LA-UR-08-03736

UNCLASSIFIED

Safeguards Approaches for Gas Centrifuge Enrichment Plants

LANL Safeguards Systems Course – PILOT 2008

Brian D. Boyer

Los Alamos National Laboratory

Nuclear Nonproliferation Division

July 1, 2008

UNCLASSIFIED

What is Safeguards? REVIEW! INFCIRC 153 Para. 28: The Safeguards Technical Objective

- The objective of safeguards
 - The timely detection...
 - Of diversion of significant quantities...
 - Of nuclear material

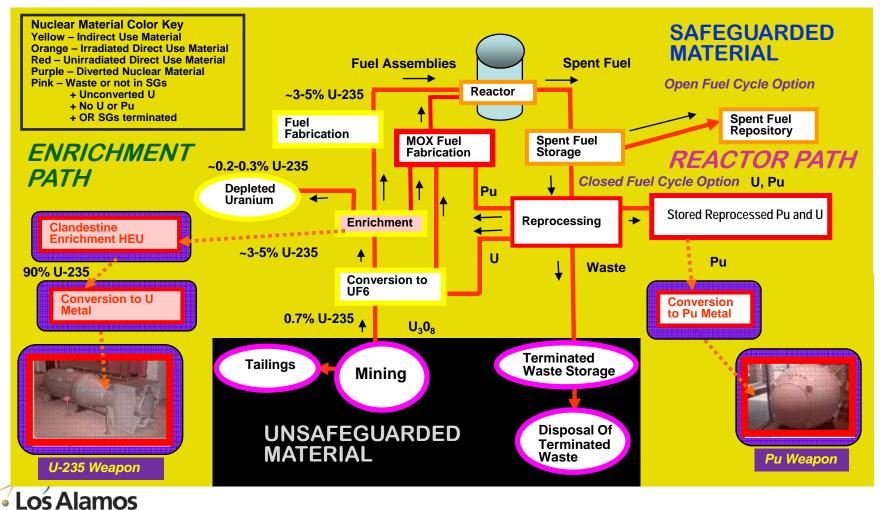
NOTE:

- Timeliness
- Significant Quantities

The World's Greatest Science Protecting America

Timeliness and Goal Quantities Relevant to Gas Centrifuge Enrichment Plants (GCEPS)

MATERIAL CATEGORY	EXAMPLE	Amount of SQ	TIMELINESS GOAL
Unirradiated Direct- Use (Undeclared in GCEPs)	HEU UF6	U-235 = 25 kg	1 month
Unirradiated Indirect-Use (Declared in GCEPs)	LEU UF6 NU UF6 DU UF6	U-235 = 75 kg	1 year

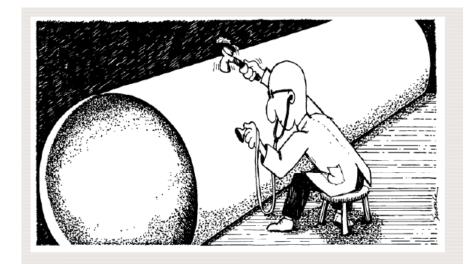

NOTE: HEU = U enriched in 235 U >20% (HEU Weapons Grade ~>90%) LEU ~4-5% Enriched NU = 0.711% Enriched DU ~ 0.2-0.3% Enriched

UNCLASSIFIED

Nuclear Fuel Cycle – Proliferation Aspects

UNCLASSIFIED

The World's Greatest Science Protecting America


NATIONAL LABORATORY

EST. 1943

IAEA Accountancy Verification Methods

- Three levels of defects to detect with NDA Instruments:
 - Gross defect
 - Partial defect
 - Bias defect
- Examples in GCEPS:
 - Gross defect
 - > No U present
 - Partial defect
 - Lower ²³⁵U content
 - Part of U missing
 - Bias defect
 - Lower ²³⁵U content bias

The World's Greatest Science Protecting America

Verification Measurements at GCEPS (Safeguards Criteria - Section 8)

