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Introduction

Before the early part of the nineteenth century only three quantitative laws
were known in optics: the law of reflection, SNEL’s law of refraction, and
HUYGENS’ construction for the peculiar “double refraction” (now termed bire-
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fringence) by the crystal Iceland spar. Although HUYGENS’ construction is now
known to be quite as accurate as the other two laws, nevertheless for over a
hundred years it was not accepted. The phenomenon itself, however, was well
known, and during the eighteenth century various alternative laws were offered
for it. This widespread rejection of an accurate law—HUYGENS’ construction
—in favor of less accurate laws poses an interesting problem for the historian of
optics. Was it simply the case that, during the eighteenth century, scientists
rejected the construction on the sole basis that it was an implication of wave
theory, which few among them accepted? It is certainly true that several among
them regarded the construction as uniquely an implication of HUYGENS® wave
theory. Or were there in fact difficulties of calculation, experimental technique
and the interpretation of observations which, in this period, were sufficiently
acute to cast reasonable doubt on the construction’s empirical adequacy?

My purpose in this article is not to examine theoretical discussions of double
refraction —of which there were, in any case, almost none except HUYGENS’
before the early nineteenth century—but rather to examine in some detail the
experiments performed and laws offered for the phenomenon between 1690, the
year of the publication of HUYGENS’ Traité de la Lumiére', and 1807, when
MALUs confirmed the construction beyond all doubt in a series of extremely
accurate experiments. The history of experiments on double refraction is partic-
ularly interesting for three major reasons; taken together, these reasons demon-
strate that contemporary antagonism towards HUYGENS’ construction based on
theoretical reasons was not the main, or perhaps even a very important, factor in
its rejection before 1807. First, experimental investigations of double refraction
provide striking examples of the way in which a law, however accurate it may
eventually prove to be, can remain problematic for lengthy periods during which
experimental techniques are not sufficiently advanced to provide incontrovert-
ible evidence for it. Second, the mathematical language in which the law is
expressed —geometry in the case of HUYGENS’ construction —may not in fact be
readily applicable to contemporary experiments, and this can—and in HUY-
GENS’ case did — preclude testing the law in its full generality until it is expressed
in a different language (e.g. analysis). Finally, we will see that HUYGENS’
construction, when tested according to one common procedure of the time, does
in fact conflict with experiment for reasons which concern the particular
structure of the observational technique. Convincing confirmation for the con-
struction could be obtained only with new techniques. Yet we shall also see that,
when one such technique did become available early in the nineteenth century, it
was incorrectly applied and could not actually be used to confirm every aspect
of the construction. It was precisely this fact that was realised by MALUS and
led him to his highly accurate experiments.

Previous histories of double refraction have for the most part emphasised the
importance of the phenomenon for HUYGENS’ wave theory, which was un-

! The sole English translation is that of S.P.THOMPSON (Treatise On Light, 2ed.
Chicago, 1950; hereafter references are to the THOMPSON translation in this edition). The
Traité is reproduced in its original French in HUYGENS, (Buvres complétes 19 (The
Hague, 1937), pp. 457-537.
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questionable in view of the principle of secondary waves?, or they have related it
to the development of corpuscular optics in France in the early 1800’s (see notes
49 and 51). My intention here is to provide for the first time a discussion of the
empirical context in which theory developed. Theory, after all, does not come to
be in an empirical void nor does it develop in isolation from observational
technique. In fact, full historical understanding, in the case-of double refraction
at least, requires not merely that we be concerned with experiment but also that,
where possible, we replicate the observations that were made. Only by doing so
can we hope to understand the difficulties of calculation and observation which
persisted for more than a century and which, we shall see, were substantially
responsible for the long rejection of HUYGENS’ construction, that most accurate
of laws. I have accordingly replicated—and in this instance it is possible to
repeat many of the experiments with historical precision—both HUYGENS’
measurements and several of the tests that were made of his construction. Where
I could not do so for lack of precise historical apparatus I have instead carried
out calculations which reveal a number of historically significant characteristics
of the experiments.

1. Huygens’ calculation of the crystallographic angles

In his 61-page Experimenta® ERASMUS BARTHOLIN described the basic
structure of Iceland spar, measured the facet angles, and qualitatively discussed
the refractions. HUYGENS was fully acquainted with the Experimenta, but from
it he took mainly the gross fact of double refraction. To understand precisely
what HUYGENS claimed, and how he confirmed his claims, we shall begin by
considering how he determined the crystallographic angles. Instead of
BARTHOLIN’s measures of 101°, 79° for the facet angles, HUYGENS found
101°52', 78°%'. Unlike BARTHOLIN, he did not measure either angle directly; he
calculated them, and every other crystallographic angle, from a single measure-
ment that is much more exact than any measurement of a facet angle can be*,

In figure 1 (which is given on p. 100 of THOMPSON’s translation; like every
other figure in the translation it is a direct copy of the corresponding one in
HUYGENS’ Traité), the crystal facets are as they usually occur in nature, i.e. as
parallelograms which are not equilateral. In the upper facet AD'BC, < ACB and
<AD’B are obtuse, so that <D'AC and <D'BC are acute. The solid obtuse
angle whose vertex is C is diagonally opposite the other solid obtuse angle,
vertex E. To find the facet angles, one can try to measure them directly, and
BARTHOLIN did, but, as HUYGENS remarked, this is “difficult to do with
ultimate exactitude because the edges such as CA, CB, in this figure, are
generally worn, and not quite straight”>. But one can very accurately measure

2 A.SHAPIRO, ‘Kinematic Optics: A Study of the Wave Theory of Light in the
Seventeenth Century’, Archive for History of Exact Sciences, 11 (1971), pp. 134-226.

