web sources. Grenouille can also be executed from
Microsoft Excel directly and displays the query results in
cells. In our past demonstrations, the invariant question
has been: We want to use it but what do we need to know?
The troublesome answer included the fact that they had to
either know Regular Expressions or rely on people who
know them.

With IWrap users no longer need to know Regular
Expressions. In addition IWrap will save considerable
amount of time in creating spec files even for the experts.
We admit that there are situations, which IWrap cannot
handle currently but with some more additional work they
will be eliminated.

Although IWrap automatically creates spec files, the
users still need to provide some minimal input. We next
describe how the user interacts with the system. Please
refer to the snaphots of IWrap shown in figure 3 for the
following operational scenario:

After starting IWrap users enter the URL of the page
they want to wrap. The URL in most cases will include
input parameters such as ticker symbols, search texts, etc.
Page name and the input attributes are automatically
inserted into the input table. Input table also contains the
relation attribute whose value is expected from the user.
Another attribute in the input table is method, which
determines the method used in connecting to the page. The
default value is GET, but the user may choose to change it
to POST.

In the output table the user first provides a header value,
which must be unique in the page. In future versions we
will not require this uniqueness property, but currently it
simplifies some of the technical difficulties caused by the
ASCII file location-mapping problem from the HTML
renderer fiat uses gap content text style. Next the user
highlights the text he/she wants to extract and also
provides a name for it. The name can be any word and does
not have to exist in the page. The name will later be used by
the user in issuing an SQL query. We also provide a
source code pane that can be used when the information to
be extracted is hidden in an HTML tag.

IWrap lets users edit the table cells manually, or supply a
highlighted information to a selected cell in addition to
adding entire rows. The user can also remove the unwanted
rows and add new ones very easily.

When the user supplies all the information and clicks on
the auto wrap button, the spec file creation will begin and
system messages will be shown in the messages window. If
the creation is successful the user can immediately start
issuing SQL queries to the wrapper engine.

Fundamentals
new!

Financial
Statements

SEC Filings
Rate &

Discuss
new!

W~here is ... ?

Method GET
Page http:/Nww.qulcken.cominvest...

Name Intl Bus. Machines
Telephone (914) 499-1900
Industry Comps. Hard.

<TD>S&P Industry:/TD>
<TD>

</TD>
<TD>Status:</FNT></TD>
<TD>
Active
</FOT></TD>
</TR>
<TR VALIGN=TOP BGCOLOR-#ffffff>
<TD>Asset Class:</FONTZ></TD>
<TD>

Figure 3. IWrap Snapshots

Relation Gompany
Method GET
Page http://ww.quicken.cominvest... one

'npany Information
Bus. Machines
4)499-1900

Related Work

Although there is substantial work done in the Web
wrapping area, there is little done for automatic spec file
generation. For instance (Azavant and Sahuguet 98)
discuss different approaches to Web wrapping by
classifying them into two groups: one who view a Web
document only as a flow of tokens and completely ignore
the tag-based hierarchy (Grenouille is classified into this
group in their paper) and one who take advantage of the
hierarchical structure implied by the HTML tags (their W4F
engine is classified into this category.) They also describe a
declarative specification language, but there is not any
reported work about whether spec files can be created
automatically with no knowledge of their language.

(Ahish and Knoblock 97) present their work on semi-
automatic wrapper generation, but they concentrate only
on several sources with very fixed structure. Also, their
major goal is not the actual wrapper generation, but finding
structure and possible attributes in a document. In our case
searching for possible attributes, although a challenging
problem, does not add much value because the user is
willing to select the desired attributes on a page.

Spec File Generation

We used two different approaches in generating spec
files, which are explained below.

Gradual Expansion and Database Lookup
Approach

This approach uses two different algorithms to come up
with Regular Expressions that can be used to automatically
extract values. Because they are relatively independent,
they are applied in turn until a solution is found. These two
methods are described below:

Database Lookup
Many Web data sources use common patterns to

represent data. An example of such a pattern is HTML table
when an attribute's value is in the next column after a
header. For example:

<table>

<td>Sales</td> <td>1000</td>

<Itable>

In this case, "Sales" is the header and "1000" is its value
that we want to extract. Typically, this information is
generated in the same way for different companies that
have different values for Sales.

To implement this approach, we collect common patterns
and wrap them into Regular Expressions. We store two sets
of expressions, one for attributes with single value and one
for attributes with multiple values. In both cases, we try to
apply stored Regular Expressions in turn until the right
match is found. OroMatcher, a Perl5 Regular Expression
compatible package for Java, is used for Regular Expression
matching.