MATERIAL CATEGORY	MAIN STRATUM	MATERIAL TYPE COMPONENT	DEFECT TYPE	DEFECT DESCRIPTION	MEASURE- MENT REQUIRED	APPLIC- ABLE METHODS	RECOMMENDED INSTRUMENTS
USE (UI	UF6 Cylinder (UF)	LEU	GROSS	No Uranium	Uranium Presence	Н	ACOUSTIC + MMCN or MMCG
			PARTIAL	Lower U-235 Content	U and U-235 Content	B+F	LCBS+MMCG+ULTG, LCBS+MMCN
			BIAS	U content Bias	U and U-235 Content	B+D	LCBS+ DA
		NU	GROSS	No Uranium	Uranium Presence	Н	ACOUSTIC + MMCN or MMCG
			PARTIAL	Part of Uranium Missing	U Content	B+H	LCBS+MMCG+ULTG, LCBS+MMCN
			BIAS	U content Bias	U and U-235 Content	B+D	LCBS+ DA
		DU	GROSS	No Uranium	U and U-235 Content	Н	ACOUSTIC + MMCN or MMCG
			PARTIAL	Part of Uranium Missing	U Content	B+H	LCBS+MMCG+ULTG, LCBS+MMCN
			BIAS	U content Bias	U and U-235 Content	B+D	LCBS+ DA
	Waste (WA)	LEU/NU/DU	GROSS	No Uranium	Uranium Presence	Н	MMCN,MMCC,HM-5
	UF6 in Cascade	LEU/HEU		U-235 Enrichment ≥ 20%	Absence of HEU	H,D	CHEM.CEMO,DA

UNCLASSIFIED 6

Operator/Inspector Measurement System -Definitions

Total (relative) measurement uncertainty $\delta_i = ({\delta_0}^2 + {\delta_l}^2)^{1/2}$

METHOD CODES	INTERPRETATION	RELATIVE ERROR RANGES	DETECTABLE DEFECT SIZE	
4	Quantitative through NDA (Verification in the attribute mode using the least accurate method), or	$0.0625 < \delta_i \le 0.125$	GROSS	
	Qualitative through NDA (e.g. Cerenkov, bundle counter)	Error can not be assigned	GROSS	
=	Quantitative through NDA (Verification in the attribute mode using a better accurate method)	0.010 <δ _i ≤ 0.0625	PARTIAL	
E	Quantitative through NDA (Verification in the variables mode using the most accurate method) e.g. K-edge densitometer	δ _i ≤ 0.01	BIAS	I
)	Quantitative through DA (Verification in the variables mode using the most accurate method)	$\delta_i \leq 0.01$	BIAS	<u>b</u> .

The World's Greatest Science Protecting America

Characteristics of GCEPS

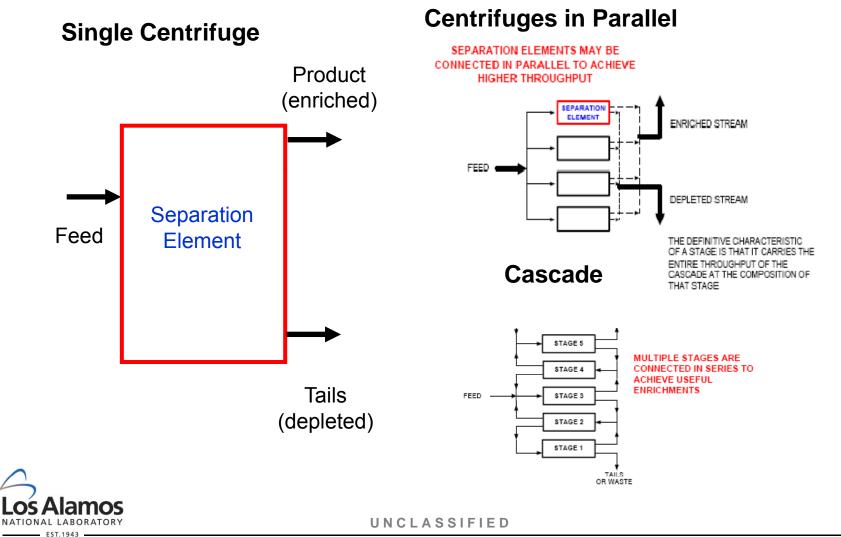
• Usually many unit cascades connected in parallel