3 ERASMUS BARTHOLIN, Experimenta Crystalli Islandici Disdiaclastici quibus Mira &
Insolita Refractio detegitur (Hafniae [Copenhagen], 1669).

4 Treatise, pp. 99-100.

3 Ibid., p. 99.
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the obtuse angle in which facets CBD'A, CBV'F meet, because the facets are
generally quite smooth. That was HUYGENS’ single crystallographic measure-
ment; he found the angle, <OCN in the figure, to be 105°. To find the values of
the other angles from this one, HUYGENS described a sphere with vertex C as
center and which is cut by ACBD' in the arc A'I, by ACFM in the arc A'F’, and
by BCFV' in the arc F'I. Each arc is a segment of a great circle since the three
cutting planes intersect at C, so that A'F'I is a spherical triangle. Applying
spherical trigonometry HUYGENS then found:

obtuse facet angle=101°52", <CFH=T0°57, and <GCH =45°20.

(CH is the intersection of the three planes — called principal sections —
which are respectively perpendicular to the three facets which meet at C and
which bisect the obtuse facet angles.) These three angles were calculated from a
single measurement (<OCN) coupled with the fact that the facets are equally
inclined to one another. They are the first observational parameters of the
theory. Having briefly considered how HUYGENS dealt with the crystal’s struc-
ture, let us now turn to his description of the most readily observable optical
phenomena which it produces.

2. Preliminary results

HUYGENS began his discussion with a qualitative explanation of the images
of luminous or marked points seen through the crystal (figure 2)%. For example,
covering the surface ABCD, leaving only a small hole at K, HUYGENS remarked
that two rays are formed from a ray incident normally along IK. One ray, KL,
goes straight through the crystal without deviation, and the other or ‘extraor-
dinary’ ray, KM, lies in the principal section and is inclined to KL within the
crystal; at emergence it is refracted back along the facet normal. The angle
between KL and KM is, HUYGENS remarked, 6°40'; we will consider below how
he deduced optical angles from observation. From this it is simple to understand
the appearance of a point marked at L on the base of the crystal. L will be seen,
with the eye at I, by the extraordinarily refracted ray RI and by the ordinary ray
KI. Observations of this sort, HUYGENS noted, led him to conclude that there

6 Treatise, section 7, chap. 5.
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are two refractions, one of which follows the ordinary rule, though the other
does not. That is, one of the rays obeys SNEL’s law, but the other cannot be fit to
the law even if it is assigned a different index of refraction.

HUYGENS never measured an optical angle directly. It evidently did not
occur to him to construct a device akin to a vertical protractor with sights
(though, as we shall see, MALUS did precisely that in the early 1800’s) or else he
was satisfied with the accuracy of his simple measuring technique. Instead,
HUYGENS developed a technique that permits angles to be deduced by using
only ruler, pen, and paper (and a table of trigonometric functions). Though
HUYGENS did not specify the divisions on his ruler, they could not have been
much smaller than a millimeter, nor could they have been much larger consider-
ing the accuracy he attained. The technique is central to the contemporary
observational basis of HUYGENS’ theory, and it has also enabled me to replicate
HUYGENS’ experiments using crystals 17.5mm and 39mm in height kindly
provided by Professor STILLMAN DRAKE.

On a “thoroughly flat table” (figure 3) a leaf of paper is fixed, and a line. AB
is drawn upon it’. Two other lines, CD and KL, are drawn perpendicular to 4B
at a small distance from one another. The crystal is so placed that AB either

7 Treatise, section 12, chap. 5. I have added angles o and S.
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bisects the obtuse angle of the lower surface or is parallel to its bisector; the
crystal’s right vertical edge lies between CD and KL. To measure the index of
refraction of the ray that obeys SNEL’s law — the ‘ordinary’ ray — HUYGENS first
placed one eye (the other closed) in the plane of the principal section. He then
moved it, always remaining in this plane, until the ordinary refraction of the line
CD (which is distinguished by the fact that it remains stationary as the crystal is
rotated) became collinear with the segments of CD which lie outside the crystal.
This put his eye directly above point E, along the line EI. A point H on the
upper facet coincident with the image of E was then marked. Keeping the eye in
the principal section, HUYGENS moved it towards G until the ordinary re-
fraction of CD became collinear with the segments of KL which are visible
outside the crystal. The point N on the surface coincident with the image of E
was marked. By direct observation HUYGENS therefore had the distances EM,
NH, and he could measure the height EH of the crystal. ’
On a separate sheet of paper draw the line AB with E and M marked off, and
draw EH normal to AB at E. Draw also the line MN, which intersects EH at P,
and connect points N and E. The angle « is equal to the angle of refraction,
<NEP, of ray ON, and f, the angle of incidence, is equal to <NPH. Con-

