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The human red blood cell (RBC) membrane, a fluid lipid bilayer
tethered to an elastic 2D spectrin network, provides the principal
control of the cell’s morphology and mechanics. These properties,
in turn, influence the ability of RBCs to transport oxygen in circula-
tion. Current mechanical measurements of RBCs rely on external
loads. Here we apply a noncontact optical interferometric tech-
nique to quantify the thermal fluctuations of RBC membranes with
3 nm accuracy over a broad range of spatial and temporal frequen-
cies. Combining this technique with a new mathematical model
describing RBC membrane undulations, we measure the mechani-
cal changes of RBCs as they undergo a transition from the normal
discoid shape to the abnormal echinocyte and spherical shapes.
These measurements indicate that, coincident with this morpholo-
gical transition, there is a significant increase in the membrane’s
shear, area, and bending moduli. This mechanical transition can
alter cell circulation and impede oxygen delivery.

membrane dynamics ∣ microrheology ∣ quantitative phase imaging

Quantifying the mechanics of live red blood cells (RBCs)
promises more sensitive probes of their structure at the na-

noscale and suggests new insights into the etiology of a number of
human diseases (1, 2). In the healthy individual, these cells with-
stand repeated, large-amplitude mechanical deformations as they
circulate through the microvasculature. Certain pathological
conditions such as spherocytosis, malaria, and Sickle cell disease
cause changes in both the equilibrium shape and mechanics of
RBCs, which impact their transport function. Here we commu-
nicate measurements of RBC mechanics that rely on unique
experimental and theoretical techniques to characterize the
mechanics/rheology of normal and pathological RBCs over a
range of length and time scales.

Lacking a 3D cytoskeleton, RBCs maintain their shape and
mechanical integrity through a spectrin-dominated, triangular 2D
network attached to the cytosolic side of their plasma membrane.
This semiflexible filament network, along with the surface tension
of the bilayer, contributes to the elastic moduli of the composite
membrane (3). The fluid lipid bilayer is thought to be the prin-
cipal contributor to its bending or curvature modulus. Little is
known about the molecular and structural transformations that
take place in the membrane and spectrin network during the cell’s
morphological transitions from discocyte (DC, normal shape) to
echinocyte (EC, spiculated shape) to spherocyte (SC, nearly
spherical) (Figs. 1 A–C), which are accompanied by changes in
RBC mechanics.

A number of techniques have been used to study the rheology
of live cells (2). Micropipette aspiration (4), electric field
deformation (5), and optical tweezers (2) provide quantitative
information about the shear and bending moduli of RBC mem-
branes in static conditions. However, dynamic, frequency-
dependent knowledge of RBC mechanics is currently very limited
with the notable exception of ref. 6. RBC thermal fluctuations

(“flickering”) have been studied for more than a century (7) to
better understand the interaction between the lipid bilayer and
the cytoskeleton (1, 8, 9). Nevertheless, quantifying these motions
is experimentally challenging; reliable spatial and temporal data
are desirable (1, 8, 10–13).

We use diffraction phase microscopy (DPM) (14, 15) to study
the undulatory dynamics of RBC membranes over the commonly
occurring DC-EC-SC shape transition. DPM is a highly sensitive
imaging technique that provides quantitative, high-stability maps
of the optical paths across living cells (Figs. 1 A–C). This optical
pathlength information can be readily translated into cell thick-
ness, since mature RBCs, lacking nuclei and other internal struc-
tures, have a spatially uniform refractive index. Using this
technique, the flickering of RBC membranes can be measured
with nanometer accuracy. From these measurements, we extract
the frequency-dependent viscoelastic moduli of the composite
RBC membrane.