- Large stage separation factor
- Small specific inventory
- Short equilibrium time

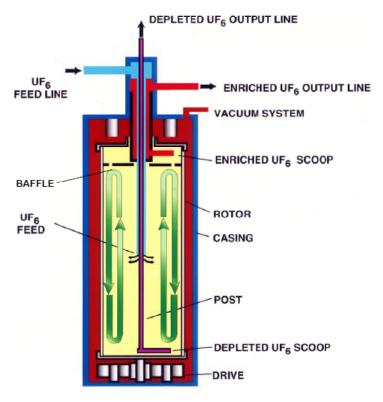
Feed, product, and tails are UF₆

- UF₆ cylinder qualities
 - > Weighed, sampled and analyzed with high precision and accuracy
- Define U strata as F=UFN, P=UFE, T=UFD

• Material balance dominated by flows, not inventories

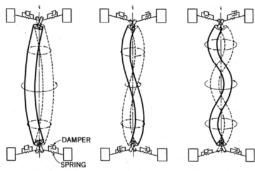

- Cascade gas-phase inventory & solid holdup usually very small
- Waste streams usually very small
- UF₆ in process vessels Well-measured using "switchover" at PIV

UNCLASSIFIED



Centrifuges and Cascades - Theory

What is a Centrifuge?



Schematic of Gas Centrifuge

The World's Greatest Science Protecting America

MODE SHAPES OF FIRST THREE FLEXURAL CRITICALS OF A CENTRIFUGE ROTOR

MODE

FIRST CRITICAL MODE

SECOND CRITICAL THIRD CRITICAL MODE

What is a UF6 Cylinder? Safe Storage of UF6

30B Product (2.5 ton)- Product

URENCO GCEP Gronau, Nordrhein Westfalla, Bundesrepublik Deutschland

Sealed Feed Product Tails **Samples Stored**

Cascade Halls

Offices for **Meetings** and **Cabinets for IAEA Equipment** and **LFUA Diagrams** and Photos

LEU Product Store

Operator's Scale for Feed And

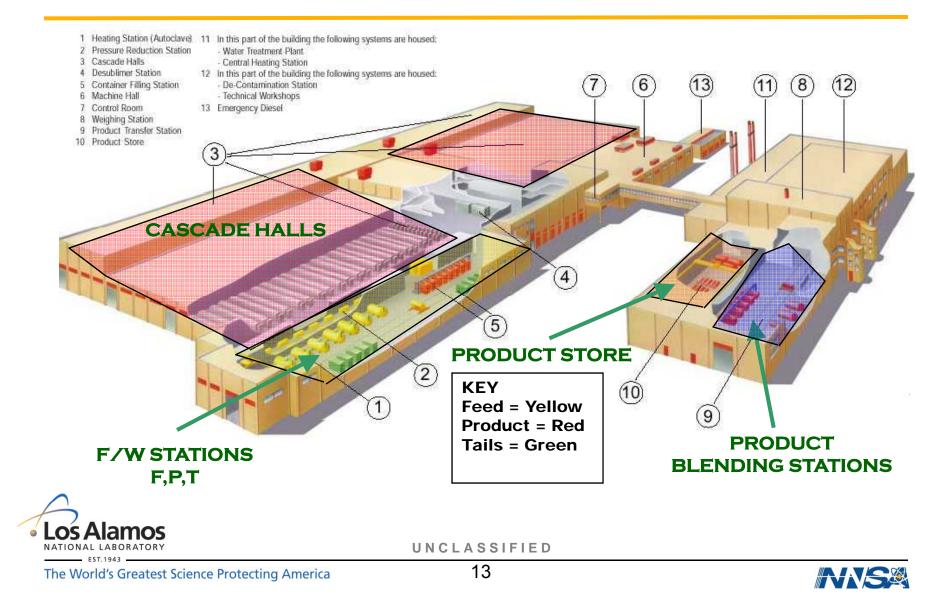
Guard Shack – IAEA Inspector Badging and Dosimetry