" NH |[NH EN
. . . . . NH |NH EN .
sequently the index of refraction, sin f/sina, is equal to NP / EN — NP The

accuracy of the ratio depends on the height of the crystal since, the higher it is,
the greater NH will be, and the less will inaccuracies affect the ratio. Thus with
my small crystal (17.5mm) I find that EN/NP is about 4.9/3; with my large
crystal (39 mm) I find 5/3, as did HUYGENS, whose own crystal was about 40 mm
in height®. ’

Applying the same measuring technique to the extraordinary refraction (here
the ray RE is extraordinary), HUYGENS found that ER/RS, the measure of its
index, is not constant but varies with the angle of incidence, so that this ray does
not obey SNEL’s law. However, the simplicity of the technique enabled HUY-
GENS to discover a law that applies to the extraordinary refractions of any two
rays, incident in the principal section at the same point, and equally but
oppositely inclined to the normal (figure 4)°. In the figure, GCFH is the

8 HUYGENS possessed a piece of crystal weighing half a pound.
9 Treatise, section 16, chap. 5. T have omitted one line from the diagram and added
points W and Y. I shall call what follows the law of equal deviations.
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principal section, and C is the vertex of the upper solid obtuse angle. If VK, SK
are rays of equal but opposite inclinations to the normal IK, then the respective
points X, T at which each strikes the base of the crystal are equidistant from the
point M of the base which is intersected by the extraordinary refraction of a
normally incident ray IK. KM is of course inclined towards the obtuse angle
~GCF of the principal section. This was the first law HUYGENS gave for the
extraordinary refraction, and he later deduced it from his general construction.

Having determined some of the basic optical properties, HUYGENS explained
that it occurred to him that there might be two systems of waves within the
crystal, one of which is spherical, and which therefore possesses the properties of
ordinary refraction, though the other is ‘elliptical’ or ‘spheroidal’. These last, he
reasoned, would spread through both the ethereal matter within the crystal and
through the particles of which the crystal proper is composed:

It seemed to me that the disposition or regular arrangement of these
[crystal] particles could contribute to -form spheroidal waves (nothing more
being required for this than that the successive movement of light should
spread a little more quickly in one direction than in the other) and I scarcely
doubted that there were in this crystal such an arrangement of equal and
similar particles because of its figure and of its angles with their determinate
and invariable measure!°.

In order to locate precisely what HUYGENS did, and what he did not,
confirm, we must extract from his analysis the laws that enable the refractions to
be calculated. Since these laws depend directly upon the proportions of the
spheroid, I shall first examine how he deduced the parameters of that surface.
Following this, I shall discuss his first, limited law for the refraction of a ray
incident in the principal section; I will not, however, examine his proof of the
law since we are presently concerned solely with the empirical status of the
theory. With this law in hand, we will be able to understand the significance of
HUYGENS’ first (and only) stated numerical confirmation of the theory.

3. The proportions of the spheroid

From the outset HUYGENS assumed that the spheroid was a solid of
revolution. The problem was to determine the orientation and proportions of
the axes. HUYGENS knew that, for a given angle of incidence, the extraordinary
refraction is precisely the same if the plane of incidence contains or is parallel to
any of the three principal sections of the crystal. His intention was to use the
spheroid just as he had previously used a sphere in isotropic bodies; that is, he
intended to determine the extraordinary refractions by the plane sections of the
spheroid (see AppendixI). Consequently the only way in which the three
principal sections could produce the same refractions was if each sectioned the
same curve in the spheroid. For that to be possible, the sphéroid’s axis of
revolution had to lie in all three principal sections, i.e. it had to be CH in

10 Tieatise, p. 62.



318 J.Z. BUCHWALD
C G
0 /
) N/t s -
D M L z H
Fig. S

figure 1. Hence the axis of revolution is equally inclined to each of the edges of
the crystal. The orientation of the axis is therefore entirely determined by the
fact that the refractions are identical in the principal sections.

Figure 5'! is a principal section; CS is the axis of revolution, hereafter called
the optic axis, for reasons which will presently be clear. The generating ellipse is
so constructed that M H, parallel to the crystal facet, is tangent to the ellipse at
M, where <MCL is 6°40". This is obviously required by the extraordinary
deviation of a normally incident ray. HUYGENS set CM equal to 100000 as a
reference for calculating CS, the length of the semi-axis along the optic axis, and
CP, its conjugate.

To calculate the proportions of the spheroid, HUYGENS relied on two simple
properties of the conjugate diameters of an ellipse, both of which can easily be
deduced from theorems in APOLLONIUS’ Conic Sections'?. Here CM, marking.
the refraction of a normal ray, is conjugate to the facet diameter CG. Given the
angle between CM and the normal CL to CG (6°40'), one can then determine
CS, CP and CG in proportion to CM. On setting CM =100000 as unit, there
results following his procedure:

semi-major axis CP =105032,
semi-minor axis CS = 93420,
and CG= 98779.

