
DEBATES OVER THE ELECTRIC FORCE LAW IN EARLY 19th CENTURY GERMANY

R

R

R

R

R
α

α

a

b

c
Ο

Wο

W

W'

µ

1



In 1807 and 1808 a German civil engineer in Berlin named Simon attempted to develop a device that would be suitable for lecture 
demonstrations of the law for electric repulsion, finding that Coulomb's torsion balance was much too sensitive for the purpose. Simon 
constructed one on very different principles, using a balance with a variable weight. His apparatus consists of a beam with arms of length 
R, to whose center a balancing 'tongue', also of length R, is orthogonally attached. Equal weights W are hung initially from the ends of the 
beam, and the tongue itself weighs Wo. The tongue moves over a scale marked in degrees, so that its displacement (α) from balance can 
be read off directly. Point c, at the end of the right-hand arm of the beam, bears a spherical weight W of diameter bc made of elderberry 
pith pith (def. The soft, spongelike, central cylinder of the stems of most flowering plants, composed mainly of parenchyma, here from the 
elder tree, which is what Coulomb also used.) Simon does not specify whether the weight (initally W) on the lefthand arm is also a pith 
sphere, but the diagram seems to indicate that it was not - probably Simon just balanced the righthand sphere with the little weights that 
he used to compensate the electrostatic repulsion.

Simon's length unit is the Zoll ( Zoll 2.634 cm⋅:= ). The length of the moment arm and the diameter of the pith sphere are:

R 4:=  

and
bc .4:=  

Simon gives only the balance formula that he used, and we will consider below his own method of computation. But first we will generate 
(as a German Gymanisum teacher named Egen did in 1825) an apparently general formula for calculating from experiment the exponent n 

for a repulsive force 
k

rn
under the assumption that the force acts between the centers of spherically-symmetric masses (on which see 

below).
Simon's device makes it possible to avoid measuring the balancing weights W, and requires just one calibation to determine the 

weight Wo. The experiment consists of a series of observational triads. The fixed ball b and the ball at the end c of the beam are initially in 
uncharged contact; the lefthand end of the beam carries a weight W. Under these conditions, the beam is in neutral balance. In the first of 
the two measurements in each experimental triad, the balls b and c are charged by contact with something, after which ball c moves down  
until a new balance is reached under the combined action of the weights W (on the left), W (on the right), Wo (on the tongue), and the 
electric repulsion (on c); the tongue now points to an angle α1 on the scale. The distance between the center of the fixed ball b and the 
center of  the moveable ball c increases to ab1, the line ab1 forming an angle µ1  with the righthand arm of the balance beam. Next, in the 
second two measurements of an experimental triad, Simon hangs a weight of magnitude δ to the lefthand end of the beam, which increases 
the weight there from W to W+δ . Ball c now moves upwards towards b until a new balance is achieved, whereupon the tongue now ponts 
to an angle  α2, and the distance between the centers of balls b and c has decreased to ab2, with the angle µ1 changing to µ2.
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Under these conditions, and assuming that the repulsion acts between the centers of the balls b and c, balance in the two 
measurements respectively requires:

(Wo)(R)sin(α1)+(W)(R)cos(α1)=(W)(R)cos(α1)+
k

ab1( ) n
Rsin(µ1)

and GENERAL BALANCE EQUATIONS

(Wo)(R)sin(α2)+(W+δ )(R)cos(α2)=(W)(R)cos(α2)+
k

ab2( ) n
Rsin(µ2)

Simon, and Egen later, both assume that the deflecting angles α are sufficiently small for the purposes of these formulae that they 
may replace their sines, and their cosines may be set to one. In addition, both assume that the distance between the balls may be replaced 
by an angular measure. The distance ab between the centers of the balls may accordingly be calculated approximately (we will see just how 
good below) as bc+Rα. In addition, we assume with Simon and Egen that ab remains nearly perpendicular to the the balance arm. Our two 
equations thereby become:

(Wo)(α1)=
k

bc Rα1+( ) n

and

(Wo)(α2)+(δ )=
k

bc Rα2+( ) n

These combine to yield Egen's approximate (and, in general, theoretically problematic - see below) expression for the exponent n:   
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In order to determine n, the experiment requires measuring the fixed weight Wo on the end of the tongue, as well as the ratio of the 
ball diamater to the beam arm. As for the latter, Egen in 1825 simply took the ratio to be sufficiently small that the diameter bc can be 

replaced by the product R<bOc, which therefore gives a constant value (in angular measure) of 
bc

R
5.73deg= . In order to find Wo, Simon 

simply measured the weight necessary to produce a unit angular deflection on an uncharged balance. Again assuming small angles, our 
belance equation in the absence of electric repulsion immediately yields Wo equal to the deflection. Simon used the Gran as a weight unit, 

where Gran .8 gm⋅≡ . He found that 1/250 of a Gran weight produces a deflection of one degree. He accordingly replaced 
δ

Wo

by the number of 

1/250 Grans in δ  −  that is, Simon gave his tabular weights in degrees, which therefore convert to mg through the factor 
1Gran

250








3.2mg= per 

degree. Simon needed to perform a single calibrating measurement for the fixed weight hung on the tongue of the device, and Egen needed to 
know as well the ratio of the ball diameter to the beam arm (Simon, we will see, did not add the diameter to his angular distances).