We use a fluctuation-based approach to measure the cells’
elastic properties. Using the equipartition theorem, the observed
fluctuation amplitude at a point on the membrane, parametrized
by the mean squared normal displacement hΔh2i, determines
in thermal equilibrium an effective local spring constant ke ¼
kBT∕hΔh2i. This heuristic model incorrectly treats each patch
of the membrane as an independent harmonic oscillator, so ke
will not be quantitatively accurate. However, it does give a qua-
litative measure of the spatial heterogeneity of the membrane
within one cell and of the mechanical differences between cells.
In the next section we develop a quantitative approach to the fluc-
tuations, but to semiquantitatively characterize the data, we map
the cells in terms of ke (Figs. 2 A–C). The resulting ke maps reveal
fixed material inhomogeneities, particularly in ECs and SCs. For
normal (DC) cells the central “dimple” appears to be stiffer
(Fig. 2A). This feature of the spatial distribution of ke may be
due to local variations of both membrane curvature and the struc-
tural properties of the underlying spectrin network. When such
spatial heterogeneities are averaged over, we find that SCs are
characterized by an elastic constant 4 times larger than that of
DCs (Fig. 2D). Over the morphological transition from DC to
SC,

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔh2i

p
decreases progressively from 46 nm (DCs) to 34 nm

(ECs) and 15 nm (SCs), indicating an increasing cell stiffness
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(Figs. 1 D–F). The average elastic constant measured for DCs,
ke ¼ 1.9 μN∕m, is a factor of 3.5–10 lower than what was mea-
sured by micropipette aspiration (16) and electric field deforma-
tion (5). However, the quantitative theory discussed below and
used to analyze our data generates elastic constants for DCs
in good agreement with previous work.

To quantitatively investigate the material properties of RBCs
in various cellular morphologies, we analyze the undulatory
membrane fluctuations by measuring the spatial and temporal
correlations of the out-of-plane motions. We interpret these
measurements using a unique viscoelastic continuum model of
the composite spectrin-network/lipid membrane. This model
accounts for the linear coupling between the bending and com-
pression modes of a curved membrane, and thus provides a more
accurate description of the dynamics of the RBC than theories
based on a flat membrane.

Analysis
The Fluctuation Spectrum of a Viscoelastic Shell. It was shown by
Lennon and Brochard (1) that the decay rate of the undulations
of a globally flat lipid bilayer in a viscous solvent scales as
ωLB
q ∼ q3, where q is the transverse wavenumber. This can be

understood as resulting from a balance of a restoring force
proportional to q4, due to the bilayer’s bending rigidity, and a
q-dependent (i.e. nonlocal) hydrodynamic drag. Strikingly, this
fundamental theory is unable to account for experimental mea-
surements of the undulatory dynamics of RBCs; rather, decay
rates having a wavevector dependence of the form ωq ¼ aq3þ
bqþ cq−1 are required to account for these measurements. Pre-
vious theoretical work has postulated that the presence of the
spectrin network leads to additional terms in the deformation
energy of the bilayer. Specifically, the ω ∼ q dependence is ex-
plained by an effective surface tension generated by the attach-
ment of the membrane to the underlying spectrin network,
while the ω ∼ q−1 dependence arises from the uniform confining
potential due to this same network (12, 17). The validity of
these assumptions and the relation between these additional
parameters and the microscale structure of the bilayer/spectrin
complex remain somewhat elusive.

The geometry of the RBC membrane can give rise to the
observed wavenumber dependence of the undulatory membrane
dynamics without requiring the postulate of an effective extra
surface tension or a uniform confining potential. In our analysis
we simplify the complex shape of a RBC to that of a sphere to
produce an analytically tractable model of membrane elasticity
and fluid hydrodynamics that still incorporates the effects of
the curvature and compact topology of a RBC (18). In the pre-
sence of curvature, the bending and compression modes of the
membrane become coupled at linear order in the deformation
fields. In order to understand the thermally generated height
fluctuation spectrum of such a spherical membrane (via the
fluctuation-dissipation theorem), we need to account for the full
linear response of the membrane to applied (radial) forces; due
to the geometric coupling of bending and compression at linear
order we are obliged to study both deformation modes. The com-
pression of a flat spectrin network produces a decay rate of the
form ωC

