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ABSTRACT Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of
fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior
information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of
global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained
analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image
morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses
throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-
domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and
calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated
in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm
increased convergence speed by over two orders of magnitude and achieved significantly better fits.

INTRODUCTION

Biological fluorescent probes are usually characterized by

their wavelength of absorption and emission, which depend

on the energy spacing between the ground state and the first

electronic excited state. Another photophysical property of

those fluorophores is the residence time in the excited state

called fluorescence lifetime (t). For common fluorophores

used in microscopy, t is on the order of a few nanoseconds.

However, this lifetime can be strongly influenced by the

fluorophore’s microenvironment. Fluorescence lifetime im-

aging microscopy (FLIM) has been used in many different

biological systems to discriminate between different histo-

logical structures (Laiho et al., 2004), to probe intracellular

concentrations of cations (Despa et al., 2000; Agronskaia

et al., 2003) or pH (Carlsson et al., 2000; Lin et al., 2003) or

to map protein interactions using FRET (Verveer et al.,

2000b; Becker et al., 2001; Krishnan et al., 2003).

The measurement of fluorescence lifetime is becoming

widespread in microscopy due to the commercial availability

of gated CCD cameras (Dowling et al., 1998), and single-

photon counting cards (Becker et al., 2001; Bascskai et al.,

2003). However, the analysis of microscopic data obtained

by these instruments is not straightforward, especially if one

wants to associate these lifetime measurements with specific

photophysical processes such as fluorescence resonance

energy transfer. Fluorescence decay, F(t), can often be

satisfactorily modeled as a sum of first order kinetic

processes and is mathematically represented as a sum of ex-

ponentials:

FðtÞ ¼ +
i

ai exp
t

ti

� �
; (1)

where ti is the lifetime of component i and ai its intensity

contribution to the fluorescence decay. A major problem in

the analysis of time domain lifetime measurements is that

this sum of exponential is convoluted with the instrument

response G(t). Thus the total intensity measured I(t) is:

IðtÞ ¼
Z t

0

Gðt � TÞ FðTÞ dT: (2)

The fitting of a sum of exponentials convoluted to an

instrument response to experimental data is traditionally

done by iterative convolution (IC). A guess of the co-

efficients ai and ti, is used to calculate F(t), which is con-

voluted with the known instrument response G(t) to obtain

Imodel. Comparison between the model and the data, allows

the coefficients to be refined in the next iteration. This pro-

cess requires the successive calculation of a large number of

convolutions, which is a time-consuming process. This situa-

tion is particularly severe in FLIM where the analysis of each

image requires fitting of over one million decay curves.

Since the invention of fluorescent lifetime measurements,

many researchers have addressed this problem and have

developed different approaches to circumvent the tedious

deconvolution process by using Fourier transforms, Laplace

transforms, or integrated differential equations. The relative

efficiency of these different techniques has been reviewed

Submitted May 5, 2004, and accepted for publication July 16, 2004.

Address reprint requests to Serge Pelet, Massachusetts Institute of Tech-

nology, Mechanical Engineering, 77 Massachusetts Ave., Rm. NE47-220,

Cambridge, MA 02139. Tel.: 617-324-0115; E-mail: serge@mit.edu.

� 2004 by the Biophysical Society

0006-3495/04/10/2807/11 $2.00 doi: 10.1529/biophysj.104.045492

Biophysical Journal Volume 87 October 2004 2807–2817 2807



(McKinnon et al., 1977; O’Connor et al., 1979; Good et al.,

1984). Unfortunately, the typical experimental conditions of

FLIM (i.e., low fluorophore concentration and short pixel

residence time) lead to images with small signal to noise ratio

(SNR) and a limited number of time points for each mea-

sured decay, which makes those alternative techniques not

suitable to our problem.

The most important characteristic of FLIM is the fact that

on the order of a million decay curves must be analyzed for

a single image. Although it is possible to analyze the decay

curve at each pixel independently, the poor SNR of the

typical FLIM data results in significant uncertainty in

quantifying the parameters of the underlying photophysical

model. Previous studies have shown that fitting accuracy can

be significantly improved by using a priori information.

Global analysis makes use of prior information, such as the

spatial invariance of the lifetime of each fluorescent specie in

the image, to significantly reduce the degree of freedom in

the fitting algorithm resulting in a better measure of the

relevant parameters. In systems with two exponential decays,

it has been shown for frequency domain imaging that a global

fitting, assuming spatially invariant lifetimes, can accurately

model parameters whereas pixel-by-pixel analysis can only

extract a single average lifetime (Verveer et al., 2000a;

Verveer and Bastiaens, 2003).

Although global analysis is a powerful approach, the

coupled nature of the analysis routine presents a major

challenge. Specifically, global analysis requires simulta-

neous minimization of over one million decay curves with at

least the same number of free parameters. The x-square

surface of this large scale minimization problem is plagued

by the presence of many local minima. These local minima

significantly hinder the algorithm to locate the true minimum

and greatly increase the convergence time.