Depleted Uranium Tails Store

Product

Operator's Scale for

LEU Product Blending


Natural Uranium Feed Store

Gas Centrifuge Enrichment Plant (GCEP) Process Areas

Safeguards Goals at GCEPs Goal Quantity and Timeliness

• Significant Quantity (SQ) Defined

- Natural Uranium= 10 MT NU
- Depleted Uranium= 20 MT DU
- LEU = 75 kg ²³⁵U
- HEU = 25 kg ²³⁵U

Timeliness of Material

- Related to conversion time to weapon
- DNLEU = 1 YEAR
- HEU = 1 MONTH

"Timeliness" - Material Guidelines

Nuclear Material	Material Form	Conversion Time	IAEA Timeliness Goals
Pu, HEU or U-233	Metal	few days (7-10)	
Pure Pu components	Oxide (PuO ₂)	few weeks (1-3)	
Pure HEU or U-233 compounds	Oxide (UO ₂)	few weeks (1-3)	1 MONTH
MOX	Non-irradiated fresh fuel	few weeks (1-3)	
Pu, HEU or U-233	In scrap	few weeks (1-3)	
Pu, HEU or U-233	In irradiated fuel	few months (1-3)	3 MONTHS
LEU and Th	Unirradiated Fresh Fuel	order of 1 year	1 YEAR

The World's Greatest Science Protecting America

Safeguards Concerns at LEU GCEPs

- Production of a SQ of undeclared HEU (≥20% U-235)
- Diversion of a SQ of declared LEU, NU, or DU
- Production of LEU in excess of declared amounts

The World's Greatest Science Protecting America

LA-UR-08-03736

UNCLASSIFIED

IAEA Detection Goals

- Detection of HEU (≥20% U-235) Production
- Detection of Diversion of LEU (<20% U-235)
- Detection of Diversion of NU and DU

The World's Greatest Science Protecting America

IAEA HEU Production Detection Goals

- Detection of HEU (≥20% U-235) Production
 - SQ = 25 kg U-235 contained in HEU
 - Detection within one month
 - Detection probability = high confidence (HSP report)

IAEA Diversion of LEU Detection Goals

- Detection of Diversion of LEU (<20% U-235)
 - SQ = 75 kg U-235 contained in LEU
 - Detection within one year
 - Detection probability = 50%

The World's Greatest Science Protecting America

IAEA Diversion of NU/DU Detection Goals

- Detection of Diversion of NU and DU
 - SQ = 10 MT of NU, 20 MT DU
 - Detection within one year
 - Detection probability = 50%

The World's Greatest Science Protecting America

Hexapartite Safeguards Project (HSP) Historical Background on Key GCEP SG Developments

• HSP convened to:

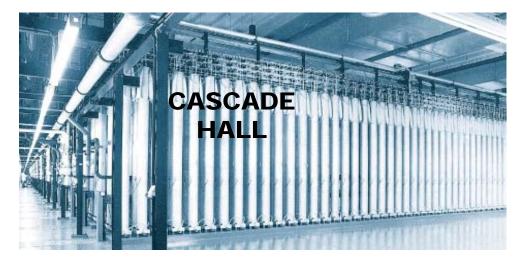
- Establish an effective and efficient safeguards approach for LEU GCEPs
- Under INFCIRC/153-type agreements

Participants included

- US
- Japan
- Australia
- UK, Germany, Netherlands➤ "The Troika"
- IAEA and Euratom

• Study lasted from November 1980 to March 1983

HSP Resulting Guidance


- Established SG approach that is backbone of current SG Criteria
- Measures outside cascade halls to detect diversion of uranium
- Measures inside cascade halls-detect HEU production-Use LFUA
- Operator holds feed, product, and tails cylinders for verification
- HSP did <u>not</u> address question of undeclared feed

Limited Frequency Unannounced Access (LFUA) DIV Technique for HEU Detection

• (LFUA) Inspections to Cascade Halls

- Access is on a random, unannounced basis
- Access must be provided within 2 hours of request
- Performed 4 -12 times per year (facilities <1000MTSWU/yr)

The World's Greatest Science Protecting America

Measures to Detect Undeclared HEU Production

LFUA - Verification Measures include:

- Visual observation
 - Detect presence of unreported F/W equipment within cascade areas
 - Detect piping changes indicative of connecting cascades in series
- NDA measurements on header piping
 - Cascade Enrichment Header Monitor (CEMO)
 Detects HEU
 - Only operates at Capenhurst (QCAX)

- Obtaining of UF₆ samples from cascade
 - Analyze for enrichment
 - Rare event!