q ∼ q since the restoring force is proportional to q2 and the
hydrodynamic drag acts nonlocally in a manner analogous to that
of the undulatory modes. Below, we determine how these modes
are mixed in a q-dependent manner by the mean curvature of the
membrane so that the height fluctuations incorporate compres-
sional degrees of freedom and thus change their wavenumber
dependence. To heuristically argue for the appearance of a re-
gime of ω ∼ q−1 behavior, we note that spatially uniform radial
displacement of a spherical membrane generates a restoring
force associated with both the membrane’s change in curvature
and area. This response to a uniform radial displacement creates
an effectively q-independent restoring force associated previously
with a confining potential for the local height fluctuations of the
membrane. The combination of this with hydrodynamic drag
generates a q−1 in the decay rate. We treat both the inner and
outer (embedding) fluids as incompressible and the membrane
as impermeable so that this effect cannot apply in a uniform
manner across the sphere. We rely on more detailed calculations
presented below to observe these dynamics at finite wavenumber.
From these calculations, we determine the dynamics of these two
linearly independent deformation modes of the surface, which
are superpositions of bending and compression and couple to
the height fluctuations of the membrane. We then calculate the
height-height correlation function of the RBC—the experimen-
tally measured quantity. We extract the (visco-)elastic properties
of the membrane from these data.

The deformation energy of an elastic shell. The deformation energy
of the spherical membrane includes a bending energy Fb and an
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Fig. 1. Red blood cells in three different morphologies (A)–(C) and instant
displacement map (D)–(F). (A) Typical RBC physical maps for DC, (B) EC, and
(C) SC obtained by DPM (color bar represents thickness in m). (D)–(F) Respec-
tive instantaneous displacement maps (color bar in nm). Scale bar, 1.5 μm.
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in-plane elastic energy Fe. To understand the thermal fluctuations
of the membrane, an energy quadratic in the deformations is suf-
ficient. These energies take the well-known Helfrich form (19):

Fb ¼
κ

2

Z
d2sðKα

α − c0Þ2; [1]

Fe ¼
Z

d2s
�
μEβ

αEα
β þ

λ

2
ðEα

αÞ2
�
; [2]

where d2s is an element of area on the surface, c0 ¼ 2∕R is the
spontaneous curvature, κ the bending modulus, Kβ

α the curvature
tensor, λ and μ the two 2D Lamé coefficients required to describe
the elasticity of the isotropic composite (i.e. lipid and spectrin)
membrane, and Eα

β is a two-dimensional covariant strain tensor.
The Greek indices run over the two (angular) coordinates of the
undeformed sphere. We expect the bending modulus κ to be
dominated by the elastic response of lipid membrane to curva-
ture. The Lamé coefficients in general describe the viscoelastic
response of the composite membrane to in-plane deformation.
In the frequency domain these are then complex quantities where
the imaginary parts reflect the viscous or dissipative response to
stress, primarily due to the lipid membrane (of viscosity ηm). Re-
cent membrane diffusion experiments (20) and coarse grained
simulations (21) have found an upper bound for the membrane
viscosity of 5 × 10−3 μN∕m at room temperature. Since the
spectrin network’s elastic modulus is ∼5 μN∕m, the viscous (ima-
ginary) part contribution to the shear response, −iωηm, is subdo-
minant up to frequencies of ∼103 Hz. Thus, we fit our data
assuming an elastic response to in-plane shear and compression.

