Puzzles

Sophia Yakoubov

December 4, 2016

Contents

1 Coin Weighing 3
 1.1 100 Coins . 3
 1.2 12 Coins . 3
 1.3 How Much Gold Do I Have? 3
 1.4 Are All the Coins the Same? 3

2 Hats 4
 2.1 Three Hats . 4
 2.2 Line of Hats . 4
 2.3 Room of Hats . 4
 2.4 Hats with Timesteps . 5
 2.5 Colorful Hats with Timesteps 5

3 Liars and Truth Tellers 6
 3.1 Buying One of Three Computers 6
 3.2 Labeling the Three Computers 6
 3.3 1000 Witches . 6

4 Lightbulbs 7
 4.1 100 Prisoners . 7
 4.2 Train . 7

5 Tilings 7
 5.1 Chessboard with 1×2 Dominoes 7
 5.2 Chessboard with 1×3 Dominoes 8
 5.3 7×4 Board with Tetris Pieces 8
6 River-Crossings
 6.1 Two-Person Bridge .. 8
 6.2 Three Swindlers .. 9

7 Other Puzzles
 7.1 100 Prisoners .. 9
 7.2 Wine Tasters ... 9
 7.3 Splitting Booty .. 10
 7.4 Directional Fish Lock 10
 7.5 Handshakes at Mr. and Mrs. Kent’s Party 11
 7.6 Measuring Time with Ropes 11
1 Coin Weighing

A lot of these problems involve a balance, which is a device that takes two sets of objects and compares their weights. The use of a balance has three possible outcomes: ‘greater than’, ‘equal’ or ‘less than’.

1.1 100 Coins

Problem:
(2010, from Al Barboy) You have 100 coins, four of which are counterfeit. Counterfeit coins are known to be lighter than real coins. Using a balance twice, identify at least one coin that is definitely not counterfeit.

1.2 12 Coins

Problem:
(2014, from Eitan Glinert) You have 12 coins, one of which is counterfeit. Counterfeit coins are known to have a different weight than real coins (either lighter or heavier). Using a balance thrice, identify the counterfeit coin.

1.3 How Much Gold Do I Have?

Problem:
(2014, from Eitan Glinert) You have a chunk of gold of integer weight between 1 and 40, inclusive. You would like to be able to determine the exact weight of your gold, and you’re allowed to use four chunks of silver to help you do so. What weights would the chunks of silver need to have to allow you to do so?

1.4 Are All the Coins the Same?

Problem:
(2016, from Seth Toplosky) You have 8 coins, each of which has one of two possible weights: A or B. Using a balance thrice, ascertain that they all have the same weight.

Variant:
Instead of 8 coins, you now have 10 coins.
2 Hats

2.1 Three Hats

Problem:
(2012) Three people are given hats. Each hat is black with probability 1/2, and white with probability 1/2. Each person sees everyone else’s hats, but not their own hat. On the count of three, each person guesses his or her hat color, or abstains, simultaneously. If either everyone abstains or anyone guesses wrong, all three people are killed. What is a strategy that maximizes the chances of their survival?

2.2 Line of Hats

Problem:
(2016) n people are arranged in a line. Each person is given a hat. Each hat is black with probability 1/2, and white with probability 1/2. Each person sees, and knows the color of, the hats of those in front of them, but not their own hat or the hats of those behind them. One at a time, starting from the back of the line, each person must announce a guess at their hat color. Each person who is wrong is executed; each person who is correct lives. They cannot communicate other than before the start of this game, and through their guesses. What strategy can they use to minimize the number of executions?

2.3 Room of Hats

Problem:
(2016) n people are given hats. Each hat has a number between 1 and n (inclusive) on it. The number on each hat is independently random; it is i for $i \in [1, \ldots, n]$ with probability $1/n$. Each person sees, and knows the numbers on, the hats of everyone else, but not their own hat. They must all simultaneously announce a guess at their number. If everyone guesses wrong, they are all executed. If at least one person guesses correctly, they all live. They cannot communicate other than before the start of this game. What strategy can they use to guarantee that they all live?
2.4 Hats with Timesteps

Problem:
(2016) n people are given hats. $w < n$ hats are white, and the rest are black. Each person sees, and knows the color of, the hats of everyone else, but not their own hat. At midnight on day 0, the people are told that there is at least one white hat. At midnight on days 1, 2, etc, each person who has figured out their hat color that day leaves the room. How long will it take everyone to leave the room?