The folowing are exact expressions for the distances ab and the angles µ  as functions of the deflections x:
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Simon's experiments provide triplets of numbers for each time he charged the balls: a triplet consists of the intial deflection, the 
deflection after weight is added to the left arm of the balance beam, and the added weight. The equations below provide, respectively, arrays 
for the initial (1) and final (2) distances and angles, as well as an exact formula for n in terms of them (although, as we will see, the formula 
is not, in general, theoretically appropriate). The δi are the number of 1/250 Gran units in the weight added to the left arm of the beam:

ab1i ab α
1〈 〉( )

i
deg⋅



:=  and sinµ1i sinµ α

1〈 〉( )
i

deg⋅



:=  from the measured initial angles α

1〈 〉( )
i

deg⋅

 ab2i ab α
2〈 〉( )

i
deg⋅



:=  and sinµ2i sinµ α

2〈 〉( )
i

deg⋅



:= from the measured second angles α
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i
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where δi  is the array of added weights. The expression for the approximate values of the exponents (wherein distances are replaced 

by angles) is then:
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Simon ignored the diameter of the ball. In terms of Egen's formula (but not his) Simon's procedure therefore yields the

following expression for the array of indexes: SimonfromEgenni
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mean exactn( ) 1.621= mean appxmtn( ) 1.616= mean SimonfromEgenn( ) 0.852= ntheoryforinvsqr 2:=

stdev exactn( ) 0.167= stdev appxmtn( ) 0.166= stdev SimonfromEgenn( ) 0.244=
Egenexpmnttotheoryinvsqr 1

mean appxmtn( )

ntheoryforinvsqr
−








100⋅:=

so the mean percentage ratio of experiment to theory for the Coulomb law (where n should be 2) is Egenexpmnttotheoryinvsqr 19.195=

Note that this method of computing the experiment-theory ratio is not as informative as it might be since here we have first calculated n 
and then compared the result with a theoretical value of 2, for which we required logarithms. Simon himself did not work with 
logarithms. Instead, he considered only two cases: that n might be 2, as Coulomb had it (in Simon's understanding), or that n might be 
1, which allowed him directly to compare predicted and measured weights. We can compare the effects of the difference in 
computational techniques between Simon and Egen. Here δCoulombcenters  is the weight that Simon should have measured, given 

Coulomb's law between ball centers:
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mean expmntotheoryCoulomb( ) 0.802= stdev expmntotheoryCoulomb( ) 0.1=

so the mean percentage ratio of experiment to theory is SimonCoulomb 100 1 mean expmntotheoryCoulomb( )−( )⋅:= , whence 

SimonCoulomb 19.777= (previously, using logarithms, we had Egenexpmnttotheoryinvsqr 19.195= ). Consequently there is little 

difference in computational accuracy between Simon's and Egen's methods. Egen's method computes n, and then finds its difference 
from 2, whereas Simon's method computes what the added weights should be assuming that n is two. Both computational methods 

produce about a 
SimonCoulomb Egenexpmnttotheoryinvsqr+( )

2
19.486= percent difference from Coulomb, using in both cases the 

center-center distances.
For future use, we calculate, using Simon's method, what the added weight should be if we assumed that the force acted 

between the balls' centers but that it varied recipriocally with that distance, and not with its square (see below). In that case:
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Simonexpmntotheoryinvdistcentocent 100− 1 mean expmntotheory( )−( )⋅:=
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Here the mean percentage ratio of experiment to theory is Simonexpmntotheoryinvdistcentocent 47.357= which is a difference of  

Simonexpmntotheoryinvdistcentocent Egenexpmnttotheoryinvsqr− 28.162= percent from the inverse square law's. That is, if we use a 

center-to-center inverse distance law, then we find that it is much worse, given Simon's data, than a center-to-center inverse square law, 
which is what Egen discovered as well. We will consider below the results with a point-to-point inverse distance law

