Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes

Research areas:
  • Uncategorized
Year: 2009
Type of Publication: Article
  • Yun Jung Lee, Woo-Jae Kim Hyunjung Yi
Journal: Science Volume: 324
Number: 5930
Month: MAY 22 2009
PT: J; TC: 181; UT: WOS:000266246700036
Development of materials that deliver more energy at high rates is important for high-power applications, including portable electronic devices and hybrid electric vehicles. For lithium-ion (Li(+)) batteries, reducing material dimensions can boost Li(+) ion and electron transfer in nanostructured electrodes. By manipulating two genes, we equipped viruses with peptide groups having affinity for single-walled carbon nanotubes (SWNTs) on one end and peptides capable of nucleating amorphous iron phosphate (a-FePO(4)) fused to the viral major coat protein. The virus clone with the greatest affinity toward SWNTs enabled power performance of a-FePO(4) comparable to that of crystalline lithium iron phosphate (c-LiFePO(4)) and showed excellent capacity retention upon cycling at 1C. This environmentally benign low-temperature biological scaffold could facilitate fabrication of electrodes from materials previously excluded because of extremely low electronic conductivity.