FPAKE: Fuzzy Password-Authenticated Key Exchange

Sophia Yakoubov

joint work with

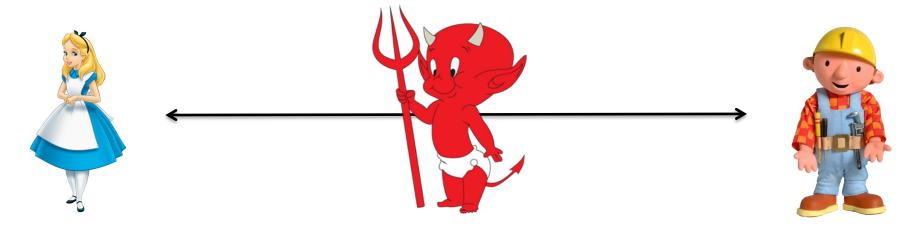
Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin

Motivation

- Want: secure communication
- Over insecure, unauthenticated channel
- Shared secret: password
- The password is...
 - Low-entropy

p@\$\$w0rd12

Motivation



- Want: secure communication
- Over insecure, unauthenticated channel
- Shared secret: password
- The password is...
 - Low-entropy
 - Possibly noisy

p@\$\$w@rd12

Motivation

p@\$\$w0rd12

- Goal: Agree on high-entropy cryptographic key
- Man-in-the-middle security: Nothing leaks about...
 - Password
 - Key

p@\$\$w@rd12

Applications

p@\$\$w0rd12

• Mistyped passwords
e.g. [Chatterjee-Athalye-Akhawe-Juels-Ristenpart-16]

p@\$\$w@rd12

Applications: **Not Just Passwords!**

 Mistyped passwords Biometric authentication

Bob has a resource Alice is trying to access

Applications: Not Just Passwords!

- Mistyped passwords
- Biometric authentication
- Location-based authentication
 e.g. [Han-Harishankar-Wang-Chung-Tague-17]

"radiator springs has 4 potholes"

"radiation stinks has 3 potholes"

are the passwords **low-entropy**? **low-entropy**: can hit correct password by brute-force enumeration

are the passwords low-entropy?

	Low-entropy password	High-entropy password
Exact match	n en	
Fuzzy matc	n	

	Low-entropy password	High-entropy password
Exact match		privacy amplification [Maurer-97,]
Fuzzy match		

	Low-entropy password (no leakage allowed)	High-entropy password (some leakage ok)
Exact match		privacy amplification [Maurer-97,]
Fuzzy match		

	Low-entropy password (no leakage allowed)	High-entropy password (some leakage ok)
Exact match	PAKE [Bellare-Pointcheval-Rogaway-00, Boyko-MacKenzie-Patel-00,]	privacy amplification [Maurer-97,]
Fuzzy match		

Secure against off-line dictionary attacks against the password

	Low-entropy password (no leakage allowed)	High-entropy password (some leakage ok)
Exact match	PAKE [Bellare-Pointcheval-Rogaway-00, Boyko-MacKenzie-Patel-00,]	privacy amplification [Maurer-97,]
Fuzzy match		information reconciliation [Renner-Wolf-04,] robust fuzzy extractors [Boyen-Dodis-Katz-Ostrovsky-Smith-05,]

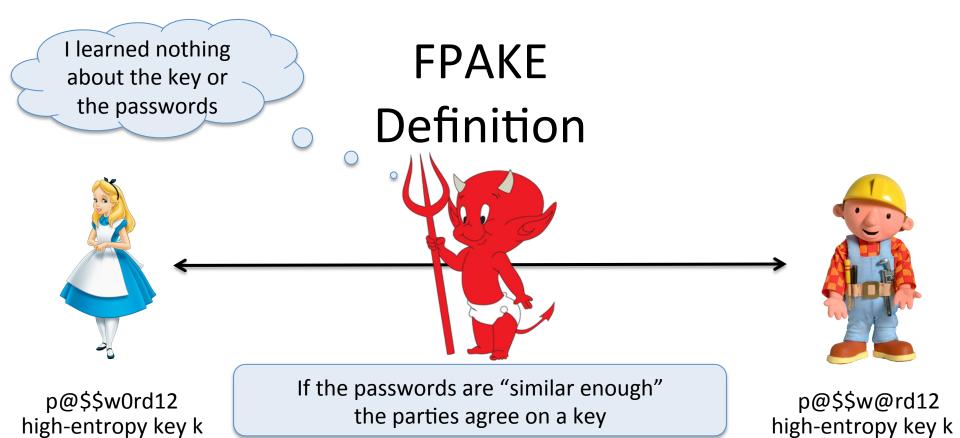
	Low-entropy password (no leakage allowed)	High-entropy password (some leakage ok)
Exact match	PAKE [Bellare-Pointcheval-Rogaway-00, Boyko-MacKenzie-Patel-00,]	privacy amplification [Maurer-97,]
Fuzzy match	generic multi-party computation without authenticated channels [Barak-Canetti-Lindell-Pass-Rabin-05]	information reconciliation [Renner-Wolf-04,] robust fuzzy extractors [Boyen-Dodis-Katz-Ostrovsky-Smith-05,]