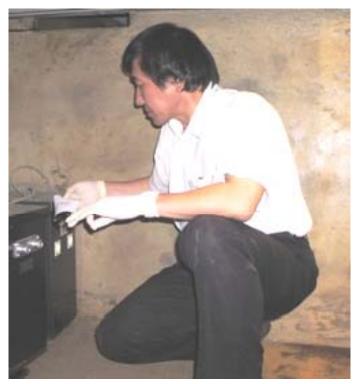
The World's Greatest Science Protecting America

Environmental Sampling (ES)

- Potentially a very powerful technique
- Baseline samples need to be taken
- Field trials have occurred

 Including sampling inside cascade halls

- Can detect increasing enrichments as cascades brought on line
 - Peter Friend (URENCO) confirmed this statement
- Operators did not take special measures to prevent UF₆ releases


The World's Greatest Science Protecting America

GCEP Environmental Sampling Points

- Header pipe connections
- Sampling stations
- Chemical traps
- F/W connections
- Surfaces of carts

The World's Greatest Science Protecting America

IAEA Measures to Detect Diversion of Uranium

• Inspection regime includes:

- Annual PIT/PIV
- 11 monthly interim inspections for flow verification
- IAEA verifies feed, product, and tails cylinders receipts and shipments
 - OPERATOR holds feed before feeding to process
 - > OPERATOR holds tails and product before shipment off-site
- Auditing of records and reports (ICR, PIL, MBR)
- Verification of nuclear material quantities (flows and inventories)
- Material balance evaluation
- Application of seals to UF₆ cylinders

Verification of Nuclear Material Quantities

- Inventories at PIV
 - UF₆ cylinders in storage yards
 - UF₆ cylinders
 - Connected to cascades
 - In process vessels (F/W stations)

Flows at Interim Inspections and PIV

- Feed, product and tails UF_6 in cylinders
- Minor waste streams (trap material, etc.)

The World's Greatest Science Protecting America

Verification of UF₆ Feed – Product - Tails

• Weights of UF₆ Cylinders

- Verify weight of full cylinder by:
 - IAEA load-cell system (LCBS)
 - Authenticate operator scales
 - Use IAEA check weight
- Can weigh cylinders to about 1-2 kg
- Empty cylinder weights usually not verified

• UF₆ Enrichment Measurements

- Gamma-ray NDA determine enrichment at gross- and partial-defects level
- Sampling and DA determine enrichment at bias-defect level

The World's Greatest Science Protecting America

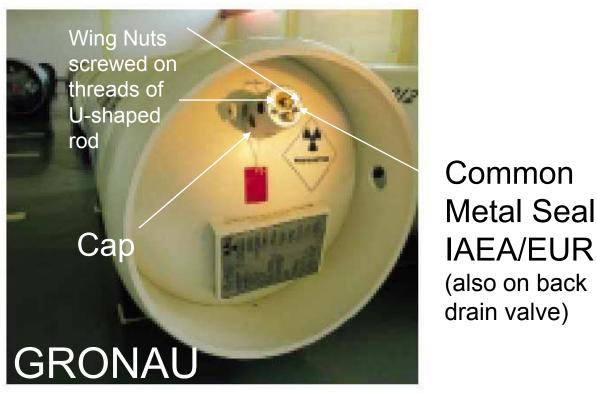
Instruments for Gamma-Ray NDA Measurements

- Nal(TI)/PMT (MMCN)
 - Usually used for NU feed and DU tails
 - $\delta_2 \sim 10-20\%$ for NU
 - $\delta_2 \sim 25-50\%$ for DU