In this article, we will present a fast global fitting algorithm

using iterative convolution to extract the two lifetime

components from simulated and measured FLIM images.

We further realize that fluorophore distribution and their

biochemical environment are in general correlated with the

morphology of cells and tissues.We develop a global analysis

procedure where the initial guesses for the global fitting

parameters are informed by the image morphology. This

global fitting technique is compared to other fitting algorithms

to show that it delivers the best analysis of the data in terms of

fastest convergence and minimal x-square value.

METHODS

Synthetic images

To test the different fitting algorithms, two types of synthetic data sets were

generated. These images were constructed to resemble real time correlated

single-photon counting (TCSPC) data but with well-defined image

characteristics. In the first type of synthetic images, the decay curve in

each pixel is a double exponential of 2 and 4 ns decay convoluted with

a Gaussian instrument response of 0.25 ns with Poisson noise added to the

theoretical intensity to simulate the photon counting process. The first image

shown in Fig. 1 corresponds to a 64 3 64 pixels image where the intensity

ratio of one exponential decay to the other varies linearly from one pixel to

the other across the image. The total intensity in each pixel is allowed to vary;

images with an average total photon count of 103 or 104 photons per pixel are

examined. The second type of synthetic image represents a simulated cell

image (Fig. 3) where different regions of the image have a given ratio (with

5% Gaussian noise) between the two exponential decays at 2 and 4 ns. All

regions except the background have the same initial intensity.

FLIM images

The FLIM images were obtained in custom-built two-photon microscope as

previously published but modified for lifetime imaging (So et al., 2001).

This two-photon microscope is based on a modified inverted microscope

(Axiovert 110, Zeiss, Göttingen, Germany) using the pulse train of

a femtosecond laser (Mira, Coherent, Santa Clara, CA) to excite a subfemto-

liter volume of the sample at the focal point of a 403 objective (Fluar,

Zeiss). The emitted light is collected by the same objective, spectrally

filtered to select the detection wavelength range and measured by a photon

counting photomultiplier tube (R7400P, Hamamatsu, Bridgewater, NJ). The

signal from the photomultiplier tube is sent to a TCSPC card (SPC-730,

Becker-Hickl, Berlin, Germany) housed in the central computer that also

controls the scanning of the sample. The TCSPC module generates

a histogram of the time of arrival of the photons for each pixel.

Ex vivo human skin was examined in this study. The specimen was

stored at �3�C before use. A 1 cm 3 1 cm specimen was sandwiched

between a cover slip and a damp sponge to maintain its moisture. The dermis

was surgically exposed and was placed closest to the cover slip. The

femtosecond laser was tuned at 780 nm and the emitted light was selected by

a short-pass Schott BG-39 filter. The instrument response was extracted

from second harmonic generation (SHG) signal emitted by the sample.

Fibroblast cells (NIH 3T3) were cultured in fetal calf serum, 105 cells

were plated in a chambered cover-glass system (4.2 cm2 surface area, Lab-

Tek, Nagle Nunc International, Naperville, IL) and incubated overnight

before the staining procedure. The culture medium was replaced by 1 ml

phosphate-buffered saline (PBS) buffer and 5 ml calcein AM (C3100,

Molecular Probes, Eugene, OR) 50 mM in DMSO for ten minutes. The

solution was rinsed and replaced by 1 ml PBS with 2 ml of Hoechst 33342

(H-3570, Molecular Probes) for ten more minutes. The staining solution was

rinsed away and replaced by PBS buffer. The cells were imaged in the two-

photon microscope with the laser tuned at 780 nm. Contribution of scattered

light and autofluorescence was minimized by filtering the emission with

a 650 nm short pass filter and a BG-39 filter (Chroma, Brattleboro, VT). The

instrument response was obtained by convoluting a Gaussian with a 1.35 ns

single exponential decay to fit the fluorescence decay of POPOP in

methanol. The full width at half maximum (FWHM) is 0.26 ns.

Global fitting

The global fitting model describes the intensity Imodel in each pixel i for the

whole image as a function of one set of coefficient ci that needs to be

optimized:

I
model

i ðtÞ ¼
Z t

0

Gðt � TÞ3 c2i11 c2i12 exp �T

c1

� ��

1 ð1� c2i12Þ exp �T

c2

� ��
dT: (3)

This is a two-exponential decay model assuming two independent

fluorophore species with two lifetimes corresponding to the coefficients c1
and c2. The initial intensity, c2i11, and the intensity ratio of the two lifetime

components, c2i12, at each pixel, i, are allowed to vary spatially. Note that

c2i12 is set to vary only between 0 and 1 to prevent any negative con-

2808 Pelet et al.

Biophysical Journal 87(4) 2807–2817



tributions from the two exponentials. For a 2563 256 pixel image with;50

time points per pixels, the global fitting requires the simultaneous

optimization of 6.5 104 coefficients with 3.3 106 experimental data points.

