Identification of Chirality-Dependent Adsorption Kinetics in Single-Walled Carbon Nanotube Reaction Networks

Research areas:
  • Uncategorized
Year: 2010
Type of Publication: Article
  • Kejia Chen, Michael S. Strano Nitish Nair
Journal: Journal of Computational and Theoretical Nanoscience Volume: 7
Number: 12 Pages: 2581-2585
Month: DEC 2010
PT: J; SI: SI; TC: 1; UT: WOS:000283899300012
Single-walled carbon nanotubes (SWNTs) are carbon allotropes with electronic structures that vary with the diameter and helical wrapping of the constituent graphene sheet, which characterize the SWNT chiraility. A computationally efficient numerical algorithm is derived for determining chirality-dependent adsorption rate constants in chemical reaction networks of SWNTs. A set of decoupled differential equations is derived for the total molar composition of vacant sites for the SWNTs of various chiralities, which requires no assumptions with regard to quasi-steady-state or the relative rates of adsorption and subsequent chemical reactions. Identifiability analysis indicates that quasi-steady-state operation results in the loss of information on the individual reactivity so that only the ratios of the adsorption rate constants can be estimated. Such SWNT reaction network models can be used to maximize sensitivity and selectivity in biosensors, manipulate the electronic properties of SWNTs in nanotube-based field effect transistors, and maximize the efficiency of electronic structure-based separations of SWNT mixtures.