Huygens' Calculation of the Crystallographic Angles

To find the facet angles Huygens used one measurement and spherical trigonometry. The first figure below represents the three crystal facets that intersect at point C. The plane angles that have C as a common vertex are all equal to one another; we want to know the value. To find out, Huygens first measured the interfacial angle, which is the angle between any pair of contingent planes (e.g. the angle between the planes $A C B$ and $B C F$ in the figure) for which he obtained a value of 105°. He could now compute the equal facet angles as follows.

First, he drew a sphere with arbitrary radius centered about point C. The crystal facets $A C B$, $A C F, B C F$ each contains the sphere center, and so they will intercept it in great circle arcs $\operatorname{arcAB}, \operatorname{arcAF}, \operatorname{arcBF}$ respectively. These equal arcs measure the facet angles.

The resulting spherical triangle, $s p h A B F$, has spherical angles $s p A, s p B, s p F$ that are respectively equal to the angles between the corresponding pair of facets (e.g. $s p B$ is the angle between the planes $A C B$ and $B C F$). These interfacial angles are all equal to one another (being 105°), so we have an equilateral spherical triangle, sphABF.

We can now apply trigonometry. From angle F of equilateral triangle $s p h A B F$ drop a perpendicular arcFQ along the surface of the sphere to the side arcAB, which will accordingly be bisected at Q. According to the cosine formula of spherical trig., the following relation holds generally between the spherical angles $s p A, s p F, s p Q$ and the arcAF that is opposite angle $s p Q$:

$$
\cos (s p Q)=-\cos (s p A) \cos (s p F)+\sin (s p A) \sin (s p F) \cos (\operatorname{arcAF})
$$

In Huygens' case $\cos (s p Q)$ vanishes since $s p Q$ is a right angle, $s p A$ is equal to the interfacial angle 105°, and $s p F$ is $52^{\circ} 30^{\prime}$ because $\operatorname{arc} A B$ is bisected at Q. Putting in the values, we find that arcAF will be 101.865°, or $101^{\circ} 51^{\prime} 54$ ". Huygens just rounds the result to $101^{\circ} 52^{\prime}$.