Fuzzy PAKE

	Low-entropy password (no leakage allowed)	High-entropy password (some leakage ok)
Exact match	PAKE [Bellare-Pointcheval-Rogaway-00, Boyko-MacKenzie-Patel-00,]	privacy amplification [Maurer-97,]
Fuzzy match	This paper - Fuzzy PAKE	information reconciliation [Renner-Wolf-04,] robust fuzzy extractors [Boyen-Dodis-Katz-Ostrovsky-Smith-05,]

Our Contributions

- Security definition
- Two efficient constructions
 of Fuzzy Password Authenticated Key Exchange


Fuzzy PAKE

	Low-entropy password (no leakage allowed)	High-entropy password (some leakage ok)
Exact match	PAKE [Bellare-Pointcheval-Rogaway-00, Boyko-MacKenzie-Patel-00,]	privacy amplification [Maurer-97,]
Fuzzy match	This paper - Fuzzy PAKE	information reconciliation [Renner-Wolf-04,] robust fuzzy extractors [Boyen-Dodis-Katz-Ostrovsky-Smith-05,]

Our Contributions

- Security definition
- Two efficient constructions
 of Fuzzy Password Authenticated Key Exchange

I learned nothing about Bob's password

FPAKE Definition

I learned nothing about Alice's password

"curiouser"

If the passwords are not "similar enough" the parties do not agree on a key

"can we fix it?"

I learned nothing about Bob's password

FPAKE Definition

I learned nothing about Alice's password

"curiouser"

If the passwords are not "similar enough" the parties do not agree on a key

"can we fix it?"

- Definitional Goals:
 - Composability (essential for key agreement!)
 - Security against offline dictionary attacks by:
 - Malicious participant
 - Man in the Middle
- Approach: Generalize UC functionality for PAKE [Canetti-Halevi-Katz-Lindell-MacKenzie-05]

Fuzzy PAKE

	Low-entropy password (no leakage allowed)	High-entropy password (some leakage ok)
Exact match	PAKE [Bellare-Pointcheval-Rogaway-00, Boyko-MacKenzie-Patel-00,]	privacy amplification [Maurer-97,]
Fuzzy match	This paper - Fuzzy PAKE	information reconciliation [Renner-Wolf-04,] robust fuzzy extractors [Boyen-Dodis-Katz-Ostrovsky-Smith-05,]

Our Contributions

- UC security definition
- Two efficient constructions

of Fuzzy Password Authenticated Key Exchange

Constructions

- Using PAKE + Robust Secret Sharing (RSS)
- Using Yao's Garbled Circuits (YGC)
 - Not generic 2PC specialized, secure variant of dual execution!

FPAKE construction	PAKE/RSS	Yao's Garbled Circuits
Notion of similarity	Hamming	Any
# rounds	2	5
# exponentiations	2n + constant	3n + constant

n = number of password characters

Constructions

- Using PAKE + Robust Secret Sharing (RSS)
- Using Yao's Garbled Circuits (YGC)
 - Not generic 2PC specialized, secure variant of dual execution!

FPAKE construction	PAKE/RSS	Yao's Garbled Circuits
Notion of similarity	Hamming (same-length passwords)	Any
# rounds	2	5
# exponentiations	2n + constant	3n + constant

n = number of password characters

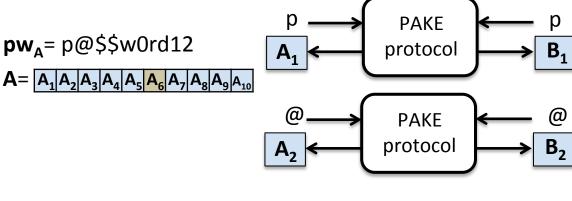
pw_A= p@\$\$w0rd12

 $pw_{B} = p@$$w@rd12$

Pick a random session key K

"magical encryption" of **K** that tolerates errors in the encryption key **pw**_A