Thus in determining the proportions of the spheroid, HUYGENS used precisely
one crystallographic measurement, one optical measurement, and a property of
the refraction for which no number is necessary. That is, he has used the
(crystallographic) measurement of the interfacial angle, the (optical) measure-
ment of the normal deviation, and the property that the extraordinary refraction
is the same in all principal sections.

11 Figure 5 is a composite of the figures on pp. 67 and 103 of the Traité (trans.).
12 Namely, Book I, Propositions 21 and 36. Following HUYGENS (see figure 5):

1. To find CP, from the center C draw a line that intersects the tangent at M in
the point D and the ellipse in the point P, and from M draw a line parallel to an axis
{here CS) of the ellipse to intersect CD in N: then by conic geometry CP=1/CDxCN.
Similarly we can find CS=} CZ x CO.

2. To find CG, first from P (the end-point of CP) draw PE parallel to DM, the
tangent at M, meeting CM in E; then by conic geometry CG=PExMC/y M C*-CE?,
where MC, CE, PE are readily found.
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4. Refraction in the principal section

Having given the orientation and the size of the spheroid, HUYGENS turned
to the refraction of a ray incident in a plane that is, or is parallel to, the
principal section. Here he applied the principle of secondary waves in precisely
the same way he had before, when he deduced SNEL’s law, and he obtained a
law governing the extraordinary refraction.

In figure 6, line gK is the intersection of the principal section with the surface
of the crystal; the upper solid obtuse angle is towards g. Consider an incident
ray RC, and produce CO, the intersection of the wave front with the plane of
incidence, until OK, the normal to CO that intersects the surface gk at K, is
equal to N, the distance traveled by light in air in unit time. Draw the ellipse
GSPg with center C as it appears after unit time. Then, HUYGENS proved, in
this plane of incidence, and only in this plane, the refracted ray lies in the
principal section; it lies along CI, where I is the point at which a line from K
touches the ellipse.

Thus far we have only drawn the tangent; we have not as yet determined its
orientation as a function of the position of point K. That is simple, since it is a
property of the ellipse that, given a diameter CG, the tangent from a point K on
the extension of CG will touch the ellipse at a point I where a line DI, drawn
parallel to the conjugate CM to CG, intersects the ellipse, the length CD being a
third proportional to CK, CG i.e. CK/CG is equal to CG/CD*3.

We now have the orientation and parameters of the surface, though only in
proportion to CM as a reference of 100000. To develop a set of absolute
parameters that can be used to calculate a refraction from a given incidence,
HUYGENS had to determine the value of N in proportion to CM. This
determination will incidentally reveal the relationship between the radii of the
spheroid and the radius of the sphere that governs the ordinary refraction, since
we already know the ordinary index, which is equal to the ratio of the radius of
the sphere in air to the radius of the sphere in the medium.

HUYGENS had experimentally to determine the ratio of 0K (that is, N) to
some radius of the spheroid, say the facet radius CG. The ratio CK/CG
= CG/CD does not however immediately give OK. One can nevertheless easily
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use this latter proportion to find OK, which HUYGENS accordingly did. In
figure 6, with incident ray RC, and C as center, draw a circle gFG with radius
CG, cutting RC in R. Drop RV, the perpendicular on gG, and mark a point D on
CG such that OK/CG is equal to CV/CD. Draw DI parallel to CM, cutting the
ellipse in I. Then, by use of the relation CK/CG=CG/CD, it is simple to show
that CI is the extraordinary refraction. We shall call the relation OK/CG
= CV/CD the “law of proportions™**.

The ratio OK/CG can now be determined by experiment. HUYGENS merely
gave its value, but we can easily reconstruct how he might have obtained it. The
problem is to measure CD and CV = CG sin RCF. To measure this angle <RCF
of incidence HUYGENS would, no doubt, have used the technique described
above. Finding CD is more difficult, but it could have been done either by
reversing the calculation described below in section 5, or by using the equation
for the ellipse, as described in Appendix III: either way CD is determined by the
angle of refraction, which can be measured using HUYGENS® technique. Proba-
bly proceeding in one or the other of these two ways, HUYGENS found that
CV/CD is slightly less than 8/5. Since CG is 98779, the law of proportions then
gives OK = 156962 and so OK/CS is less than 5/3 by about 1/41. This value is so
close to the ordinary index 5/3 that HUYGENS felt justified in concluding that
CS “may be exactly” the radius of the ordinary sphere (in which case along the
optic axis the ordinary and extraordinary rays have the same velocity). It must
be understood that this posited equality was a result not of theory but of
experiment. Had the two not been equal, HUYGENs would not have been
worried.