Using a least-square estimate x2 as merit function, the minimization

algorithm will optimize the value of all the ci coefficients.

x
2 ¼ +

i

+
t

ðImodel

i ðtÞ � I
data

i ðtÞÞ2

I
data

i

 !
: (4)

The global fitting is realized on a desktop computer (Dell workstation

PWS650 with two Intel Xeo 2.4 Ghz processors and 1 GB of RAM, Austin,

TX) in MATLAB (The MathWorks, Natick, MA) using the optimization

function fmincon based on a reflective Newton method (MathWorks). To

reach convergence with this large data set, this function requires the

calculation of the least-square (x2), its gradient (@x2/@ci) and the Hessian

(@2x2/@ci@cj) at every step in the iteration. The convergence criterion

corresponds to x2 changes of ,10�13. Before the fitting, an intensity

discrimination is performed to remove all background pixels that don’t have

enough counts to contain valuable information.

Two other fitting algorithms using the same optimization function

fmincon have also been implemented. The first one is a time invariant fit

(Verveer et al., 2000a) where the two time constants t1 and t2 are extracted

from a decay curve calculated by the sum of all pixels and are kept as

constants to fit the whole image. The model fluorescence decay for each

pixel i is then described by the following equation:

I
model

i ðtÞ ¼
Z t

0

Gðt � TÞ3 c2i�1 c2i exp �T

t1

� ��

1 ð1� c2iÞ exp �T

t2

� ��
dT: (5)

The second fitting technique is based on integrated differential equation

(IDE) (Apanasovich and Novikov, 1990, 1996) also called phase plane

method. It provides a linear relationship between integrated forms of Idata(t)

and G(t):

c0 I
data ðtÞ1 +

n

j¼1

cj fjðtÞ ¼ +
n

j¼1

rj gðtÞ; (6)

where fjðtÞ ¼
R t
0
dt1

R t1
0
dt2 . . .

R tj�1

0
Idata ðxÞ dx,

gjðtÞ ¼
Z t

0

dt1

Z t1

0

dt2 . . .

Z tj�1

0

GðxÞ dx;

and n is the number of lifetimes that one wants to extract from the image

(two in this case). The cj and rj which are the coefficients optimized during

the fit are nonlinear functions of the lifetime ti and intensities ai
(Apanasovich and Novikov, 1990). As the cj coefficients depend only on

ti, it is fairly easy to extend this deconvolution method to global analysis

(Apanasovich and Novikov, 1996).

RESULTS

Synthetic images

Fig. 1 shows the test image used to compare the efficiency of

IDE and time invariant fitting methods to global fitting. The

reference image shown on the left displays the true ratio

coefficients c2i12 and can be compared with the images

obtained from the fit. When the average number of count is

sufficiently high (104), all three methods are relatively

FIGURE 1 Comparison of the ability of lifetime invariant fit, integrated differential equation and iterative convolution global fits to retrieve the two lifetimes

and their ratio hidden in the simulated FLIM image. The lower left image shows five typical decay curves extracted from this image.
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comparable in terms of image and time constant retrieval.

One thousand counts per pixel is often considered as the

lower limit of counts needed to be able to extract two

lifetimes in a fluorescence decay (Gratton et al., 2003). As

can be seen in Fig. 1, there is a great variability in intensity

between different pixels, which explain the large noise in the

c2i12 coefficients image. The IDE method clearly underper-

forms the two other techniques but is also the fastest to reach

convergence. Time invariant and IC global fitting both give

relatively similar images but the time constants are slightly

more accurate with the latter. The comparison of the ratio

coefficient c2i12 obtained from the global fit or the time

invariant fit with the true ratio hidden in the image is shown

in Fig. 2. The effect of the intensity is clearly visible on the

accuracy of the fit when comparing panel A and B of the

image. A histogram of the deviation of the fitted coefficients

from the expected value (cfit � cexpected) is shown for these

two situations. The two different optimization methods

provide almost identical deviations in the two situations.

The main drawback of a global fitting strategy is the time

needed to reach convergence. For this small image this

process is almost ten times slower than the time invariant

method. And this difference will be exacerbated when trying

to fit larger images. However, this situation can be improved

by providing an educated guess. This guess can be more or

less elaborate and consist of only a few averaged parameters,

such as the two lifetimes, or a complete set of coefficients

given by a fast converging method.

Other types of method can make use of the image

morphology. That is the case, for instance, of the division

method, which is based on the fact that neighboring pixels in

the image tend to have similar fluorescent decays. Starting

with an averaged image made of only sixteen pixels and

dividing them further and further until the final pixel size is

reached, one seed each step of the optimization with aver-

aged coefficients, which are very close to the optimized value

if the region averaged is uniform.