The deformation of the membrane can be written as ϵα ¼
wr̂α þ tα, where w is the radial (i.e. out-of-plane) deformation
field, r̂ is the unit normal of the sphere, and t is the in-plane dis-
placement vector. As reviewed in the supplemental materials, the
in-plane energy of the sphere contains a term that couples these
in-plane and out-of-plane deformations (19). Since the in-plane
shear deformations of the membrane do not couple to the out-of-
plane deformations, we ignore them throughout this calculation.
Therefore, we may write t as the gradient of a scalar field on the
surface of the sphere: tα ¼ DαΨ. The free energy of deformation
becomes a function of the fields w, Ψ:

Fel½w;Ψ� ¼
Z

d2s
�
κ

2
w
�
Δ⊥ þ 2

R2

�
2

wþ 2KA

R2
wðwþ Δ⊥ΨÞ

þ 1

2
ðKA þ μÞðΔ⊥ΨÞ2 þ

μ

R2
ΨΔ⊥Ψ

�
; [3]

where Δ⊥ is the two-dimensional Laplacian and KA ¼ μþ λ is the
area compressibility modulus.

Dynamics of a viscoelastic shell in a viscous solvent.To investigate the
undulatory dynamics of the membrane, we must consider the cou-
pling of the bulk fluid flows inside and outside the sphere to its
deformations. The hydrodynamics can be described by the incom-
pressible Stokes equation (i.e. zero Reynolds number) (18, 22,
23). We allow for a difference between the interior cytosol visc-
osity ηc and the exterior solvent viscosity ηs. The coupling of the
fluid to the membrane is done using stick boundary conditions
and the stress balance condition at the surface of the membrane.

Because of the membrane’s spherical geometry, the natural ba-
sis for the radial w and compression Ψ fields in the overdamped
normal modes of the combined fluid/membrane system is the
spherical harmonics Y ℓmðθ;ψÞ. From rotational symmetry, the
normal modes are independent of the azimuthal number m.
For each order ℓ, the two normal modes are solutions of the
two-by-two matrix equation

w
Ψ

� �
¼ χðℓ;ωÞ · f w

fΨ

� �
; [4]

where f w and fΨ are the forces acting on the radial and compres-
sion fields of the membrane directly. The response matrix χ
depends on all the elastic constants of the material, the viscosities
of the interior and exterior fluids, the radius of curvature, the
order ℓ of the spherical harmonic, and the frequency ω. From the
eigenvalues of this matrix we derive the decay rates of each
normal mode (23). The decay rates are shown and discussed
in more detail in SI Text.

The correlation of height fluctuations at two points on the
membrane separated by the projected distance d and time t is
defined by

Cðd; tÞ ¼ hwðd; tÞwð0; 0Þi; [5]

where the angled brackets denote both spatial and temporal
averaging. We measure this correlation function from the experi-
mental fluctuation data using DPM. This correlation function is
obtained from the theory outlined above by computing the out-
of-plane displacement correlation function between two points
on the sphere separated by an angle γ and time difference t in
thermal equilibrium. Using the fluctuation-dissipation theorem
(FDT) (24), we find that the correlation function in the frequency
domain is

C̄ðd;ωÞ ¼
�
1 −

d2

4R2

�
2kBT
ω ∑

ℓ>0

Im½χwwðℓ;ωÞ�Pℓ

�
1 −

d2

2R2

�
; [6]

where PℓðxÞ is the Legendre polynomial of the ℓth order, R is the
radius, χwwðℓ;ωÞ is the out-of-plane response function, and the
distance d between the two points (lying symmetrically about
the north pole of the sphere) in question is related to their
angular separation γ by γ ¼ 1 − d2∕2R2. Since the experiment
measures the projection of the radial membrane displacement
along the vertical (z) direction, we must rescale the correlation
function; the measured correlation function is actually C̄ðd;ωÞ ¼
ð1 − d2∕4R2ÞCðγ;ωÞ. The use of the FDT assumes that the
observed fluctuations reflect the equilibrium dynamics of the
membrane; this is not strictly valid since there are ATP-depen-
dent processes occurring in the membrane that enhance the
fluctuations. These processes imply that our extracted moduli
are generically smaller than the true ones. To measure this effect,
we explore ATP-depleted DCs (DCs −ATP) using our technique.