5. The first ‘confirmation’

As yet HUYGENS had not provided any measurements to confirm the theory.
However, the equality between the radius of the ordinary sphere and the semi-
minor axis of the spheroid implies that there is one ray in the principal section
that will not be divided into two on entry, the single refraction being along the
optic axis. Yet HUYGENS did not test this implication with the natural crystal.
The reason he did not is quite simple: no ray can in fact be refracted along the
optic axis when the plane of separation is 2 natural facet. The maximum

14 The proof is simple. By similar triangles, CK/OK =RC/CV, which is equal to
CG/CV by construction. If CI is the refracted ray, then CK/CG=CV/CD. Consequently
CK/CG is equal to both OK|CV and CG|CD, so that OK/CG=CV/CD. This is
equivalent to the following analytical law of refraction (HUYGENS of course did not give
the law analytically):

CG*sini
tanr,=tano + .
N-CM cosd)/1—(CG/N)*sin®i

Here & is the deviation of the normal ray, i is the angle of incidence, and 7, is the angle of
refraction. In HUYGENS® parameters (see section 3 above) CM is set to be a unit of
100000 in terms of which N has the experimentally determined value 156962. In
WOLLASTON’s and STOKES’ parameters, where vice versa N is taken to be the unit, CM is
the value to be measured (see Appendix I).
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refraction for an ordinary ray occurs when the angle of incidence is 90°, where
the angle of refraction is 36°53. But the inclination of the optic axis to the
vertical for a natural facet is 45°40’, or 8°47 greater than the maximum of
refraction. To test the implication, the crystal must be cut; as we shall see,
HUYGENS did test cut crystals.

To this point, then, the theory is without confirmation, with the exception of
the law of equal deviations, for which HUYGENS gave no sample measurements,
and which in any case is independent of the intimate details of the spheroid. The
sole measured optical values HUYGENS has thus far given are the ordinary
index, the deviation of a normally incident ray, and the claim that the extraor-
dinary refraction of a ray incident at 16°40’ is not deviated. HUYGENS used this
last as the first measured ‘confirmation’ of the theory. It is of sufficient
importance to follow HUYGENS  calculations here, since this was the only
numerical confirmation he ever gave.

In figure 6,ilet a ray be so incident that ~RCg is 73°20'. To find the
refraction, CI, HUYGENS used the law of proportions. First find CV
=RCcosRC g=28330. By the law of proportions, CV/CD=N/CG, where
HUYGENS has previously found — from what experiment he did not say — that N
is equal to 156962. Hence CD is about 17828. By the properties of the ellipse,
(CG*— CD?*)/DI? = CG?*/CM?. Hence DI is about 98358. In the figure, CE/EI
=CM/MT, where CE=DI, and EI=CD. Hence MT is about 18126. ML is
CMsin6°40' =11609, and so TL=29736. Since LC=CM cos6°40’, we find
LT/LC=tan LCT= 0.2994, so that «LCT=16°40, precisely as HUYGENS
claimed. The agreement is so striking that it raises some questions which we
shall discuss in section 7 below.

In the next section we shall examine HUYGENS’ remaining confirmations. To
do so it is essential to discuss how he was able to provide a geometrical
construction for the refraction of an arbitrarily incident ray. That construction
depends essentially upon a geometrical lemma which must be invoked whenever
one chooses a new plane of incidence. Consequently we will \begin with a
discussion of it. Given the lemma, we can investigate HUYGENS' law for
calculating the refraction when the plane of incidence is normal to the principal
section. That will give us two laws — one for the principal section and one for the
plane normal to it. (They are actually the same law with different parameters.)
With these laws we will be able to understand what are perhaps the most
startling confirmations of the theory. Finally, we shall examine the general
construction itself to see whether it can be easily used to calculate an arbitrary
refraction. It is essential to keep in mind the distinction between a construction
for a ray and a law for calculating it: even though a geometrical construction
may completely determine the ray’s course, it may be so complicated that one
cannot readily thereby calculate the path. And if calculation is impossible, then
confirmation is out of the question.

6. Refraction outside of the principal section

In figure 7 AEBFH is a piece of crystal whose upper facet AEFH forms an
equilateral parallelogram. The section of the spheroid QGggM by the facet is
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QgqG. Point E is the vertex of the upper solid obtuse angle. Although the
refraction lies in the plane of incidence when the latter is parallel to the
principal section, as we shall see this is no longer true in any other plane. To
deduce the refraction for other planes of incidence, HUYGENS found that he
needed the following lemma, for which he provided a proof at the end of the
chapter!: if a spheroid (figure 8) is touched by a line at a given point, and if, at
two other points, the spheroid is touched by planes parallel to this line but not
to each other, then the three points of contact (b, 0, a) all lie on a single section
(ToE) made in the spheroid by a plane that passes through its center. The proof
cites proposition 15 of ARCHIMEDES’ Conoids and Spheroids (in RIVAULT’S
edition of 1615: in the modern HEIBERG edition the relevant propositions are 13
and 14, corollary 2°).

Using the lemma HUYGENS deduced the law of refraction for a plane of
incidence perpendicular to the principal section. In figure 7, the incident ray is
RC, where C is the intersection of AH and FE. As before, we draw OC, the trace
of the incident (plane) front in the plane of incidence, and OK, normal to OC
and meeting the plane of separation at K, equal to the distance traveled by light
in unit time in air.