The other method that is based on the image morphology

is the segmentation technique. In that case one stipulates that

the fluorescence decay rates are correlated with the

morphological structures in the image. The distinct morpho-

logical structures can be identified by image segmentation

based on pixel intensity, lifetime obtained based on fast,

local pixel-based estimation, or even image texture. In Fig. 3,

we choose to use intensity-based segmentation. By selecting

pixels of similar intensity, one should select mostly pixels,

which have similar decay curves. Using this technique on the

image shown in Fig. 3 A, one can recognize six different

intensity levels, which are selected manually. The algorithm

then adds up all pixels with similar intensities and a global fit

is performed on this very limited set of decay curves (shown

in Panel B). The coefficients obtained are then used as initial

guess for the final global fitting step. Panel C of this figure

shows the map of the ratio of the two lifetimes obtained after

the initial fit and can be compared with the true solution

Panel F and the result of the global fit Panel E. Panel D
displays one typical decay and its fit extracted from one pixel

in each region of the image.

To compare the efficiency of the segmentation technique,

an intensity-independent division of the image is realized

using the sum of the pixels in each quadrant of the image to

feed the result to the global optimization algorithm. This

strategy will be referred to as quadrant average. Table 1 gives

an overview of the different fitting strategies used in this

article.

As can be seen in Fig. 4, the evolution of the least-square

estimate is greatly influenced by the initial guess of the

global fit. This figure clearly demonstrates the advantage of

having a preoptimization strategy. Starting from a completely

random set of coefficients, the evolution of the algorithm is

extremely slow and after more than one hour, the x2 is still

far from the optimum solution depicted by the horizontal

dashed line. Comparatively, effective educated guesses, such

as the segmentation and the quadrant average methods, lead

to convergence in five minutes, which is also the time needed

for the time invariant method to produce its result.

The time constants retrieved by the global fit with the

segmentation (4.09 and 2.15 ns) or the time invariant fit (3.96

and 1.92 ns) are close to the expected lifetime of 4 and 2 ns.

Fig. 5 compares the retrieval of the coefficients determining

the ratio between the two lifetimes for these two techniques.

FIGURE 2 (A) and (B) Comparison of the ratio coefficients c2i12 obtained

from the iterative convolution fit (s) and from the time invariant fit (D) with

the true values of these coefficients for an average photon count number of

103 (A) or 104 (B). (C and D) Histogram of the deviation of the coefficients

from the true value for IC fit (solid line) and time invariant fit (dotted line)
for an average photon count number of 103 (C) or 104 (D).
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Panels A and B represent a plot of the expected ratio

coefficients versus the fitted ones. The deviations from the

expected value (cfit � cexpected) for both fits were well fitted

with Gaussian curves shown in panel C. The mean error in

estimating the ratio parameter can be seen from the centers of

the distribution. The centers of both fitting methods are

skewed from zero. The global fit has a tendency to provide

larger ratio with a mean deviation at 0.1 from the expected

value and the uncertainty on the ratio value given by the half

of the FWHM is 6 0.1. The time invariant fit has a mean

deviation at �0.5 from the expected ratio but the FWHM is

0.3. Deviations from the other global IC fits using different

optimization strategies that reach convergence are identical

to the one obtained for the segmentation.

FIGURE 3 Schematic of the segmentation technique. (A) Intensity image of the simulated cell showing the six different intensity regions selected. (B)

Summed lifetime information from the six regions selected. (C) Map of the ratio coefficient after the initial fitting procedure. (D) One pixel decay and its fits

from the five high intensity regions in the image. (E) Map of the ration coefficients after the global fit. (F) True map of the ratio coefficients.

TABLE 1 Fitting strategies

Fit type Deconvolution Initial guess Description

Global fit

Iterative

convolution (IC)

Full guess All coefficients are randomly chosen in a physically meaningful range.

Image average Time constants obtained from a fit of the decay curve generated by the sum of

all the pixels in the image.

Quadrant average Time constants and average coefficients obtained from four decay curves

obtained from the sum of all pixels in each quadrant of the image.

Division Time constant and coefficients obtained by dividing the image in 16 squares.

After convergence, each square is then divided in four until full resolution

of the image is achieved.

Segmentation Manual selection of different regions in the image to add all similar pixels and

obtain a limited number of decay curves from which the time constants and

coefficients are obtained.

IDE guess Use the IDE deconvolution algorithm to obtain time constants and coefficients

for all the pixels in the image

IDE Division Fast deconvolution algorithm based on the integration of the response and

decay functions.

Restrained Fit IC Image average The two time constants obtained from a decay curve generated by the sum of all

pixels are kept constant whereas the fit optimizes the intensity and ratio

coefficients in each pixel.