Variant:
What if the announcement on day 0 is that there is at least one hat of each color?

2.5 Colorful Hats with Timesteps

Problem:
(2016, from Neal Wagner) 31 people are given hats; all they know about the colors is that there are at least two hats of each color. Each person sees, and knows the color of, the hats of everyone else, but not their own hat. At midnight on each day, each person who has figured out their hat color that day leaves the room. Given the following sequence of events, how many days does it take for everyone to leave?

1. At midnight on day 1, 4 people leave.
2. At midnight on day 2, everyone wearing a red hat (and no-one else) leaves.
3. At midnight on day 3, no-one leaves.
4. At midnight on day 4, at least one person leaves.
5. At some point on day 5 or later, two people with different hats leave simultaneously, but others remain.
3 Liars and Truth Tellers

3.1 Buying One of Three Computers

Problem:
(2012) There are three identical-looking computers at the store. One always lies, one always tells the truth, and one answers at random. You want to buy any consistent computer (either of the first two). Before making your purchase, you may ask one computer one question. What should that question be?

3.2 Labeling the Three Computers

Problem:
(2012, from Alina Griner) Now, let’s say that instead of being a customer, you are the computer store proprietor. You want to figure out which computer always tells the truth, which computer always lies and which computer is random so that you can label them for the convenience of your customers. However, there is an added complication: instead of answering boolean questions with “yes” or “no”, the computers respond with “0” and “1”, and you don’t know which bit corresponds to “yes” and which to “no”! You may ask three questions, each addressed to a single computer, to determine which computer is which.

3.3 1000 Witches

Problem:
(2016, from an RSM Contest) There are 1000 witches sitting around a circular table. Each witch either always tells the truth, or always lies. Each witch turns to her immediate neighbors to the right and left, and says, “without saying anything about the three of us, everyone else at this table is a liar.” How many witches at the table are truth tellers and how many are liars?
4 Lightbulbs

4.1 100 Prisoners

Problem:
(2012) An evil king has 100 prisoners, and decides to have a little fun. He lets the prisoners talk amongst themselves, then takes them all to individual cells deep in his dungeon, and from thereon out does not allow them to communicate. Every day, he picks one prisoner at random and takes that prisoner to a special room, the only feature of which is a lightbulb with a switch. Upon being taken to the special room, a prisoner can do one of three things: nothing, flip the state of the light bulb, or declare that every single prisoner has been in the room. If a prisoner makes the declaration and is correct, the king will release all of the prisoners. If he is wrong, the king will execute all of the prisoners.

a) If the lightbulb is known to have started out in the ‘off’ state, what strategy can these prisoners use to ensure their release?

b) What if the initial state of the lightbulb is not known?

4.2 Train

Problem:
(2012) There is a train consisting of identical cars, connected in a circle. Each car has a light bulb. Alice is in one of the cars. She can walk from car to car, and change the light bulb state (from on to off, or from off to on) if she wishes. How can she determine the number of cars in the train?

5 Tilings

5.1 Chessboard with 1 × 2 Dominoes

Problem:
(2010) Can an 8 × 8 chessboard with two diagonally opposite corners removed be tiled with 1 × 2 dominoes?
5.2 Chessboard with 1×3 Dominoes

Problem:
(2012) When tiling an 8×8 chessboard with 1×3 dominoes, which 1×1 squares on the chessboard can remain as the only untiled square?

5.3 7×4 Board with Tetris Pieces

Problem:
(2014, from Eitan Glinert) Can a 7×4 rectangle be tiled using each of the tetris pieces depicted below exactly once?

6 River-Crossings

6.1 Two-Person Bridge

Problem:
4 people need to traverse a bridge. The bridge is old and only two people can use it at the same time. It is night and to traverse the bridge a flashlight is needed. The group only has one flashlight. Each person traverses the bridge at different speeds and when 2 go together the faster one needs to adapt for the slower one (otherwise they can’t share the light). The first person (A) needs 10 minutes to cross the bridge. The second (B) 5; the third (C) 2, and the fastest one (D) only 1 minute. How long does it take the group to cross the bridge?