Let CL be normal to the facet at C, with L lying on the spheroid, and let
CM be the radius of the spheroid that lies along the extraordinary refraction of

15 Treatise, pp. 103-5.
16 See T.L.HEATH, Works of Archimedes (Cambridge, 1897; reprinted New York,
n.d.), pp. 124-5. T am indebted to ALAN SHAPIRO for pointing this out to me.
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a ray normally incident at C. Through CM and the line KH which bisects the
acute facet angles draw a plane; that plane sections the ellipse QMg, and the
angle, <M CL, between it and the normal CL is 6°40'. Through point K draw a
line KS parallel to Cg. We know that the tangent plane which contains KS is
parallel to QX, and that QX is parallel to the tangent plane at M. Consequently,
the tangent plane containing KS, and the tangent plane at M, though not
parallel to each other, are nevertheless parallel to the line tangent at Q to the
ellipse sectioned by the facet. By the lemma, the point of contact I of the tangent
plane containing K lies on the ellipse QMg.

Knowing the plane of the refracted ray, CI, we use the same method as
before for finding the position of I in that plane, viz. the requirement that, if KI
is a tangent to the ellipse at I, and if K lies on the produced diameter qQ, then
the point of contact I is the intersection of a line DI parallel to CM with the
ellipse. Note that we can now easily prove the law of proportions for this plane
of incidence in the same way as before, only here the ratio CV/CD is equal to
N/CQ, not N/CG, so that, as HUYGENS remarked, “the proportion of the
refraction for this section of the crystal” is less than the corresponding pro-
portion in the principal section!’. HUYGENS claimed successfully to have
tested this conclusion, but again he provided no data.

With that claim, HUYGENS had, thus far, three distinct confirmations of the
theory though detailed data were given only for the second:

1. The law of equal deviations was confirmed; no data were given.

2. The angle of incidence of the undeviated ray was, to the minute, what
theory predicted.

3. The refraction was found to be less in the plane normal to the principal
section (as plane of incidence) than in that section; neither data nor measure-
ment technique were given.

Although HUYGENS did not describe how he carried out the third con-
firmation, the experiment is easily performed. In AppendixIII I show how
HUYGENS probably carried out the test, and what ratio he would have
measured (the “proportion of the refraction™). The fact remains, however, that he
provided no data, nor did he indicate how to perform the experiment.
What we have provided is a reconstruction based on his measuring technique.

The elevation of the images

Seeking further confirmation, HUYGENS described a series of experiments
designed to measure the visual heights of the images, and which therefore
require both eyes for observation. These experiments are significant because,
with the exception of his experiments with cut crystals (see below), they are the
only ones which provide evidence for the construction without requiring calcu-
lation of angles of incidence for set angles of refraction. Consider (figure 9) the
refractions of the point P at the surface Qg; the refracted rays join each eye to
the points C, C’ of Qg, where the rays PC, PC’ from P emerge at equal but

17 Treatise, p. 80.
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opposite inclinations to the surface normal, i.e. the distances DC, DC' from a
point D directly above P are equal. The image of P will appear above it at S,
where the prolongations of the emergent rays intersect. In double refraction the
extraordinary ray is, for the natural crystal, always less refracted than the
ordinary ray, which implies that the equal distances DC, DC’ are greater for the
extraordinary than for the ordinary ray (for a given P and fixed positions of the
eyes). Consequently the lines from C, C' to the eyes are less inclined to the
normals in the former than in the latter case, and their intersection lies below
the point S of elevation in ordinary refraction, i.e. the extraordinary image is
always lower than the ordinary image.

One can easily use the law of proportions to calculate the elevations if the
plane of incidence is either parallel or perpendicular to the principal section, but
only for these two planes. Mark off a length AB equal to the height of the crystal
(figure 10), and divide it at E, D, C such that AB/AE, AB/AD, ABJ/AC ‘are,
respectively, 5/3, 99324/70283, and 99324/66163. Then the law of proportions

implies:

... by placing the eyes above the plane which cuts the crystal according to
the shorter diameter of the rhombus, the regular refraction will lift up the
letters to E; and one will see the bottom, and the letters over \which it is
placed, lifted up to D by the irregular refraction. But by placing the eyes
above in the plane which cuts the crystal according to the longer diameter of
the rhombus, the regular refraction will make them, at the same time, appear
lifted up only to C; and in such a way that the interval CE will be
quadruple the interval ED, which one previously saw 8,

Since HUYGENS’ crystal was probably about 40 mm in height, the distances AB,
AE, AC, AD would be, respectively, 40 mm, 24 mm, 28.3 mm, 25 mm, so that he
had to distinguish points whose heights differ by as little as 1 mm. I have
unsuccessfully tried to do so with both crystals. At best the experiment is
extremely difficult to perform and highly unreliable. Nonetheless we have here a
fourth claimed confirmation of the theory, though, again, no experimental data
were supplied.

To this point HUYGENS had not given a general law for the refractions
produced in any plane of incidence. At the conclusion of the section on image
heights, however, he mentioned that, if the eyes are in any plane except the

18 Treatise, p. 85.
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principal section or the plane normal to it, then the height of the extraordinary
image always lies between C and D. That assertion raises the question of what
the generalized law might be and how the refractions may generally be con-
structed. This HUYGENS went on to show.