Characterization of every optimization schemes in terms of fit types, deconvolution algorithms, and initial guess generations.
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TCSPC data

The first experimental data set used to test the efficiency of

the segmentation-based global fit is a FLIM image from the

dermis of the skin. The dermis is constituted from a collagen

matrix and with elastin fibers. It is well-known that the

collagen generates a strong SHG signal (Georgiou et al.,

2000), whereas elastin is one of the many endogenous

fluorophores found in the skin (Zeng et al., 1995; König and

Riemann, 2003). Fig. 6 B shows the lifetime of low and high

autofluorescence regions in the dermis. One clearly sees the

difference between the longer duration of the fluorescence

emission from elastin compared to the instantaneous

response from SHG due to collagen. Due to this large

difference in decay time, a map of the lifetime generated

using the rapid lifetime determination method (Ballew and

Demas, 1989) shows more contrast than a simple intensity

image, thus a lifetime-based segmentation, instead of

intensity-based segmentation, was used to generate the

initial guess for the fit.

Panel A of Fig. 6 shows the result from the global fit and is

a map of the ratio of SHG versus autofluorescence intensity

FIGURE 4 Evolution of the least-square estimate x2 during the global fit

(including the prefitting time), using different technique to generate the

initial guess: full guess (=), image average ()), division (D), segmentation

(s), and quadrant average (h). The dashed line is the optimum x2 calculated

using the true coefficients used to generate the image.

FIGURE 5 Comparison of the ratio coefficients c2i12 obtained from the

iterative convolution fit (A) and from the time invariant fit (B). (C) Gaussian

fit of the histogram of the difference between the true coefficients and the

ones obtained the iterative convolution (solid line) and time invariant (dotted

line) optimizations.

FIGURE 6 (A) Map of the ratio of SHG versus autofluorescence obtained

from the global fit. (B) Sample of decay pixels and their fits from high (s)

and low (h) fluorescence regions. (C) Evolution of the least-square estimate

x2 during the optimization using different strategies: full guess (=), image

average ()), division (D), segmentation (s), and quadrant average (h).

2812 Pelet et al.
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and allows to highlight the distribution of the elastin fibers in

the image. Panel B of this figure shows the typical

instantaneous response of the collagen matrix and the

emission from the elastin fiber pixels with a long decay

constant due to the fluorescence of this compound. The two

time constants extracted from the image are 45 ps, which is

much shorter than the instrument response of 350 ps, and

1.84 ns, which matches well with the 2.3 ns expected from

elastin (Maarek et al., 2000).

Similarly to what has been done with the synthetic image

of the cell, a comparison of the efficiency of the different

fitting strategies is shown in Fig. 6 C. Except for the random
initial guess and the image average, the other fitting

techniques seem relatively equivalent and yield very

comparable time constants and images. The convergence

of the fit is obtained in 12 min for the segmentation and

quadrant average and 15 min for the division technique. The

full guess and the image average do not lead to full

convergence in ,3h, but the time constants are close to the

expected values, as seen on Table 1. This is the opposite of

the IDE guess and time invariant techniques which both

converge quickly but fail to recover the nanosecond time

constant for the fluorescence contribution to the image.

Fig. 7 displays the results obtained with the cells stained

with calcein and Hoechst. Calcein is typically used as a live

cell label and is distributed throughout the cell. Hoechst is

a nucleic label and is localized in the nucleus. In panel A of

this figure, the intensity distribution of the fluorescence is

shown. The nucleic region of the cell is approximately twice

as fluorescent as the rest of the cytoplasm due to the additive

emission from the two dyes in this region. Very low photon

count is measured in the background of the image, which is

discarded for the global fitting optimization. Panel B shows

typical decays recorded in the cytoplasmic and nucleic

regions of the cell. The solid lines represent the result of the

fit for these decay curves. In the inset, these fitting curves are

normalized to allow for a better comparison of the lifetime

and demonstrate the small difference between the emission

decays arising from these two different regions of the cells.

The two time constants extracted from the image using the

global fit based on an intensity segmentation method are 3.67

ns and 2.37 ns. These two time constants are in good

agreement with the values found in the literature for the

lifetime of these dyes in water: 3.85 for calcein (Periasamy

et al., 1991) and 2.3 for Hoechst (Sailer et al., 1997). The

distribution of the ratio of the shortest lifetimes throughout

the image is shown in the panel C of Fig. 7. A histogram of

the distribution of the ratio coefficient c2i12 in the nucleic

region of the image (see panel D) is well fitted by a Gaussian
centered at 0.6 with 0.28 FWHM. If one excludes the large

peak at zero, the histogram of the ratio in the cytoplasmic

domain of the image can be represented by a Gaussian

distribution centered at 0.3 with a FWHM of 0.5.

Fig. 8 compares the speed of convergence for the different

optimization methods already tested above. In this image,

where the two lifetimes are very close, the best method to

reach the optimum is clearly the segmentation technique.

The only other method to reach convergence is the quadrant

average, but the time constants do not correspond to the

lifetimes of the dyes. On the opposite, the division and image

average strategies provide meaningful time constants but do

not reach convergence in ,2 h. The time invariant delivers

meaningless information because it is not able to differen-

tiate between the two different decays.

DISCUSSION

The performance of the time invariant fit and the global

fitting are similar when applied to simulated images.