 $C = Enc(key=pw_A, msg=K)$


- Problem: ciphertext enables offline dictionary attack!
- Solution:
 - expand each character using PAKE!
 - 2. magical encryption using resulting character keys

 $\mathbf{K} = \text{Dec}(\text{key} = \mathbf{pw}_{\mathbf{B}}, \mathbf{C})$

Fuzzy PAKE from PAKE/RSS: the Expansion Step

 $pw_{B} = p@\$\$w@rd12$ $B = B_{1}B_{2}B_{3}B_{4}B_{5}B_{6}B_{7}B_{8}B_{9}B_{10}$

 $\begin{array}{c|c}
2 & & & \\
\hline
 A_{10} & & & \\
\hline
 & & & \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & &$

Fuzzy PAKE from PAKE/RSS: the Expansion Step


```
pw_A = p@$$w0rd12

A = A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_{10}
```

 $pw_{B} = p@\$\$w@rd12$ $B = B_{1}B_{2}B_{3}B_{4}B_{5}B_{6}B_{7}B_{8}B_{9}B_{10}$

- It is important to hide whether agreement happened!
- Otherwise, locations of matching characters will leak
- New UC definition: implicit-only PAKE
 - no key confirmation: participants do not know whether agreement was successful
 - "EKE2" [Bellare-Pointcheval-Rogaway-00] is implicit-only

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \mathbf{A}_3 & \mathbf{A}_4 & \mathbf{A}_5 & \mathbf{A}_6 & \mathbf{A}_7 & \mathbf{A}_8 & \mathbf{A}_9 & \mathbf{A}_{10} \end{bmatrix}$$

Pick a random session key K

pw_B=p@\$\$w@rd12

$$\mathbf{B} = [\mathbf{B}_{1} | \mathbf{B}_{2} | \mathbf{B}_{3} | \mathbf{B}_{4} | \mathbf{B}_{5} | \mathbf{B}_{6} | \mathbf{B}_{7} | \mathbf{B}_{8} | \mathbf{B}_{9} | \mathbf{B}_{10}]$$

"magical encryption" of **K** that tolerates errors in the encryption key **pw**_A

$$C = Enc(key=pw_A, msg=K)$$

 $\mathbf{K} = \text{Dec}(\text{key} = \mathbf{pw}_{B}, \mathbf{C})$

$$\mathbf{A} = [\mathbf{A}_{1}]\mathbf{A}_{2}[\mathbf{A}_{3}]\mathbf{A}_{4}[\mathbf{A}_{5}]\mathbf{A}_{6}[\mathbf{A}_{7}]\mathbf{A}_{8}[\mathbf{A}_{9}]\mathbf{A}_{10}$$

Pick a random session key K

pw_B=p@\$\$w@rd12

$$B = B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_{10}$$

"magical encryption" of **K** that tolerates errors in the encryption key **A**

 $\mathbf{K} = \operatorname{Dec}(\ker \mathbf{B}, \mathbf{C})$

$$pw_A = p@$$w0rd12$$

 $A = A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_{10}$

Pick a random session key K

pw_B=p@\$\$w@rd12

$$\mathbf{B} = [\mathbf{B}_{1}|\mathbf{B}_{2}|\mathbf{B}_{3}|\mathbf{B}_{4}|\mathbf{B}_{5}|\mathbf{B}_{6}|\mathbf{B}_{7}|\mathbf{B}_{8}|\mathbf{B}_{9}|\mathbf{B}_{10}]$$

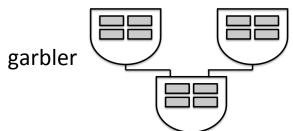
Robust Secret Sharing

of **K**

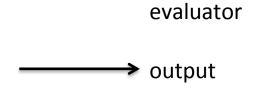
One Time Pad

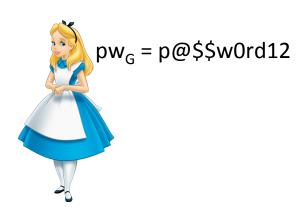
Similar to Code-Offset [Juels-Watenberg-02]

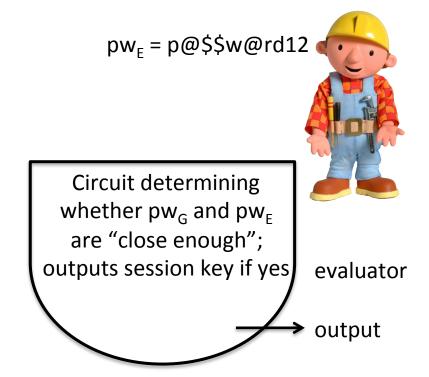
 $\mathbf{K} = \text{Dec}(\text{key} = \mathbf{B}, \mathbf{C})$