Refraction when the plane of incidence is arbitrary

The plane of refraction has in effect already been found for an arbitrary
plane of incidence, since its position follows, as before, from HUYGENS’ lemma
(here by plane of refraction I mean that plane in which the refraction always lies
for a given plane of incidence; this plane is normal to the crystal surface only
when it is parallel to the principal section). In figure 11 (which appears on p. 87
of the THOMPSON translation), the ellipse HDE is the section of the ellipsoid by
the crystal facet: RC is the incident ray, coming in in that plane, normal to the
facet, which intersects the facet in BK. OC is normal to RC, and OK is the
distance traveled by light in air in unit time. To determine the plane of
refraction, draw a line HF that is parallel to the normal KT to KB in the facet
and that touches HDE at H. Join CH and produce it to KT. Consider the plane
that contains KT and that is tangent to the spheroid. Both KT, which lies in
that plane, and HF, which does not, are parallel to the tangent plane to the
spheroid at M. By the lemma, the plane that contains CM, CH is that plane in
which refractions from the given incident plane lie.

But to determine the position of the refracted ray in the plane of refraction is
not as easy here as it was before. In the two limiting cases (in which the plane of
incidence is the principal section or is normal to it), the point H where the
perpendicular KB touches the ellipse sectioned by the facet also lies along the
line KB joining K to the center of that ellipse. For any other plane of incidence
this is no longer true. Thus HF, parallel to KT, does not touch the ellipse at F
but at H. Consequently one cannot find the position of I by constructing the
tangent line from K to the ellipse sectioned by the plane of refraction. What one
does not therefore have is an analog of the law of proportions. HUYGENS could
not therefore test his construction in an arbitrary plane of incidence.

He accordingly concluded his tests with a discussion of phenomena for
which the law of proportions remains valid and which occur when the crystal is
cut, These are fifth and final confirmations of the theory. Like all but one of the
first four confirmations, they are not supported by experimental data. In
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summary, we have found that HUYGENS had accomplished the following in his
analysis of double refraction:

(A) From two optical and one crystallographic measurements he deduced
the parameters of the spheroid.

(B) He deduced the law of proportions for calculating the refractions in two
limiting cases.

(C) He deduced the law of equal deviations, a law which possibly holds in all
planes of incidence, but which is limited to two equally but oppositely inclined
rays.

(D) He had shown how to construct the refraction of a ray for any plane of
incidence, but he had not been able to deduce a general law for calculating it.

(E) He had provided six confirmations, only one of which (and, as we shall
see in the next section, that one is suspect) involves experimental data:

(1) He had tested the law of equal deviations; no data given.

(2) He had confirmed the prediction of the angle of incidence for the non-
deviated ray; the angle was given.

(3) He had confirmed that the refraction is not as great when the plane of
incidence is normal to the principal section as when it is parallel to the section;
no data given.

(4) He had tested the law of proportions in both planes for which it holds by
calculating image heights; no data given.

(5) He claimed that the image heights in other planes of incidence lie between
the two limiting cases, and that theory predicts the fact; neither data nor
deduction are given.

(6) He had cut the crystal at various angles and had confirmed the predicted
behavior of normally incident rays; no data given.

Of the five confirmations (1), (3), (4), (5) and (6) for which no details were
supplied, data are not required in (6), because this implicitly embraces the
prediction that a normally incident ray is not deviated for certain crystal shapes,
but the remaining four do require data. If HUYGENS had clearly emphasized the
laws of proportion and of equal deviations by removing them from the depths of
his wave theoretical analysis, and if he had provided the data and the details of
the measuring technique in all cases, then his contemporaries, and the scientists
of the eighteenth century, would have been able to replicate his experiments and
at least to test the special implications of the general construction. But they
would not have been able to test the construction in all cases because HUYGENS
had not been able to deduce a general analog of the law of proportions.



Appendix I: Snel’s law and wave theory

A full comprehension of HUYGENS’ construction for double refraction
requires an understanding of how refractions are determined by means of wave
surfaces. Consider ordinary refraction, which, we know, obeys SNEL’s law. To
construct a refraction one must first suppose with HUYGENS that each point on
an expanding wave front is the source of an expanding spherical secondary
‘wavelet’. The common tangent to the series of wavelets is, at any instant, the
wave front. When the front encounters a refracting interface secondary wavelets
are also generated there; these wavelets, however, expand more slowly in the
refracting medium than outside it. One can easily demonstrate, as HUYGENS
did, that the common tangent to these wavelets within the medium of refraction
_the refracted front—obeys SNEL’s law. Moreover, the demonstration, which
proceeds by construction of the common tangent, leads directly to the following
simple method for determining refractions. In the figure (figure AI) an incoming
ray RC strikes the interface at C. To find its refraction first draw the spherical
wave front in the refracting medium which originates at C as it appears after
unit time. Then erect a normal CO in the plane of incidence to the ray RC. To
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CO erect a perpendicular OK, also in the plane of incidence, such that OK
touches the interface at K and is equal in length to the distance traveled by light
in unit time in the medium of incidence. Through point K, and again in the
plane of incidence, draw a line KI which is tangent to the front at I. Then CI is
the refraction of RC, and it is simple to show that the ratio sin i/sinr, where r is
the angle of refraction, and i is the angle of incidence, is independent of
incidence (SNEL’s law). As we shall see, this method can be generalised to wave
surfaces which are not spherical.