Results
Using DPM, we measure the height correlations versus the pro-
jected distance d at various frequencies ω for the three different
morphological groups and for the ATP-depleted DCs (Fig. 3 A–D
and see Methods for detailed procedure). At low frequencies, we
observe oscillations in the correlation function at distances of a
few microns in the case of the more elastically compliant DC and
EC cells. At higher frequencies, these anticorrelations are sup-
pressed, as expected in the more viscously dominated regime.

To extract the moduli, we fit our theory to the measured cor-
relation functions by adjusting the following parameters: the
shear μ, the area KA and bending κ moduli of the membrane,
the viscosities of the cytosol ηc and the surrounding solvent ηs,
and the radius of the sphere R. We constrain our fits by setting
R to the average radius of curvature of the RBC obtained directly
from the data. Using a spatially constant curvature is a significant
simplifying approximation in the case of DCs. These cells have a
stiffer central dimple with highly negative curvature. Thus, we
omit membrane fluctuation data from the dimple in our analysis.
We also fix the viscosities used to fit all datasets to be ηs ¼
1.2 mPa · s, ηc ¼ 5.5 mPa · s (25, 26). Based on typical lipid
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bilayer viscosities (20, 21) we expect the dissipative part of the
membrane elastic constants to be subdominant; this is supported
by simultaneous fits of the data at two frequencies a factor of 5
apart with frequency-independent elastic constants. The fitting
parameter space is now reduced to three dimensions, spanned
by κ, μ, and KA ¼ μþ λ. The shear modulus μ is due to the under-
lying spectrin network, but the area modulus KA represents the
combined effect of that filament network and the surface tension
of the lipid bilayer. As the membrane is tensed in the transition
fromDCs to SCs due to loss of lipids (discussed further below) we
expect the surface tension contribution to λ (and thus to KA) to
increase dramatically. The contribution of the spectrin to λ can be
estimated since, for a triangular elastic network λ ¼ μ (27). Any
observed increase of λ over μ can thus be attributed to the surface
tension of the lipid bilayer.

The experimental data (thin lines) and the best fit of the aver-
age data (thick lines) are shown in Fig. 3 A–D. As can be seen, the
theory generates a very good fit to the data including at low
frequencies, where anticorrelated motion is observed in DCs
and ECs. Both at higher frequencies (red curves) and for stiffer
membranes (e.g. SC cells) these anticorrelations are strongly
suppressed. The magnitude of the correlation function at short
distances is particularly sensitive to the bending modulus κ and
its decay over longer distances is principally controlled by the
area compression modulus KA, allowing us to find a unique
set of parameters corresponding to the best fits.

The parameters extracted from these fits are shown in Fig. 4
A–D. Our fit for the bending modulus increases significantly dur-
ing the DC-EC-SC transition (p < 10−7; see Methods). Their
mean values are 5.6� 1.7 (DC), 9.6� 3.2 (EC), and 23.9� 6.7

(SC) in units of kBT (Fig. 4A). These values are in general agree-
ment with those expected for a phospholipid bilayer ð5–20ÞkBT
(28). In the DCs −ATP we find 6.7� 3.3 demonstrating that
nonequilibrium processes do not make a statistically significant
change to the curvature modulus. Since the bending modulus
is presumably controlled by the composition of the lipid bilayer,
we hypothesize that its increase implies changes in the lipid com-
position coincident with the observed morphological transitions.
We measured directly the change in surface area of RBCs during
the transition from DC to SC morphologies and found a 31%
decrease in surface area (not accounting for surface area stored
in fluctuations). From this topographical information we find that
the surface areas of the three RBC morphologies are, respec-
tively, 139.4 (DC), 143.4 (EC), and 96.3 (SC) in μm2. This surface
area decrease must be accompanied by loss of lipids, via micro-
vesiculation. Previous work indicates that vesiculation changes
the lipid chemistry of the RBC. After vesiculation, RBCs have
a higher cholesterol/phospholipid ratio and a lower phosphatidyl-
serine/phospholipid ratio compared to the exovesicles shed from
the parent RBCs (29). These changes in chemical composition
increase the bending modulus of the bilayer as lipids contributing
to the lower κ are preferentially shed in the microvesicles; the
observed changes in our fitted values of κ are in qualitative agree-
ment with this trend.