Some sample patterns in our database are shown below:

>##Header##(?: <[>]*>)+([^<] *) <

This pattern will match cases when a value is the first
non-tag text after a header. Since HTML tags are not
displayed, this means that the value follows the header
when HTML is rendered.

\s*(.*?)

This pattern matches multiple values that are represented
by the HTML list.

Advantages of this approach can be listed as:

* Produced Regular Expressions can be clearly explained
and thus they are relatively understandable by
humans.

e They are robust, because their reliance on small HTML
details is minimal. For example, in a pattern that relies
on HTML tables, all tags that are inside <td> and </td>
are ignored. Format tags such as font can be changed,
but the pattern will still work.

e Easily extensible by adding new patterns to the
database.

One disadvantage of this method is that it requires the
participation of a human expert in the initial population of
the database. Also if a match cannot be found in the
database, this method will not try anything else and fail.

The flowchart diagram shown in figure 4 demonstrates
the simplified version of the database lookup algorithm.

Sample pages that are processed successfully with this
method are:
e Yahoo company profile page:
ittp://biz.vahoo.con/p/i/ibm.HTML.
Company address, phone, number of employees, etc. are
extracted for any given company.
e Quicken stock quote page:
http://www.quicken.com/i nvestnents/guotes/?symbol=ibm

Last Trade, Change, Day's Range, etc. are extracted for
any given ticker symbol.

Figure 4. Database Lookup Flowchart

Gradual Expansion Algorithm
This method can be used when data in an HTML page is

not represented by any common pattern, but can still be
uniquely identified by the surrounding data items. The
algorithm is slightly different if the attribute has single or
multiple values. [For example: Company name attribute is
single valued, but company news can be multi-valued]

In single value cases, we start with the text immediately
to the left and immediately to the right of the attribute value
and expand it one word (actually we expand until the next
delimiter) at a time until we find a pattern that is unique in
the document. Expansion to the left is done twice as fast as
to the right because unique patterns are more frequently
found to the left according to our experience.

The advantage of this method is that it can find a
solution in practically all cases. There are, however, several
important weaknesses:

e Inflexibility: Excessive reliance on underlying HTML
leads to inflexible patterns that can stop working even
after small changes in HTML.

* Overfitting: Only one sample page in used, and thus a
pattern found can be acceptable only for this specific
page, but not for other similar pages. For example, it
can work for extracting stock quote for IBM, but not
for Microsoft from the same data source.

There is not much that can be done about the first
problem. A possible improvement would be handling at
least most frequently changed items in HTML. For example,
instead of matching a font tag with specific font face and
size, we could match a font tag with any font face or size.

This makes discovered pattern more robust, but on the
other hand it makes it more difficult to find a pattern that
uniquely identifies selected value.

The second problem can be addressed by using more
than one page as input when finding a pattern. For example,
we can use stock quote pages for both IBM and Microsoft
when we want to extract stock quotes. We are in the
process of implementing this feature which will request test
inputs from the user.

Same problems exist for multiple value cases, but the last
problem is not as serious because there are multiple test
cases on the same page.

The algorithm in this case starts by expanding the text to
the immediate left of all selected attribute values. If the text
is different, it is replaced by a Regular Expression like ".{0,
n}"- which means 0 to n occurrences of any symbol- and
expansion continues. If the text is the same for all selected
values, we check whether that pattern can uniquely identify
selected values in the document.

It is clear that this approach will work only when similar
HTML tags precede selected attribute values. Another
restriction is that they have to be followed by the same
HTML tag. These restrictions generally should not cause
problems because multiple values for the same attribute
typically have common surrounding data items.

Figure 5. Gradual Expansion Algorithm

Sample pages for which this approach produced good
results are:

e Quicken company comparison:
http://www.quicken.con/investnients/comnarison/?svmiboI
=IBM&origin=quotes.
Competitors, company names and market capitalization
values are extracted for any given stock ticker.
e Hoovers company information page:
ittp://www.hoovers.com!capsuIes//1 0796.HTML'?ticker.

Top competitors are extracted for any given ticker.

The second page is a good example of how this method
works. Html for top competitors looks like this:

Compaq

It is similar for all of them, but file names (10381.HTML in
this case) are different for different companies. The
algorithm finds the following solution in this case:

"/capsules. [0,18)?>##test. Val:([^<>]*?)##

The current algorithm is somewhat simplistic because
when it finds a difference in expanded text between selected
values, it simply replaces the text that has been extended up
to that time with ". {0,n}". An improvement could be made
to replace only the part that is different with a Regular
Expression. In many cases, a unique pattern could be found
faster if this technique is used. In the example above, a
better pattern would be:

"/capsules/. (0,10)? \.HTML">

The multiple value case suffers from the same problem:
excessive reliance on HTML. Similar solutions as described
above to make patterns more general for the single value
case, also apply to the multiple value case.