Example (not the most efficient one):

- $A+D \rightarrow // 10 \text{ min (let’s assume the slowest and the fastest go first)}$
- $D \leftarrow // 1 \text{ min (D needs to bring back the flashlight)}$
• B+D → // 5 min
• D ← // 1 min
• C+D → // 2 min (and the group has crossed the bridge)

This takes a total of 19 minutes. There is a better way!

6.2 Three Swindlers

Problem:
(2016, from Tanya Khovanova’s site) Three swindlers have two suitcases each. They approach a river they wish to cross. There is one boat that can carry three objects, where a person or a suitcase counts as one object. No swindler can trust his suitcase to his swindler friends when he is away, but each swindler doesn’t mind his suitcases left alone at the river shore. Can they cross the river?

7 Other Puzzles

7.1 100 Prisoners

Problem:
(2010, from Professor Richard Stanley) An evil king has 100 prisoners, and decides to have a little fun. He writes each prisoner’s name on a piece of paper, and puts each name in a box. The boxes are labeled one through 100, and each contains exactly one name. The king then makes each prisoner (one at a time) look inside exactly 99 of the 100 boxes. If no prisoner sees his or her own name, he releases them all. If at least one prisoner sees his or her own name, he executes them all. What strategy can these prisoners use to maximize their chances of release? At a maximum, what are those chances?

7.2 Wine Tasters

Problem:
(2014, from Luis Brandao) There are 200 cups of wine, one of which is poisoned. You have five wine tasters. The king’s banquet is in two hours, and since the expected head-count at the banquet is 199, you must identify the
poisoned cup of wine by then. However, the wine tasters only get two chances to taste wine mixtures - once now, and once an hour from now. If a wine taster consumes poisoned wine (or a mixture containing poisoned wine) during the first round of tasting, he cannot participate in the second round of tasting. How do you go about identifying the poisoned cup of wine?

7.3 Splitting Booty

Problem: (2014, from Nick Hwang) There are five monkeys - the president, the vice president, the treasurer, the vice minion and the minion. There is a pile of five bananas. First, the president proposes a way to split up the bananas among the five monkeys. All five monkeys vote, and if the president’s proposal doesn’t have the support of half or more of the monkeys (in this case, at least three monkeys), the president is killed, and the vice president gets a chance to make a proposal. Again, all four remaining monkeys vote, and if the vice-president’s proposal doesn’t have the support of half or more (in this case, at least two monkeys), he is killed as well. This continues until the bananas have been successfully split up. If all the monkeys are much smarter about this than we can actually expect monkeys to be, what will happen? (What happens when there are more than five monkeys?)

7.4 Directional Fish Lock

Problem: (2014, almost verbatim from Sam Steingold) A lady is locked alone in a dungeon, while her captor the vile monster is getting firewood. When the monster comes back in 15 minutes, he plans to cook and eat the lady. The dungeon is locked with a very special lock, consisting of a cylindrical aquarium divided into four compartments, as depicted below. In each compartment, there is a fish. Each fish is facing either up or down. Unlike the aquarium in the picture, though, the lock’s aquarium is not transparent. The lady cannot see the fish, or which way they are oriented. The lock unlocks when all of the fish face the same direction. The lady can try to unlock the lock by reaching into the aquarium and feeling (and, if she wants, switching) the orientation of two of the fish. If as a result all of the fish are facing the same way, the lock unlocks and she is free to flee. If not, the aquarium rotates quickly for
one minute, so that she no longer knows which fish she just touched; after it stops, she gets to try again. Can she escape? How?

7.5 Handshakes at Mr. and Mrs. Kent’s Party

Problem:
(2016, from Neal Wagner) Mr. and Mrs. Kent throw a party. They invite four couples (which makes for 10 people total, including themselves). Any pair of people who don’t know each other shake hands. Mrs. Kent then asks everyone how many hands they shook, and everyone gives different answers. How many hands did Mr. Kent shake?

7.6 Measuring Time with Ropes

Problem:
(2016, from Neal Wagner) Imagine you have a rope which takes one hour to burn, but it is not uniform. That is, the first 9/10 of its length might be gone after the first minute, and the last 1/10 might take the remaining 59 minutes to burn. How can you measure exactly half an hour using that one rope?

Variant:
How can you measure exactly 1/n of an hour using that one rope, for any n?