The shear modulus results are shown in Fig. 4B. They
are 7.4� 0.9 (DC), 10.4� 2.9 (EC), and 12.6� 2.1 (SC) in
μNm−1. These values are consistent with earlier work based on
micropipette aspiration (16), optical tweezers (30), and magnetic
twisting cytometry (6). In the latter case we find that, by assuming
the ferrimagnetic beads contact the membrane over a ð2.5 μmÞ2
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patch, our measured shear modulus (for DCs) quantitatively
agrees with the results of the twisting technique. In the DCs
−ATP we find a bimodal distribution of shear moduli with
one group having a value consistent with the DCs (6.6� 0.2)
and another consistent with the ECs (13.4� 0.3). We also ob-
served the overall morphology of the ATP-depleted DCs to tran-
sition to the EC form suggesting that the principal effect of ATP
depletion is to transform the mean cell shape presumably by al-
tering the coupling of the spectrin to the lipid bilayer. Of those
DCs −ATP having the softer shear modulus, we do not observe a
statistically significant change from the shear modulus of the
ATP-rich DCs suggesting that the nonequilibrium fluctuations
do not change these microrheological results at the length and
time scales studied. The magnitude of the measured shear mod-
ulus of the DCs is also consistent with simple elastic models of the
spectrin network. Thus, it appears that the dominant contribution
to the in-plane elastic constants of the composite membrane
comes from the spectrin. We calculated the shear modulus of a
disorder-free triangular network of worm-like chain elastic ele-
ments (31). Taking typical values for the lattice constant of the
network (90 nm) and persistence length (7.5 nm) (32), we find
that the network shear modulus of 5 μNm−1 requires a spectrin
contour of 197 nm. The previously published value of this quan-
tity is 194 nm (33, 34).

Although there is significant cell-to-cell variation, we find that
the mean shear modulus of SCs and ECs is roughly twice that of
the DCs (p < 10−5)—see Fig. 4B. While the histogram of shear
moduli of DCs can be fitted by a single Gaussian centered at
6.8 μNm−1, the analogous shear moduli distributions for ECs
and SCs are bimodal as shown in Fig. 4D. These data suggest that
there are essentially two independent conformations of the spec-
trin network: a soft configuration (μ ≈ 7 μNm−1) and a stiff one
(μ ≈ 12 μNm−1). All DCs have the soft configuration, but the
morphological transition to EC and then SC promotes the transi-
tion to the stiff network configuration. We speculate that the ob-
served morphological changes are accompanied by modifications
of either the spectrin elasticity, the connectivity of the network, or
its attachment to the lipid bilayer.

The area modulus results are shown in Fig. 4C. They are 15.5�
2.5 (DC), 31.7� 10.0 (EC), and 41.8� 10.3 (SC) in μNm−1. The
value for the DCs shows that the contribution of the lipid bilayer
surface tension to KA is small—λ≃ 1.1μ—suggesting a significant
reservoir of excess area. For the ECs and SCs lipid surface tension
dominates the area modulus—λ > 2μshowing that this excess
area has been severely reduced under the morphological transi-
tion. The area modulus of the DCs −ATP (23.9� 8.3 μNm−1) is
larger than that of the DCs and statistically consistent with that of
the ECs (31.7� 10 μNm−1). We attribute this to both a fluctua-
tion enhancement in the DCs due to active processes and to the
morphological transition from the DC to the EC form resulting
from ATP depletion. Our data cannot resolve these two effects.