- HPGe (MMCG) + ultrasonic thickness gauge (ULTG)
 - Used for LEU product and sometimes for NU, DU
 - Cooled by liquid nitrogen
 - $\delta_2 \sim 5\%$ for LEU

Ge Detector

Shield/Collimator-


The World's Greatest Science Protecting America

30

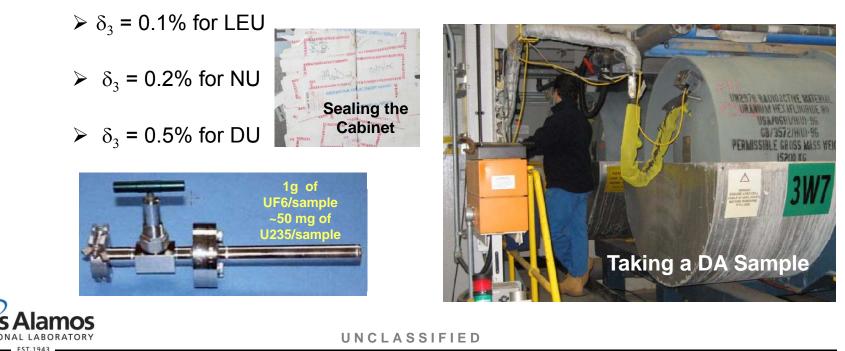
Example of Sealed LEU Product Cylinder

Maintaining "CofK"

Inspected and Sealed Product-Container

The World's Greatest Science Protecting America

UNCLASSIFIED



IAEA/EUR

(also on back

Sampling and DA of UF₆

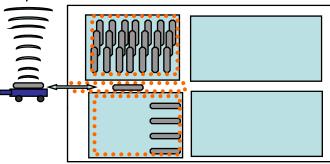
- Physical sample $UF_6 \rightarrow IAEA$ selects cylinder operator samples
- Samples to IAEA Safeguards Analytical Laboratory at PIV
- U-235 concentration by Thermal Ionization Mass Spec (TIMS)
 - ITV Values for uncertainty for TIMS

A Critique - Weaknesses in Existing Approach

- No significant measures to detect undeclared feed
- At least one LEU diversion scenario not covered
- Unable to meet detection goals for large throughput plants
- New, large centrifuges make it more difficult to see piping
- New cascade designs are less transparent than before

The World's Greatest Science Protecting America

Future? Potential HEU Diversion Detection Techniques


- Enhanced inspector access inside cascade halls
- Enhanced video surveillance inside cascade halls
- Video/radiation monitoring of cascade hall access doors
- NDA measurements on piping inside the cascade halls
- Radiation monitors inside cascade halls
- Installation of unattended monitoring system at the F/W stations
- Enhanced inspector access to buildings on the plant site

Future Safeguards Measures Introducing Process Monitoring

- Partial Defect verification each cylinder
 - Centralized "Cylinder Portal Monitor" *
 - Distributed systems
 - The cylinder identification (ID)
 - Gross weight
 - Enrichment of UF6

• Surveillance of UF6 handling area

- Electronic seals
 - On product and tails cylinders leaving process

The World's Greatest Science Protecting America

Potential Excess LEU Production Detection Improvements

Present Possibilities and Future Tech

- Detect undeclared feed cylinders concurrent with
 - LFUA inspections
 - Establish SNRI regime (SNRI+LFUA)
- "Mailbox" declarations of declared cylinder operations
- Unattended monitoring system Process Monitoring
 - Enrichment at feed, product, and tails stations
 - Load cells at feed, product, and tails stations
- Detect undeclared UF₆ Streams in cascade halls
 - Enhanced inspector access inside cascade halls
 - Enhanced video surveillance inside cascade halls
 - Video/radiation monitoring of cascade hall access doors

Summary of GCEPS Safeguards

- GCEPS safeguards manpower intensive
- Desire to close gaps on undeclared feed
 - Operator "no one would ever divert undeclared LEU product"
- Mailbox and SNRI trials at Gronau "next step"
- Unattended monitoring system in development
 - RFIDs

LA-UR-08-03736

- Process Monitoring
- Sensitive technology!

The World's Greatest Science Protecting America

