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We examine the effects of the complex structure of urban surface road
transportation networks on the rate of infection spread through the human
population in a hypothetical outbreak of an apocalyptic zombie epidemic.
Various cities and urban spaces have diverse layouts and networks patterns
(i.e. a grid layout versus a naturally evolved street network). We explore
how network topology—the dynamics of a network—influences the spread of a
zombie epidemic throughout an urban system. We find that a normal city
street network fares about as well as a simple 2d grid, but inhibits infection-
propagation as compared to random and scale-free networks.

1 Introduction

Zombies have become a cultural phenomenon in recent decades with an enormous amount
of films, television shows, books, comics, and many other forms of entertainment dedi-
cated to these undead, infinitely ravenous monsters. The rise in the popularity of zombies
in modern culture has lead to an increasing amount of scholarship on the subject that
has spanned multiple academic disciplines, including but not limited to mathematics,
physics, computer science, political science, philosophy, and geography [9, [7, [§]. A main
motivation for the use of zombies in all of these different disciplines is because zombies
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are ridiculous enough to be interesting to a wide audience but are also a platform for
talking about subjects and problems that might not be of immediately obvious interest
to the general public. This engaging quality of zombies helps explain why the Center for
Disease Control (CDC) initiated a public education campaign looking at how the nation
and its citizens should respond to the zombie apocalypse [3]. Zombies can be thought
of as an analogue to natural disasters, epidemics, and even terrorist attacks, allowing
for the CDC to educate people on how to prepare themselves for such emergency events
through the entertaining lens of the plague of the undead.

A critical aspect of preparedness for any disaster is knowing the timescales over which
an agency must respond to contain the disease or the suffering of the people. With the
goal of understanding this timescale in mind, we have chosen to analyze the rates of
spreading of the zombie epidemic in hope that by understanding this spreading, we can
also understand the timescales of other disasters. We have decided to look at the spread
of zombies throughout networks as a proxy for how zombies might spread throughout a
city network of streets (links) and intersections (nodes).

The rate of spreading is intrinsically dependent on the structure of the network the
zombies are attacking. Social contact networks largely influence the spread of disease
within a network [6]. Thus, we have chosen to explore how the topology of a network
— the network architecture — affects the spread of epidemics, particularly the zombie
apocalypse, within city road transportation systems.

Modeling the structural network of a city is crucial to understanding the geographic
spread of a zombie epidemic. Both regular (road networks) and scale-free (airline) trans-
portation networks have strong and weak ties to uninfected areas. We explore the road
networks of various city types by introducing a single zombie into a network and analyz-
ing the dynamic development of infection within the city types. Also, by implementing
a single zombie infectant onto different kinds of networks we can analyze the relative
timescales over which a population of susceptible humans will be converted to hordes of
ravenous undead from which there is no recovery. We have put these times scales into
a geographical context to show which types of networks and cities will be more robust
and secure from the spread of an epidemic in hopes of encouraging further discussion
and inquiry into how to better prepare for a catastrophic level epidemic.

2 Methods

2.1 Simulation

The epidemiological model we consider is shown schematically in Figure [1} It includes
both linear diffusion of zombies and humans from node to edge (and wvice versa, with
different diffusion rate constants for the two species) and nonlinear conversion of humans



Figure 1: An epidemiological box diagram illustrating our model. The S species is the
susceptible surviving humans, labeled with either a single specifying the net-
work node or a double subscript indicating a link between two nodes. Likewise,
species Z is the infected zombie population, similarly subscripted. The number
of each species at each node and edge changes in time with a rate proportional
to the terms indicated on the arrows. Both zombies and humans walk ran-
domly to adjacent territories with rates proportional to their local number
(simple diffusion), although zombies diffuse at a rate 5 times slower than hu-
mans. In each territory, humans turn into zombies with a rate proportional to
the product SZ.

to zombies within each node and edge:

S; = —aSiZ; — ksd;S; + ks Z Sij, (1)
edge—j
Zi =aS;Z; — kzd; Z; + kz Z Zij’ (2)
edge—j
SZ = —OZSz'jZij — kasij + ksSi + kSSj7 (3)
Zij = aSijiZij —2kzZij + kzZi + kzZj, (4)

where S; and Z; are the number of susceptible humans and zombies in node ¢, S;; and
Z;i; are the same for for edge connecting node ¢ to node j, d; is the degree of node 7,
and «, kg, and kz are rate constants whose values define the model. We chose « = 0.1,
ks = 0.5, and kz = 0.1.

The model was implemented using the PYTHON module NETWORKX and the simulation
template of the PYCX dynamic simulation repository [1]. The differential equations were
integrated using the Euler forward method with a time step of d¢ = 0.01.
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Figure 2: Road map network selection. A simplified map is generated by the Google
API, binarized, and then processed for topological /connectivity information.
Only the largest connected component is kept as the network representative.

2.2 Generating road map network graphs

To generate the city street networks we first generated a simplified map of the area using
the Styled Maps Wizard of the Google Maps API.[I2] The map image was then bina-
rized (color values replaced by strictly black and white) and then processed through the
MATHEMATICA function MorphologicalGraph, which finds the morphological branch
points and endpoints and returns a graph (network) representation of the information.
The resulting graphs were generally disconnected, so we selected the largest connected
component to represent each city network. The result of each step is illustrated in

Figure

3 Results

We ran simulations on the various networks, each with populations of one zombie and 10°
humans distributed randomly across the nodes and edges. The simulations ran until the
human population dropped below one, which marked the “end of times” or “extinction
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Figure 3: Extinction times for city street networks. Ten simulations were run for each
city and are shown in gray. The simulation averages are show in red for humans
and green for zombies.

time,” denoted t.. We ran the simulations ten times per city, with re-seeded random
population distributions, to get statistics on ..

We first ran simulations on the MIT and Harvard street networks. The results are
shown in Figure [3] and exhibit the characteristic “S” curves as the populations invert.
The extinction time results were t, = 36.9 & 4.8 for MIT and t. = 99.94 &+ 15.1 for
Harvard. Although the starting populations were the same, the two networks differed
greatly in the number of nodes with Ny = 849 and Niparvard = 1578. We speculate that
since the network topologies were not too different, the enormous difference in extinction
times is due to the ratio of population to number of nodes — a higher number of nodes
leads to a more diffuse population and hence a longer diffusion time.

To better explore how network topology affects extinction time, we ran simulations
on a few idealized networks with imposed properties similar to that of the MIT street
network, in particular the same number of nodes. Again, we ran simulations for each
network ten times, but before each run we re-initialized both the network (i.e. generated
a new network) and the population distribution with the aim of characterizing the type
of network rather than a specific instance of the network type.

First we chose a class of random networks, given by the Erdds-Rényi model with a
link probability corresponding to an average of four links per node. Next we chose a
class of scale free networks with preferential attachment, given by the Barab&si-Albert
model. As a benchmark for street grids, we also chose a simple 2d grid. Finally, for
variety we chose a “random lobster,” which is a mostly linear network with minimal
branching. This network in particular exhibited a wide range of extinction times that
depend strongly of the position of the starting zombie. The results are shown in Figure
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Figure 4: Zombie apocalypse on ideal networks. The extinction times for the random
lobster network (Lobstahville) varied wildly depending on the starting position
of the initial zombie. The simulations were stopped after ¢ = 100.