However, with both real TCSPC images, the time invariant

fit fails to provide the correct time constants and validates the

use of the global fitting. The simultaneous optimization of

the lifetime and the intensity in each pixel is a very powerful

technique to extract the lifetime information especially from

very noisy data. There are mainly two disadvantages to this

technique. The first one is that it requires the simultaneous

fitting of very large data sets. Fortunately, the large-scale

algorithms, which are implemented in many commercial

software such as MATLAB, prove to be very capable of

handling the many parameters to optimize.

FIGURE 7 (A) Intensity map of the fluorescence emitted by cells stained with calcein AM and Hoechst 33342. (B) Two typical lifetime measured from both

the cytoplasmic (h) and nucleic (s) regions of the cells. The solid lines represent the fit of these decays. The inset shows these same fits normalized. (C) Map

of the proportion of 2.4 ns decay versus 3.7 ns decay in each pixel of the image. (D) Histogram of the lifetime ratio for the cytoplasmic (solid line) and nucleic

(dotted line) regions.
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The second problem is the time needed to reach

convergence that can really be prohibitive. Unfortunately,

alternative deconvolution methods are not applicable due to

the high noise of the data. The results obtained with IDE

optimization are acceptable with high photon counts per

pixels, but become very unreliable at lower counts found in

real TCSPC data. Thus the only appropriate deconvolution

method that can be used is the iterative convolution. As

mentioned above, for each iterative step, not only the Imodel

has to be calculated, but also the gradient and the Hessian

matrices. These three matrices all require the convolution of

the theoretical exponential decay or its derivatives with the

instrument response, which leads to a tremendous number of

convolutions to be calculated at each step. Due to the limited

number of time points per pixel acquired in a FLIM image,

this convolution process is not a too large burden.

Enhancement of the iterative step calculation was realized

by profiling of the code, but it is not sufficient to obtain a fast

converging algorithm. Only a hundred iterations require

close to an hour of calculation. Thus, the total number of IC

calculated on whole image has to be decreased and replaced

by less time-consuming iteration with fewer pixels.

The results summarized in Table 2 clearly demonstrate the

efficiency of the segmentation technique for all the different

images tested. In comparing the different strategies used to

reach an optimal guess for the optimization, one can

understand why this technique is so efficient. Using a single

decay curve to extract t1 and t2 leads to too much ambiguity

in the time constants as can be seen with the image average

or time invariant techniques and using a few number of

decays allows this uncertainty to be resolved and to obtain

the correct time constants quickly. The two optimization

schemes (i.e., the segmentation and the quadrant average)

that make use of this proved to be the most efficient ones.

The former has some advantages over the latter. First, the

selection of the different regions based on intensity or

lifetime allows an initial set of decay curves to be obtained.

These curves are representative of the various regions of the

image and thus of the different types of decays observed. As

each decay curve is considered equal in this first optimization

step, it allows the weight of certain regions of the image to

increase even if they are representative of only a small

number of pixels. This is clearly not the case for the quadrant

average, were the difference in decay curves is based only on

asymmetries in the image but the four regions represent the

same number of pixels. The demonstration of this is given by

the fit of the doubly stained cells, where the difference in

lifetime is minimal and proper choice of the set of decay

curve helps to reach a meaningful optimum quickly. The

second advantage is that the intensity coefficients obtained

by the segmentation guess can be used to generate an

educated guess, which closely resembles the final image.

Since the segmentation and the quadrant average require

almost the same time to reach convergence, this feature does

not seem to lead to a major advantage in the synthetic cell

image analysis and the dermis TCSPC fitting. The

explanation may be that the optimization of the individual

pixel parameter is done quickly once the correct time con-

stants are obtained because they are independent of each other

as calculated in the Hessian matrix.

Analysis of dermis data by lifetime measurement delivers

a way to separate efficiently the contribution of the

autofluorescence of the tissue and the SHG from the

collagen. The corroboration of the lifetime data and

spectrally resolved measurements proves unambiguously

the presence of elastin fibers within the collagen matrix in the

dermis (Laiho et al., 2004). We see that global fitting of this

image is done easily with all kind of different optimization

path due to the large difference in the two lifetimes contained

FIGURE 8 Evolution of the least-square estimate x2 during the

optimization using different strategies: full guess (=), image average (�),
division (D), segmentation (s), and quadrant average (h).

TABLE 2 Summary of optimizations results

Synthetic

image Dermis

Calcein/

Hoechst cells

Expected lifetimes 4.00 2.00 ns 2.30 0.0 ns 3.85 2.35 ns

Segmentation
5 2.15 2 0.063 3.67 2.37

40 (5 min) 16 (12 min) 217 (23 min)

Full guess
3.49 3.23 1.78 0.043 3.02 2.89

500 (1 h)* 300 (3 h)* 1000 (1 h 42)*

Image average
5 2.17 1.39 0.065 3.56 2.37

79 (11 min) 300 (4 h)* 1000 (1 h 45)*

Quadrant average
4.10 2.15 2 0.052 15.1 2.83

41 (5 min) 18 (12 min) 451 (47 min)

Division
5 1.85 1.84 0.027 4 2.40

500 (1 h)* 27 (15 min.) 1000 (1 h 51)*

Time invariant
3.96 1.92 0.22 0.17 3.07 3.07

44 (5 min) 44 (8 min) 25 (3 min)

IDE guess
3.83 2.23 ns 7.3e12 0.34

500 (1 h 12)* 36 (30 min)

Summary of the time constants obtained for the optimizations using

different strategies to generate the initial guess. The number of iterations to

reach convergence is given below with the average time needed for the total

optimization.