Discussion
In summary, we employed diffraction phase microscopy to quan-
tify the undulations of RBC membranes and applied a mathe-
matical model to relate these fluctuations to the mechanical
properties of the membrane. We quantified RBC membrane me-
chanics during the DC-EC-SC cell shape transitions. Our method
benefits from a number of advantages over existing microrheolo-
gical techniques (35). First, DPM is noncontact, providing infor-
mation on membrane dynamics without the need of probe
particles (e.g. beads, cantilevers, etc.) (36). Our technique exam-
ines the spatial dependence of the membrane elasticity, which al-
lows for more detailed investigations of the cytoskeleton-bilayer
interaction. We found that there is a clear relationship between
RBC morphology and elasticity: The normal RBC is most com-
pliant, while the spherocyte is the least. The transition from DCs
to SCs is accompanied by a significant loss of lipid resulting in a

dramatic increase in the surface tension of the lipid bilayer and in
a change of its bending modulus (presumably due to a change in
lipid composition during exovesiculation); the area modulus of
the DCs, however, is primarily due to the spectrin network as is
the shear modulus. Nonequilibrium effects are confined to our
measurement of the area modulus as is reasonable since nonther-
mal fluctuations should alter the area reservoir of the membrane.
Since ATP depletion has multiple effects on living cells this role
of nonthermal fluctuations is difficult to quantify. A deeper un-
derstanding of this relationship between RBC shape and me-
chanics must incorporate chemical changes in the lipid bilayer
and structural changes in the associated spectrin network that oc-
cur along with the large-scale morphological changes of the RBC.
In addition to its clinical relevance, understanding these coinci-
dent morphological/mechanical transitions is fundamental to
membrane biology, RBC circulation, and basic studies of cellular
mechanics. Further, the RBC is a uniquely suitable model system
for studying viscoelastic membrane dynamics, with broad techno-
logical implications for encapsulation and drug delivery applica-
tions (37).

Methods
Preparation of Red Blood Cells. Blood samples were collected in vacutainer
tubes containing Ethylenediaminetetraacetic acid to prevent blood coagula-
tion. The whole blood was centrifuged at 2,000 g at 5 °C for 10 min to sepa-
rate the RBCs from plasma. The RBCs were then washed three times. The cells
were resuspended in an isotonic solution of PBS at a concentration of 10% by
volume. Droplets of the suspension were sandwiched between two cover
slips and imaged at room temperature. A total of 105 cells were imaged over
a period of 4 s, at a rate of 120 images per second: DC (N ¼ 35), EC (N ¼ 35),
and SC (N ¼ 35). Our samples were composed of normal, untreated RBCs.
However, cells with abnormal morphology formed spontaneously in the sus-
pension (ECs and SCs). RBCs were separated into three groups corresponding
to their shapes: DCs, ECs, and SCs. ECs can be classified into three types (type I,
II, and III) according to progressive stages in formation and maturation (38,
39). We have excluded type III ECs (with high speculation) and have analyzed
only type I and II ECs. For DCs −ATP group, the cytoplasmic pool of ATP was
depleted by incubating the DCs without glucose, in the presence of 5 mM
inosine (A3221, Sigma-Aldrich) and 3 mM iodoacetamide (I1024, Sigma-
Aldrich) for 2 h at 20 °C. On rare occasions, some cells do not sit flat on
the glass substrate, which is apparent from the profile of the phase image.
In order to avoid complications, we removed these cells from the batch. The
shape effects, i.e. tangential components of the fluctuations, were neglected
in our analysis, which is justified because they significantly affect only the
low-q region of our measurements.

Quantitative Phase Imaging of RBCs. We employed diffraction phase micro-
scopy (DPM) to obtain high-speed quantitative phase images of RBCs.
DPM employs the principle of laser interferometry in a common path geo-
metry and thus provides full-field quantitative phase images of RBCs with
0.2 nm optical path-length stability (15). The instantaneous cell thickness
map was obtained as hðx; y; tÞ ¼ ðλ∕2πΔnÞϕðx; y; tÞ, with λ ¼ 514 nm the
wavelength of the laser light used, Δn ¼ 0.06 the refractive index contrast
between the RBC and the surrounding PBS (38), and ϕ the quantitative phase
image measured by DPM. The DPM optical path-length stability corresponds
to a membrane displacement of 3.3 nm, which is the lower limit of our mea-
surable range, without using spatial or temporal averaging. An Arþþ laser
(514 nm wavelength) was used as the illumination source for an Olympus
IX71 inverted microscope. The microscope was equipped with a 40× objective
(0.65 NA), which grants a diffraction-limited transverse resolution of 400 nm.
With the additional relay optics used outside the microscope, the overall
magnification of the system was approximately 200. The interferograms
are captured by an electron multiplying CCD camera (PhotonMAX 512B,
Princeton Instruments, Inc.).