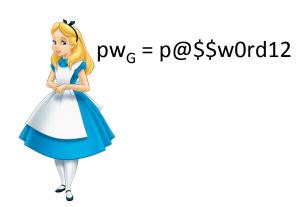

Constructions

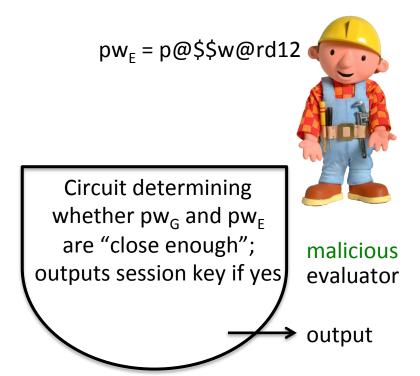
- Using PAKE + Robust Secret Sharing (RSS)
- Using Yao's Garbled Circuits (YGC)
 - Not generic 2PC specialized, secure variant of dual execution!


FPAKE construction	PAKE/Secret Sharing	Yao's Garbled Circuits
Notion of similarity	Hamming	Any
# rounds	2	5
# exponentiations	2n + constant	3n + constant

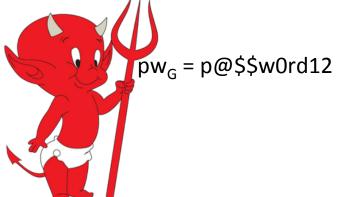

n = number of password characters

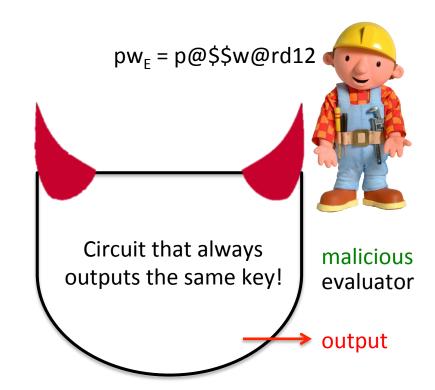






garbler




semi-honest garbler

Yao's Garbled Circuits are an asymmetric 2PC protocol: they are secure against a malicious evaluator, but only against a semi-honest garbler

semi-honestgarbler

Yao's Garbled Circuits are an asymmetric 2PC protocol: they are secure against a malicious evaluator, but only against a semi-honest garbler

From Semi-Honest to Malicious

Correctness	Privacy	Computation Overhead

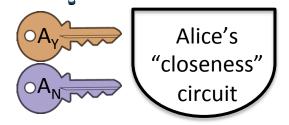
From Semi-Honest to Malicious

Transformation	Correctness	Privacy	Computation Overhead
None			
Commit-and-Prove			
Cut-and-Choose			
Gate-wise Cut-and-Choose			(including pre- processing)
•••			

