

Seminar on

Modern Optics and Spectroscopy

Thomas Brunold
University of Wisconsin

Spectroscopic and Computational Insights into the Biosynthesis and Reactivity of Adenosylcobalamin

March 16, 2004
12:00 – 1:00 p.m.

Abstract

The B_{12} cofactor adenosylcobalamin (coenzyme B_{12} ; the biologically active form of vitamin B_{12}) has long fascinated chemists with its unparalleled structural complexity and unusual reactivity in biological systems, involving homolytic cleavage of the organometallic Co–C bond to produce Co^{2+} -cobalamin and an adenosyl radical. We utilize a combined spectroscopic/computational methodology to explore two fundamentally different, though complementary, aspects of B_{12} research; namely, the mechanism of biological Co–C bond *formation* in the adenosylcobalamin biosynthesis and the factors by which B_{12} -dependent enzymes accelerate the rate of homolytic Co–C bond *cleavage* by \sim 12 orders of magnitude without significantly enhancing undesired Co–C bond heterolysis.

Grier Room, MIT Bldg 34-401
Refreshments will be served