Membrane Displacement Analysis The instantaneous cell displacement map
Δhðx; y; tÞ was obtained by subtracting the time-averaged cell shape from
each thickness map in the series. We defined mean squared displacement
map as time-averaging of squared displacement map. For the height-height
correlation function C̄ðd;ωÞ, we first applied the Fourier transform spatially
and temporally to convert the cell displacement map Δhðx; y; tÞ into
Δhðqx; qy ;ωÞ, where qx , qy are the components of the wavevector in the
plane of the membrane. The spatial correlation function was obtained as
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C̄ðd;ωÞ ¼ ∫ jΔhðqx; qy ;ωÞj2 exp½iðqxx þ qyyÞ�d2q. The correlation functions,
C̄ðd;ωÞ, shown in Fig. 3 A–C were calculated assuming azimuthal symmetry
and using d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The very outer rims of all RBCs and the central

“dimple” of the DCs were masked out and thus excluded from the analysis.

Simplified Geometric Model of the RBC. Accounting for the role of the RBC’s
curvature is necessary to understand the observed membrane dynamics, but
the approximation of each cell by a sphere requires justification. While this is
a reasonable approximation of the global geometry of a SC, the EC is better
approximated as an oblate ellipsoid. The DCs can also be approximated in the
same way if one excludes the central “dimple.” In the latter two cases, we
approximate the global shape of the cells as best-fit spheres having a radius
Reff determined by the mean radius of curvature of the cell. For the discocytes
we mask out the fluctuation data from a circular domain of radius 1.3 μm
centered around the dimple so as to not includemembrane fluctuations from
regions having local curvatures greatly different from the mean. We com-
pute this best-fit or effective radius as follows: Assume that the radius of
an RBC’s projection on imaging (xy) plane is r and its average height above
that plane is h; denote t ¼ Reff − h. From geometry, we have t2 þ r2 ¼ R2

eff.
Thus, we can calculate the effective radius Reff using Reff ¼ ðr2 þ h2Þ∕2h.
From this we calculate from the cell images the following values for the
effective radii: ReffðDCÞ ¼ 7.22� 0.25 μm, ReffðECÞ ¼ 10.09� 0.7 μm, and
ReffðSCÞ ¼ 5.54� 0.7 μm.

RBCs have spatial variations of their local mean curvature, which we
ignore. We justify this approximation by noting that the data analysis

averages the fluctuation measurements over the entire cell surface, so these
local curvature variations are averaged over in the analysis. Secondly, even in
the cell morphology, having the most spatial variation in local curvature (DC),
the effective radius of curvature extracted from our fitting procedure out-
lined above is very close to the mode (i.e. most common) local radius of cur-
vature on the cell. Thus, the effective radius of curvature used reflects the
typical values on the surface. To demonstrate this point we examined the
spatial heterogeneity of local mean curvatures by calculating the local radius
of curvature in 240 nm × 240 nm patches over the visible cell surface of a DC.
The peak of the distribution is near to 1∕ReffðDCÞ ¼ 0.138 μm−1. The region of
negative curvature, the central “dimple” was excluded from our analysis.

Curve fitting for height-height correlation was carried out using MatLab
software and a custom built code by minimizing the mean square error. All
data were fitted in a batch procedure, with an identical limit and step for
each parameter. p-values are calculated by two-tailed Mann-Whitney rank
sum tests comparing bending modulus values between different groups.
All the numbers that follow the �sign in the text are standard deviations.
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