*Fits were stopped before reaching full convergence.
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in the image. The equivalence of the different optimization

approaches is also a result from the relatively uniform nature

of this image and does not readily segmented into few

discrete regions.

The advantage of the segmentation technique becomes

clearly evident when the two lifetimes are much closer and

the image can be segmented into few discrete regions as is

the case with the image of the cell stained with calcein and

Hoechst. Interestingly, the optimized guess generated by the

fit on the segmentated parts yields a higher least-square

estimate than all the other educated guesses generated by

different techniques, and also higher than some completely

random guesses of coefficients. This indicates that the

optimization hypersurface is relatively flat, which is un-

derstandable due to the closeness of the two time constants.

Trying to minimize x2 from any point on the hypersurface

does not always lead to the global minimum and this

emphasizes the need for a good starting point for the

optimization as can be given by the segmentation method.

The time constants obtained from the optimization match

well with the values found in the literature for calcein and

Hoechst. In the nucleic region, the contribution of the two

dyes to the fluorescence signal estimated from cells stained

with a single marker is in good agreement with the ratio

coefficients of 60% retrieved by the global fit. The value of

the FWHM of 0.28 is comparable to the 0.2 obtained for the

synthetic image at similar intensity levels. However, the ratio

coefficients obtained for the cytoplasmic regions of the cells

are surprisingly high. One would expect to measure only

fluorescence from the calcein in this part of the cell and thus

obtain ratio close to zero for the contribution from the fast

lifetime. However, when looking at cells stained only with

Hoechst, one can see a small emission coming from the

cytoplasmic region. This signal, which varies strongly

throughout the cytoplasm, could account for a ratio from

zero up to 30% at most, when comparing with the intensity

of cells stained only with calcein. As it has already been

observed in Fig. 5, at low values of the ratio coefficients and

comparable photon count levels, the global fit has a tendency

to provide larger coefficients than expected.

One has to concede that the large noise in the TCSPC

traces cannot allow for a perfect recovery of these two

contributions especially in regions of lower photon count

rate like the cytoplasm. Multiple exponential fits on noisy

data have a tendency to overfit the data (i.e., a double

exponential would produce a lower x2 even for a single

exponential decay). This might become an even bigger

problem if one wants to apply this algorithm to retrieve

a larger number of time constants.

The quantification of the ratio of the two lifetimes in

a FLIM is linked to a subject that has attracted a lot of

attention, which is the possibility to use fluorescence lifetime

imaging to obtain quantitative FRET maps of the distribu-

tions of protein interactions inside a cell (Verveer et al.,

2000b; Krishnan et al., 2003). In this kind of study, one

expects to measure two different lifetimes produced by in-

teracting and noninteracting proteins. The noninteracting

labeled proteins exhibit a natural lifetime of the dye, whereas

the interacting proteins will exhibit a shorter lifetime due to

the quenching of the emission by energy transfer. Assuming

that there is a given geometry of interaction between the

proteins, a constant FRET lifetime should be measured.

The ratio of these two lifetimes throughout the cells gives the

ratio of interactions between the studied proteins. Thus

the global fitting algorithm developed here will be ideal to

analyze this kind of data. The results obtained with dual cell

labeling clearly show the validity of the technique but also

stresses the need for high FRET efficiencies (i.e., large

separation in lifetime) and high photon counts per pixels to

decrease the uncertainty in the measurement.

CONCLUSION

Global fitting algorithms have been shown to work for time

domain lifetime microscope images. Due to the large number

of coefficients that need to be optimized simultaneously,

generating an educated guess as starting point for global

optimization can reduce tremendously the time needed for

convergence. Using simulated data as well as experimental

TCSPC images, it has been shown that segmentation of the

image based either on intensity or lifetime provides the best

way to reach the optimum in a timely fashion for all our data

sets.

Images of the dermis, where collagen and elastin

contribute to the emitted signal due to SHG and fluorescence

respectively were analyzed with the global fitting algorithm.

Differentiation between the two components based on

lifetime is easy due to the large difference in emission decay

time and yields a map of the elastin fibers embedded in the

collagen matrix. Most of the guess generating strategies

converged with the segmentation method reaching conver-

gence the fastest.