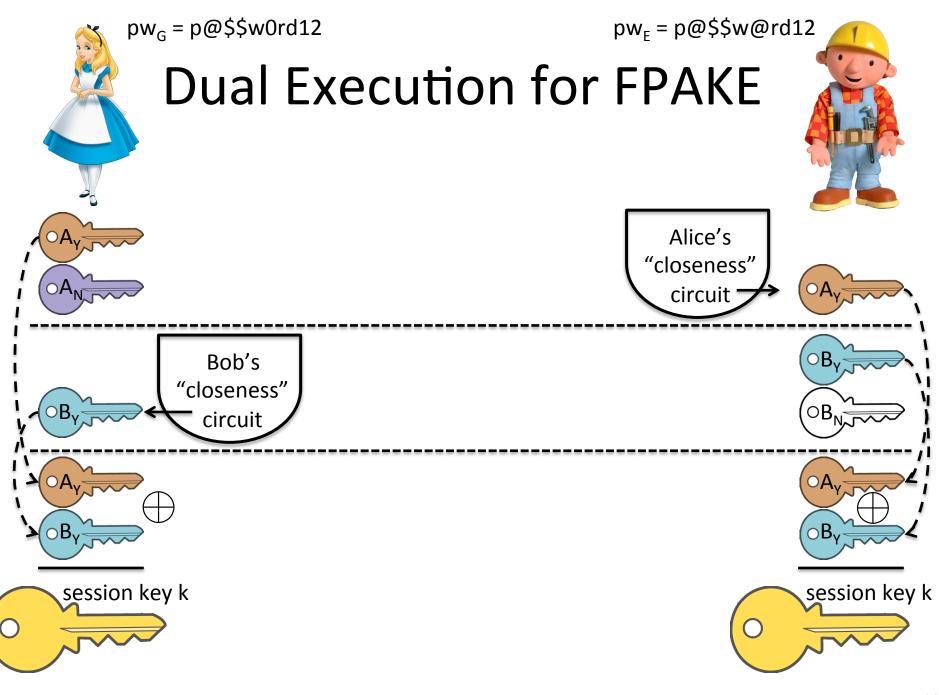
From Semi-Honest to Malicious

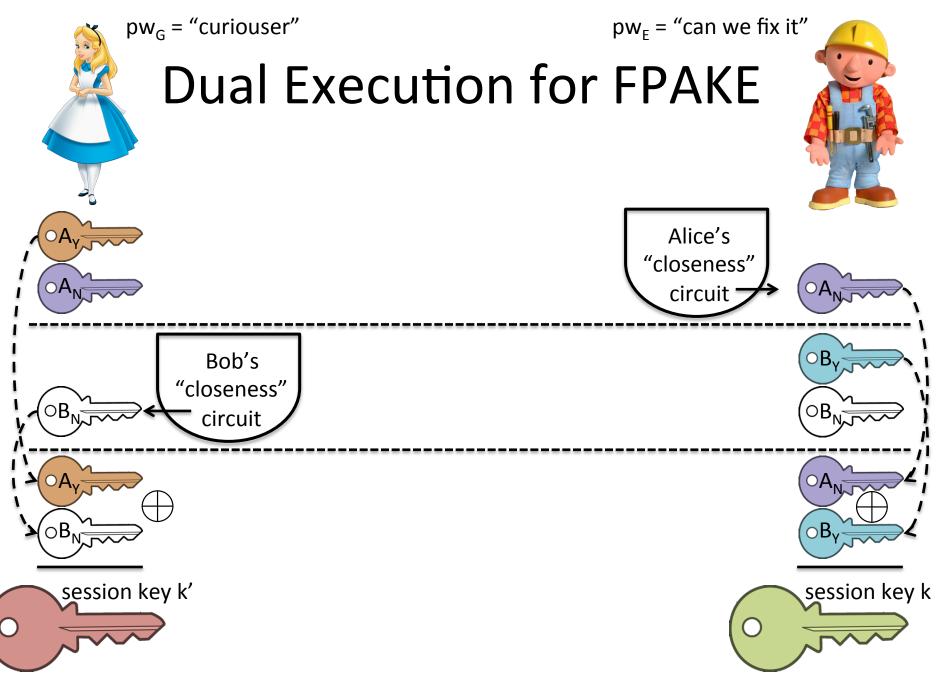
Transformation	Correctness	Privacy	Computation Overhead
None			
Commit-and-Prove			
Cut-and-Choose			
Gate-wise Cut-and-Choose			(including pre- processing)
•••			
Dual Execution [Mohassel-Franklin-06, Huang-Katz-Evans-12]		1 bit leakage	Only 2x!

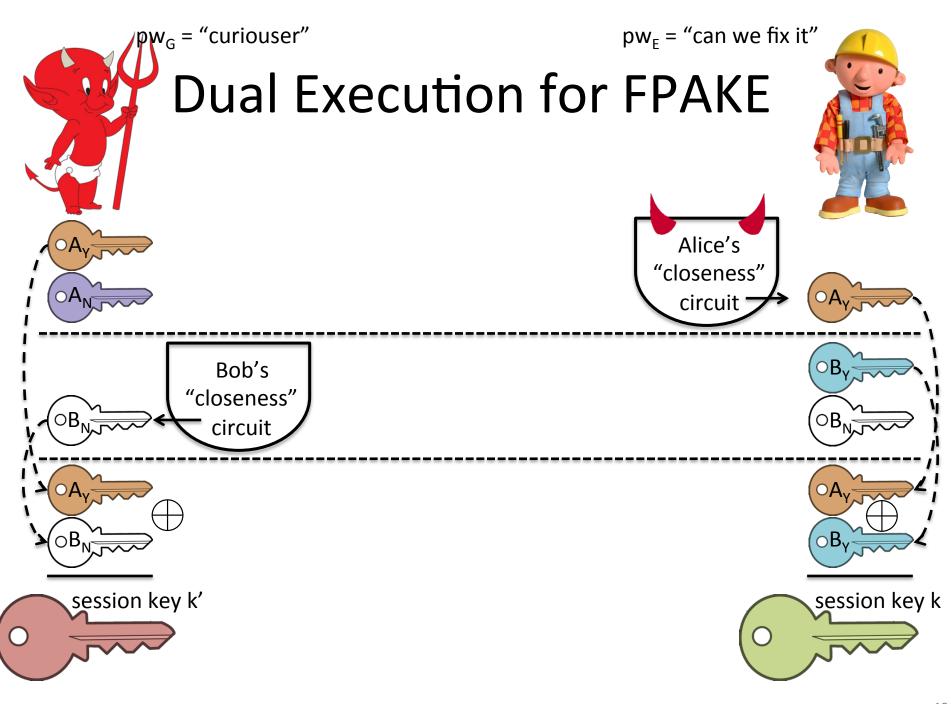
1 bit of leakage about a low-entropy password can be crucial!