4 Discussion

The simulations show a distinct difference in extinction times for the different network
topologies (see Figure [5)). The random (Erdés-Rényi) and scale-free with preferential
attachment (Barabdsi-Albert) networks both exhibit relatively fast infection-spreading.
This is potentially due to clustering, which allows for easy zombie saturation of the
clusters and fast transport between clusters (low mean path length between clusters).
The MIT street network fared about as well as a simple 2d grid, in which the human
populations sustained for about four times longer than the random and scale-free net-
works. This suggests that the infection-propagation dynamics of city grids do not differ
significantly from simple 2d grids, but inhibit diffusion more than random and scale-free
networks.

The infection-propagation dynamics of the “random lobster” network, however, ex-
hibit a rather different behavior. The extinction time depends strongly on the starting
position of the initial zombie. Due to the linear structure of the network, a (fortunate
for humans?) placement of the initial zombie toward the end of the network requires
linear diffusion in one direction across most nodes and, due to the slow shambling of
the zombies, takes a long time. In the simulations, we stopped the runs after t = 100E|

!This was mostly due to limitations of the authors’ patience, but there were also instances of numerical
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Figure 5: Network extinction times. Note the fast infection-spreading times for the ran-
dom and scale-free networks and the similarity of the city street and 2d grid
networks.

but these preliminary results show a more linear inversion of populations instead of the
usual “S” curves. These results suggest that, although the extinction time is difficult
to pin down, a random lobster network would allow humans a better chance against
infection-spreading than normal city grids.

4.1 Model Limitations

We integrated the differential equations using the Euler forward method. Despite keeping
a time step small compared to any relevant time scale in the system (dt = 0.01 vs. time
scales of several time units), the Euler method is susceptible to numerical instabilities.
One manifestation of this in our model was that while the differential equations predict
that the total population (human plus zombie) in the city should remain constant, our
total population could drop by as much as 1% over thousands of integration steps.
This simple, technical, shortcoming could be overcome with further research by simply
switching from the Euler forward method to a more sophisticated integration scheme,
like the fourth-order Runge-Kutta method.

There are a number of aspects of population dynamics which our model explicitly
ignores: natural birth and death of humans; decay of zombies; season (temperature)
variability of zombie mobility and mortality; specialization of the human population
into labor pools with different zombie interactions, including zombie hunters and medical
personnel; a refractory or latency period for infected humans; and so on. All of these
model limitations are ameliorated by constraining the modeled scenario to the early
stages of a “high contagion, slow zombie” outbreak, and simply asking that the model
show relative rates of outbreak in different network topologies, rather than absolute
times. Similarly, in a real street network, human or zombie bodies can only be packed
into a crowd so tightly until they hit a maximum density at which no more individuals
can be added, and diffusion out of an area is greatly reduced due to jamming. This
model limitation is avoided by only considering total population densities which fall well
below the crowding limit.

There are other limitations and simplifications of the model which are more serious

anomalies in which the populations reached an artificial oscillatory steady state (which is impossible
for our model) such that the human population never dropped below the threshold.



shortcomings. One of these is hinted at in the title of this paper: our humans and zombies
are uncorrelated random walkers whose motion on the network is characterized by only
a pair of rate constants. Even within the simplified two-species epidemiological model
considered here, correlated motion of the populations would likely be non-negligible.
That is, instead of a number of individuals moving out of a territory during each time step
in proportion to their number in the territory, humans would more likely run away from
areas of high zombie number — moving down the gradient in the zombie population —
while zombies would chase humans — moving up the gradient in the human population.
This important effect is unaccounted for in our model.

The most serious limitation is perhaps the treatment of all roads and intersections as
if they have the same size and shape: only the connectivity of nodes varies. In a more
realistic model, diffusion out of an edge only occurs for beings close to the end of the
roads, so the rate constant for diffusion out of edges should be suppressed relative to
that of nodes by a factor of the ratio of the typical area of an intersection to the area
of a street. Ideally, the model would allow this rate constant to vary from edge to edge.
Similarly, the human-to-zombie transition terms are treated as being proportional to the
product of population numbers, but this form for these terms should be derived as a
product of population densities, and should again vary from edge to node by factors of
area.
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