Appendix IT: Experimental parameters

STOKES WOLLASTON HUYGENS  MALUS

Index of the ordinary ray 4.962/3 497/3 5/3 4.96899/3
Deviation of the normal ray 6°12' 6°16 6°40 6°12'38”
Ratios of spheroid radii to N:

semi-major generator CP 0.67431 0.67204 0.6692 0.674172

semi-minor generator CS 0.604595 0.6035 0.5951 0.604487

normal refraction CM 0.64371 0.6421 0.6371 0.643581

semi-minor facet radius CG 0.63708 0.6365 0.6293 0.636957
Interfacial angle 105°5' 105°5° 105° 105°5
Inclination of optic axis 45°23'25"  45°23'25"  45°00 45°23725"

Note: STOKES’ values for the radii of the spheroid are calculated from the fact
that, for a plane of incidence normal to the optic axis, and therefore cutting a
circle in the spheroid of radius CP, the index is a constant 1.483 for the
extraordinary ray (the modern value for calcite is 1.486); with N taken as 1,
CP is then the inverse of 1.483. For a plane of separation normal to the optic
axis, STOKES found an extraordinary index of 1/CS=1.654 at 0° incidence (the
modern value for calcite is 1.658). STOKES’ values were never published, but he
gave them in his lectures on optics at Cambridge. JOHN AMBROSE FLEMING
attended the lectures as a student in October 1878, and his notes are preserved
(University College Library, London, Misc. Add. 122.34, pp.187-229). I have
preferred STOKES’ measures to the modern values for calcite since we can be
certain that STOKES used Iceland spar, and not a variant form of calcite. In any
case the difference between STOKES’ values and the modern ones produces less
than a minute’s difference in the refractions,

Appendix III: An example of how the construction might be tested for a plane
of incidence normal to the principal section

1. The experiment

To begin, draw two mutually perpendicular lines F'E/, A'H’ intersecting at L
(figure AIII). Place the crystal on the intersection such that the image of L seen
via a perpendicular ordinary ray shall coincide with point C of the upper facet
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(figure 7). Rotate the crystal about L until, on its upper facet, FE —the bisector of
the obtuse angles—is parallel to F'E’ (with F on the side of M towards F’), and
so AH is parallel to A’H'. In this alignment a ray normally incident at C will be
extraordinarily refracted to the point M’ on the base of the crystal; whence M' is
seen in coincidence with the ordinary image of L, i.e. at C.

From the construction for an incident plane AHA'H’, any point on the line
JK, parallel to A'H’ and through M’, can be seen in AHA'H' by looking through
C at some given, calculable angle to the plane; for a ray incident at C and in
AHA'H' is refracted into the plane AHJK, which is inclined to AHA'H’ at 6°40’
(according to HUYGENS). Mark a point R on JK, and align the eye, keeping it
always in AHA'H’, until the extraordinary image of R is coincident with C.
Draw the broken line YW, parallel to F'H', which is seen without refraction and
along which the image of R appears to lie. Then the tangent of the angle of
incidence is the ratio of the distance from YW to F'E’ to the height of the crystal.

To test the law of proportions, viz CV/CD=N/CQ, for this section, we need
to determine CV and CD. Of these, CV is equal to CQ sin24°34', or 43667, while
CD can be found in two ways, one of which was mentioned in section4 above;
simpler, however, is to find CI, the radius of the spheroid along which the
refraction lies, and the angle B between CI and CM, and then to compute CD
= CIsinp.

With my own small crystal 17.5mm high, I marked the point M’ at the
distance LM’'=17.5tan6°40'~2mm from A'H; then along JK I marked R
about 51 mm from M’. When R is seen in plane AHA'H’ in coincidence with C,
the tangent of the angle of incidence is very nearly 8/17.5, since the distance
from YW to F'E' is about 8 mm; whence the angle itself is about 24°34'. Since its

tangent is RM'/CM'=0.31225, where CM'=})LM'*+17.5%, the angle § is
about 17°20’, while the equation CI?cos?B/CM?+ CI*sin?/CQ*=1 yields CI
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=1/)/ cos? B/CM?+sin? B/CQZ to be about 100418. Hence CD is 19918. CV/CD
is therefore in the ratio of 2.919/2. Since N is 156962, CV/CD should be 2.989/2
according to theory, which is quite close to the measured value considering the
size of the crystal. Using my large, 39 mm crystal, I find a ratio of 2.93/2. A more
complicated derivation of CD—but the one HUYGENS probably used —is to
reverse the calculation described in section5 above. That derivation bypasses
the “Cartesian’ equation of the ellipse.