As mentioned earlier, another limitation is that the
surrounding data items have to have exactly the same
structure for all values that need to be extracted. For
example, the following HTML from www.mit.edu "Of
Interest" section cannot be properly processed by this
approach (it should be noted, however, that it can be
handled by the database method):

 IEEE
publications
<ii> MIT Party/Events
Listing
 Help Pages

There are three different values here: "IEEE
publications", "MIT Party/Events Listing", and "Help

Page". The structure of the surrounding HTML is similar
for all three of them, but unlike the case with top
competitors above, paths inside href tags have different
directory structure. By simply expanding to the next
delimiter, we fail to find a common pattern. This could be
handled by further abstractions, i.e. considering anything
inside double quotes in href as one token and we are in fact
in the process of implementing this idea.

Token Approach
Solving the problem of automatic wrapper generation for

semi-structured Web pages is a fairly complex and difficult
task. Hence, it warrants an investigation of a number of
possible approaches to finding a good solution. For an
earlier project (Personal Investor Wizard), we had written
approximately 20-30 odd spec files manually, and were very
successful in extracting values for attributes from those
Web pages. A possible question that can be raised is: Are
there any common properties in all these spec files, that we
might somehow be able to incorporate for automatic
wrapper generation?

To answer this question, we conducted some analysis
(or perhaps we should call it manual data mining) on our
previous body of work on spec files. We came up with the
following interesting observations:

1. No pattern in the #CONTENT section of a spec file
ever started with a close-tag, i.e. a tag of the form </...>

2. If a pattern had some special kinds of tags, like a type tag for example, then some processing
needed to happen on the contents of this tag itself.

3. Most patterns (not all though) seem to end with one or
more from a list of popular close-tags, alone or in
sequence. Some of the tags in this list include tags
such as , </TD>, , </TR>, ,
, </P>, </TITLE> etc.

We concluded that we can use these heuristics to come
up with another approach to solving this problem.

Token algorithm
The algorithm we came up with has basically the following
steps:

1. Parse the HTML source into a list of tokens, where a
token could be a tag, non-tag text, or spaces between
tags. For example, if the input HTML looked something
like:

<HTML>foo<TITLE>title</TITLE><BODY>body</BOD
Y> </HTML>

Then the output tokens would be:

<HTML>
foo
<TITLE>
title
<ITITLE>
<BODY>
body
<IBODY>
spaces
</HTML>

2. Apply the heuristics to come up with a candidate
pattern.

3. Generalize the candidate pattern by turning it into a
Regular Expression.

4. Generate the spec file.

HTML Parsing
As of the time this paper was being written, the token

algorithm was not integrated to our GUI, but we tested it by
reading all the desired input from a simple text file. Once the
sample HTML source is read, parsing is done to break it up
into tokens as we described. From an implementation
standpoint, each token is stored as an object that has 2
fields: a String value, and a Boolean to indicate if it's a tag
or not. Then all the token objects are stored in a vector
structure. We also create a separate vector that stores a list
of popular close-tags, as specified earlier.

Pattern Creation
Three of the input parameters that need to be supplied

are:

* attribute Text= the actual text in the HTML source that
represents the particular attribute

* attributeName= the name we want to give this
attribute in our wrapper spec file

* multiValue= (yes/no). To indicate whether the
attribute has multiple values or not.

Given the above information, the pseudo-code is:

* Traverse the vector of token objects until you reach
the attributeText value.

e If multiValue=no, then start the pattern string with
this attributeText, else move to the next token.

* If multiValue=yes, skip space tokens, else concatenate
the spaces as part of the pattern string.

e If multiValue=yes , skip all tokens that are close-tag
types (of the form </.. >), else concatenate these to
the pattern string.

e If multiValue=yes, skip some special tokens that are
most likely associated with the attributeText. Some
examples are
 or . If multiValue=no

however, keep concatenating these to the pattern
string.

e Concatenate all tags after the attributeText until you
reach the first non-tag text token.

e Check if this non-tag text is something like :" or
" " or "=" etc. i.e. check from a list that would
definitely NOT qualify as an attribute value. While
this condition is true, concatenate these to the
pattern string and keep moving to the next token.
Also if the following tokens are tags again, follow the
same procedure.

e Now you have reached a non-tag text token that we
assume is most likely to be the attribute value.
Replace this with the ##...## format as specified by
the Grenouille wrapper engine.

e Then keep reading and concatenating the tokens
that follow the attribute value, until you reach a
token that is in the list ofpopular close-tags.

