The effect of load rate, placement angle, and ice type on ice screw failure load

K. Blair, D. Custer
Massachusetts Institute of Technology, Center for Sports Innovation, Cambridge, MA, USA
S. Alziati, W. Bennett
Cambridge University, Cambridge, UK
Overview

What is ice climbing, what forces occur during a fall, & why study ice screws?

Methods

Results

Conclusions & Speculation
Climber’s gravitational potential is converted to spring energy in the rope during a fall. Expect forces on the order of 3 kN to 12 kN, perhaps as high as 20 kN.
Why Bother & Who Cares

- Dearth of data and conflicting data
- Word from the wall is “don’t fall.”
- Ice screws are little changed from the 1980s

- Climbers
- Manufacturers
- Standards Folks
Bad ice
Good ice (-18°C)

Three angles:
–30º, 0º, 30º

Pull to failure, two strain rates: 25 mm/s and 0.25 mm/sec

Measure force and displacement
High speed video record
High Speed Video
Fast Strain Rate, 0°
High Speed Video
Slow Strain Rate, 0º
Little Picture Results

(a) Failure Load, kN vs. Placement Angle, Degrees

- WI-S
- WI-F
- AI-S
- AI-F
- WI-S Long
Big Picture Results

![Graph showing failure load vs placement angle for different conditions including WI-S, WI-F, AI-S, AI-F, Harmston, Luebben, DAV/OAV, and WI-S Long.](image-url)
Conclusions & Suspicions

• Strain rate matters; ice climbers should reduce strain rate.
• The combined effects of angle, strain rate, and ice type are complicated.

• Ice in compression is stronger than ice in tension.
• Temperature matters.
• Better ice screws can be designed.
• Ice screw standards deserve another look.
Thanks to

- Warren & Stef, who did all the hard work
- The Aero/Astro 16.62x lab folks
- Luca for the ice climbing photo
Questions?
Results – Stage 2

<table>
<thead>
<tr>
<th>Ice Type</th>
<th>Rate</th>
<th>Angle</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>SD/ mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS1</td>
<td>0.01</td>
<td>-30</td>
<td>1394</td>
<td>309</td>
<td>22%</td>
</tr>
<tr>
<td>ABS1</td>
<td>0.01</td>
<td>0</td>
<td>1660</td>
<td>294</td>
<td>18%</td>
</tr>
<tr>
<td>ABS1</td>
<td>0.01</td>
<td>+30</td>
<td>1329</td>
<td>322</td>
<td>24%</td>
</tr>
<tr>
<td>ABS2</td>
<td>0.01</td>
<td>-30</td>
<td>1220</td>
<td>410</td>
<td>34%</td>
</tr>
<tr>
<td>ABS2</td>
<td>0.01</td>
<td>0</td>
<td>2375</td>
<td>75</td>
<td>3%</td>
</tr>
<tr>
<td>ABS2</td>
<td>0.01</td>
<td>+30</td>
<td>810</td>
<td>243</td>
<td>30%</td>
</tr>
<tr>
<td>ABS1</td>
<td>1.0</td>
<td>-30</td>
<td>229.75</td>
<td>47</td>
<td>21%</td>
</tr>
<tr>
<td>ABS1</td>
<td>1.0</td>
<td>0</td>
<td>446</td>
<td>142</td>
<td>32%</td>
</tr>
<tr>
<td>ABS1</td>
<td>1.0</td>
<td>+30</td>
<td>708</td>
<td>481</td>
<td>68%</td>
</tr>
<tr>
<td>ABS2</td>
<td>1.0</td>
<td>-30</td>
<td>211</td>
<td>142</td>
<td>68%</td>
</tr>
<tr>
<td>ABS2</td>
<td>1.0</td>
<td>0</td>
<td>697</td>
<td>25</td>
<td>4%</td>
</tr>
<tr>
<td>ABS2</td>
<td>1.0</td>
<td>+30</td>
<td>547</td>
<td>276</td>
<td>51%</td>
</tr>
</tbody>
</table>