Staining of the cell by calcein and Hoechst resulted in an

image containing two close lifetimes that were harder to

dissociate. Again, the segmentation technique proved to be

the most adequate because it generated an educated guess

that was very close to the final optimum and thus required

only a limited time to converge. The repartition of the two

dyes in the final image corresponds with the expected one

and the time constants retrieved are in good agreement with

literature values. This proves that this algorithm is able to

discriminate between different structures in biological

specimen based on their emission lifetime, and that it will

be applicable to FRET-FLIM measurements.

APPENDIX

The FLIM images data can be represented by a two dimensional matrix

where each row contains the temporal evolution of the fluorescence at a given

pixel. To obtain the least-square value, one has to calculate a model matrix
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from a vector c of fitting coefficients and along a time axis t. The

fluorescence decay is modeled by a double exponential decay:

for i ¼ 1 to NP

for j ¼ 1 to NT

Decayði; jÞ ¼ cð2i1 1Þðcð2i1 2Þ expð�cð1Þ tðjÞÞ
1 ð1� cð2i1 2Þ expð�cð2Þ tðjÞÞÞ; (A1)

where NP is the number of pixels and NT the number of time points. The

Model matrix is then equal to the convolution (*) between the Decay matrix

and a Gaussian impulse response represented by a vector G:

for i ¼ 1 to NP

for j ¼ 1 to NT

Modelði; jÞ ¼ G � Decayði; jÞ (A2)

The least-square value estimates the difference between the model and the

data:

x
2 ¼ +

NP

i

+
NT

j

ðModelði; jÞ � Dataði; jÞÞ2

Dataði; jÞ (A3)

This value is the merit function used by the optimization algorithm

implemented in MATLAB. It will determine if the optimization reaches the

minimum. To improve convergence, the algorithm requires the calculation

of the first and second derivatives as function of the coefficients, the

gradient, and Hessian, respectively:

gradðkÞ ¼ dx
2

dcðkÞ ¼ +
NP

i

+
NT

j

2G � dDecayði; jÞ
dcðkÞ

3
Modelði:jÞ � Dataði; jÞ

Dataði; jÞ (A4)

hessðk; lÞ ¼ d
2
x
2

dcðkÞdcðlÞ ¼ +
NP

i

+
NT

j

2G � d
2
Decayði; jÞ
dcðkÞdcðlÞ

3
Modelði:jÞ � Dataði; jÞ

Dataði; jÞ

1 2G � dDecayði; jÞ
dcðkÞ G � dDecayði; jÞ

dcðlÞ
1

Dataði; jÞ:

(A5)

Note that for the coefficients c(2i1 1) or c(2i1 2), the derivative of the

Decay(i,j) relative to the coefficient c(k), where 2i1 1 (resp. 2i1 2) 6¼ k, is

equal to zero. Thus for all the coefficients except c(1) and c(2), the sum over

all i can be omitted and one need to sum only over all j when 2i1 1 (resp.

2i1 2)¼ k. This also implies that the Hessian matrix is mostly sparse. With

only the two first column and rows which contains the cross-derivatives as

function of c(1) and c(2) which are full as well as the diagonal and the off-

diagonal elements where k ¼ 2i1 1 and l ¼ 2i1 2 corresponding to the

cross-derivative for a given pixel decay.

It is clear that estimating the gradient and Hessian along with the x2 at

each step of the iteration for a large number of pixels is a time-consuming

process in part due to the large number of convolutions to be calculated.

Obtaining educated values for the coefficients using a reduce set of pixel

representative of different regions of the image allows to reduce greatly the

time needed to reach convergence.

In the first part of the program, the computer removes all pixels in the

image that contain intensity lower than a certain threshold value. The

remaining pixels are then summed in different groups to generate a reduced

number of pixels for the first run of the optimization loop. In the case of the

image average all the pixels are added to generate a single decay curve and in

the quadrant average, the pixels in each quadrant of the image are sum to

form four decays.

The intensity-based segmentation algorithm works in a similar fashion. It

requires the user to select a few numbers of subregions that are

representative of the different intensities found in the image. The program

averages the intensity in each subregion and goes through the image to group

all pixels with intensity values close to each subregion together. The decays

of these grouped pixels are added together to generate a few decay curves

used as the initial guess for the optimization.

An identical procedure is followed for the lifetime segmentation. The

difference relies in the criteria used for the segmentation. In that case,

a lifetime image is generated using the rapid lifetime method (Ballew and

Demas, 1989), which produces an average lifetime for each pixel:

for i ¼ 1 toNP

tAverageðiÞ ¼
Dt

log

+
Tmax1 2Dt

Tmax1Dt

Decayði; jÞ
� �2

+
Tmax1Dt

Tmax

Decayði; jÞ
� �2

; (A6)

where Tmax is the maximum of the decay curve close to time zero and Dt is
a time interval that can be adjusted depending on the lifetime range

measured. All pixels are grouped to subregions as before and the decay

curves for each subregion are used as initial guesses for the optimization.

The MATLAB code for the global fitting algorithm with different

optimization schemes will be made available through our web site: http://

www.mit.edu/~solab/.
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