* As there may be several popular close-tags in
sequence, keep reading and concatenating to the
pattern string, until you reach a token that is NOT a
popular close-tag.

Generalization
Now that we have a candidate pattern string, we are

ready to wrap it as a Regular Expression. Here again we
process the entire candidate pattern string on a token by
token basis. Tokens are processed differently, depending
on whether the multiValue attribute is set to true or not.
Some more complex tokens like need to be
handled separately. We follow all the rules for Regular
Expressions. For example, spaces need to be replaced as \s*
and a literal '?' character needs to be replaced as "\?" etc.
When we are done with all the tokens in the candidate
pattern, we are ready to generate the wrapper specification
file.

Spec File Generation
Based on some of the other input, such as the relation

name, method to be used, provided in the input text file we
can easily generate a specification file, following the rules
for specification files, as specified by the Grenouille
wrapper engine.

One of the advantages to this approach is that because
everything is stored as tokens in a Java vector structure, it
is possible to do some forward or backward lookups for
comparison purposes, when processing some special
tokens. For example, processing a type
token can be done by doing a forward lookup to the next
 token, comparing the two, and replacing
only the parts that are different with a Regular Expression.
This greatly facilitates generating patterns, especially for
cases where one attribute has multiple values.

One of the disadvantages of this approach is that we are
relying primarily on our past body of manually generated

wrapper files, which certainly do not cover all the different
kinds of HTML tags. However, the assumption here is that
these Web sources are all semi -structured. Most of these
semi-structured Web sources have similar presentations,
i.e. rather than using a whole lot of new tags, they all seem
to use the same subset of tags repeatedly. Besides
extending this to include more tags is relatively easy. As we
test with more cases, we simply add handling for any
special tags that we have not yet covered.

We tested this approach on some different Web sources,
and as expected, achieved different results depending on
the structure and simplicity of the Web source in question.
Some sample pages where we had success were:

* http://www.hoovers.com/cgi-
bin/search.cgi?search=symbol&guery=ibm

Competitors were extracted for any ticker.
* http://biz.vahoo.com/research/indgrp/.
Different industry names were extracted for any given
company.
0 http://www.mit.edu.
Items of interest were extracted.
* http://www.odci.gov/cia/publications/factbook/in.HT

ML
Location attribute was extracted.

Some sample pages where we had problems were:

e http://www.quicken.com/investments/quotes/?symbol
=ibm

Had a problem extracting the Last Trade attribute.
* http://biz.yahoo.com/p/i/ibm.HTML.
Had a problem extracting the complete address, from the
address attribute. Only part of the address was extracted.

Some of the problems are due to the fact that the
assumptions we make about the format of the attribute
values v/s what actually exists in some HTML sources do
not match. For example, if the attribute value is split up in
the following form:

2303/8

instead of just being one single piece of text in between
tags, then we run into problems.

Conclusions and Future Work

In this paper we have described two different approaches
to automatic spec file generation through a WYSIWYG user
interface. We are quite happy with the initial test results.
Our results demonstrate that our approach to automatic
wrapper generation can be very useful when used together

with a complete Web wrapper/mediation package. It gives
non-technical users easy access to Web wrapper
technology.

Our methods still have some limitations, but by spending
more time on testing with different Web data sources, we
believe they can be tuned to handle all practical cases.

To make our approach even more user-friendly, we are
planning to integrate it with a wrapper/mediation engine
written in Java. Instead of using the engine provided by
COIN group, we will develop a complete package that can
be installed on any user's desktop easily. That package
should provide all the tools necessary for easy
maintenance of multiple Web data sources. Because we
have the ability to automatically generate wrapper
specification files, we can do away with one of the biggest
maintenance problems by detecting changes in data
sources and regenerating spec files. This process can be
easily fully automated.

Example application areas that can benefit from this
technology are:
e Shopping agents: finding best prices at different Web

stores.
e Financial research applications: integrating financial

information from different Web data sources.
Data extraction can either be done in real time or, in cases

when performance is important, in batch processes that
update conventional relational databases with information
collected from the Web.

We already started working on some of these ideas and
will release a new version of our system in a short time.

References

Ashish, N., Knoblock, C. 1997. Wrapper Generation for
Semi-structured Internet Sources. In International
Workshop on Management of Semistructured Data, 1997.

Azavant F, Sahuguet, A. 1998. W4F: a WysiWyg Web
Wrapper Factory for Minute-Made Wrappers,
Forthcoming.

Bressan, S., 1998. Grenouille Version 1.1, Forthcoming.

Shah , S. A. Z. 1998. Design and Architecture of the
Context Interchange System. Master's Thesis, Dept. of
Electrical Engineering and Corputer Science, MIT.