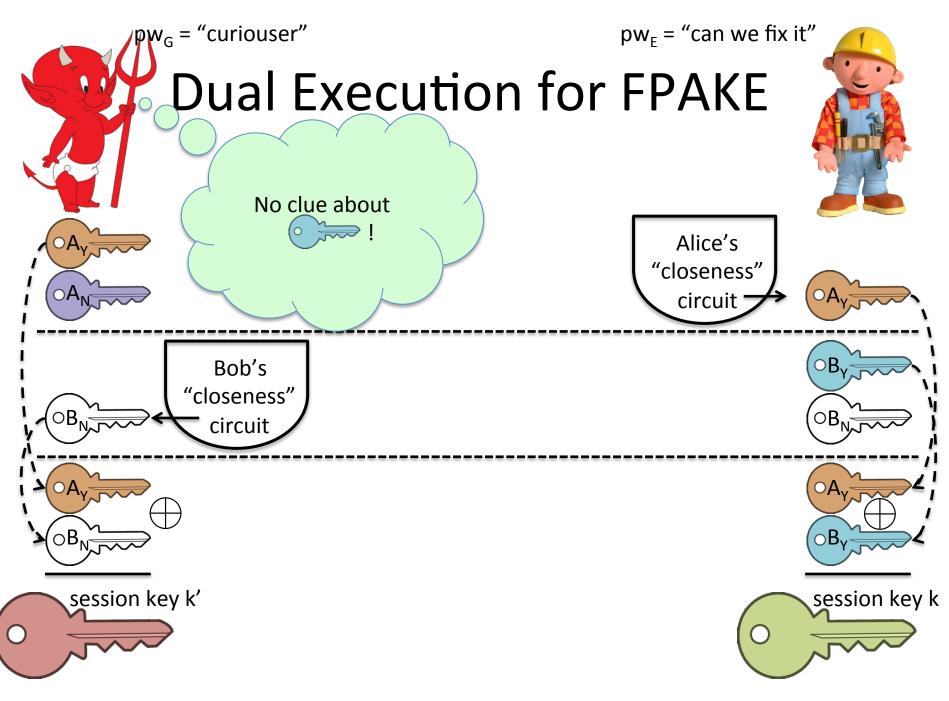

We modify dual execution specifically for Fuzzy PAKE to avoid leakage when it matters

 $pw_{G} = p@$$w0rd12$


Dual Execution for FPAKE






circuit that outputputes/no yes/no key

Dual Execution:

Privacy-Correctness Tradeoff for Boolean Functions

6, 2] ion	Correct output	Comp. output	Privacy
[MF'06, HKE'12] Dual Executior	"yes"	"yes" or "cheating"	1-bit leakage
	"no"	"no" or "cheating"	1-bit leakage
VKE	Correct output	Comp. output	Privacy
Our FPAKE Dual Execution	"yes"	"yes" or "no"	1-bit leakage
Our	"no"	"no"	yes

This is the perfect tradeoff for fuzzy PAKE!

 Only care about security against adversary who doesn't know a close-enough password – the "no" case

Conclusion

	Low-entropy password	High-entropy password
Exact match	PAKE	privacy amplification
Fuzzy match	This paper - Fuzzy PAKE	information reconciliation, robust fuzzy extractors

Our Contributions

- UC security definition of Fuzzy PAKE
- Two efficient constructions:
 - PAKE + Robust Secret Sharing (more efficient)
 - Yao's Garbled Circuits (more general)