Simon himself found a much greater difference than we have between experiment and the Coulomb law as he understood it. He 
reckons that the appropriate distance to use in calculating the repulsion, even for the Coulomb law, is the distance between the low 
point on the upper ball and the high point on the lower one - in other words, the closest distance between the surfaces. Simon 
accordingly sets the distance bc to zero in his computation, finding as a result that the following relation should hold if "Coulomb's" 
inverse-square repulsion is correct:

δCoulombsurfacesi
1− 800⋅
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
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And here we find that:

expmntotheoryi

actualweightaddedi

δCoulombsurfacesi









:=

mean expmntotheory( ) 0.352= stdev expmntotheory( ) 0.185=

Simonexpmntotheoryinvsqrsurftosurf 100 1 mean expmntotheory( )−( )⋅:= Simonexpmntotheoryinvsqrsurftosurf 64.776=

This is obviously an extremely poor result for an inverse-square surface-to-surface law. Simon himself conceived that the 
force between the surfaces might vary reciprocally with the first power of the distance, instead of its square, which produces 
the following result according to his method of calculation:

δSimonsurfacesi degtomg α
2〈 〉( )

i

α
1〈 〉( )

i
α
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i
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i
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expmntotheoryi

actualweightaddedi

δSimonsurfacesi









:=

mean expmntotheory( ) 0.828= stdev expmntotheory( ) 0.281= Simonexpmntotheoryinvdistsurftosurf 100 1 mean expmntotheory( )−( )⋅:=
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Here we find that the mean percentage difference between Simon's theory and experiment becomes 
Simonexpmntotheoryinvdistsurftosurf 17.159= , which vastly surpasses the inverse-square surface-to-surface law and in fact compares 

quite well with the differences that the center-center distance using Coulomb's law produces, namely SimonCoulomb 19.777= . Indeed, 

Simon's inverse-distance law between surfaces is apparently somewhat better!
What does this mean? Let's suppose that Simon had actually thoroughly understood - as he clearly did not - that the Coulomb 

law must be calculated between centers. Suppose however that he himself reckoned that repulsive actions should actually occur 
between nearest surface points - reasoning, e.g., that electric atmospheres surround the surface like balloons, with the action taking 
place at the points where the balloons come into contact with one another. Such an image leads easily to an inverse-distance 'repulsion' 
between the surfaces on the (somewhat vague) analogy of Boyle's law. Simon would then have been comparing two significantly different 
theoretical structures with one another and not, say, the question (which is how Egen understood it) of whether the center-center force 
varies as the reciprocal of the distance or as its square. Simon could then have argued, on the basis of his measurements, that the 
atmosphere theory works marginally better than the Coulomb theory, which concentrates all electricity on the surface and works by 
action at a distance rather than by atmospheric expansion. There is more.
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Both theories raise questions concerning instrumental accuracy in respect to the approximations that must be made to facilitate 
computation - or that must be made because there is simply no known way to calculate deviations. But there is a significant difference 
here. In Simon's case there was no method for calculating what the effect would be of the balls' electric atmospheres pushing one 
another aside. Gilbert, clearly thinking in Coulombian terms, had written Simon that the experiment might be affected considerably at 
small distances by the displacement of the centers of the electric substance from the centers of the balls. In fact, Gilbert (apparently not 
perceiving that Simon had used the surface-surface distance in his computation) assigned the conflict between experiment and Coulomb 
repulsion to this effect (which is in fact altogether insignificant in respect to errors of measurement). Simon disagreed, evidently 
reasoning that the effect would be too small to account for the large discrepancies he had found. However, Simon understood Gilbert as 
referring to the central points of "electric atmospheres", and so he decided to avoid the effect altogether by doing further experiments (not 
reported in the body of the paper but only in a remark quoted by Gilbert in a note to Simon's 1808 paper) using flat discs instead of 
spheres - in which case the 'atmospheres' would presumably extend more or less uniformly over the disks' surfaces, and the distances 
could be taken always between the surfaces (whereas, with spheres, the atmospheres would deform different amounts at different points 
of their surfaces, though Simon says nothing about this). 

Here we spy a signal, instrumentally-significant difference between Simonian 'atmospheres' and Coulombian repelling fluids. 
Specifically, Coulomb, like Poisson and other French analysts after him, conceived the electric fluid to form very thin layers near the 
surface of a conductor. The 'thickness' of a layer at a given point would be a measure of the quantity of charge per unit area there 
(assuming a uniform density). One could - and this is precisely what Coulomb did - develop an experimental system in which a small 
disk could be used to pick up charge at an arbitrary point of a conductor, and the resulting force measured for a standard electrometric 
distance in Coulomb's device. Then ratios of these forces would constitute measures of relative charge densities, thereby permitting an 
experimental determination of the manor in which electricity distributes over given surfaces under given conditions. This is what Poisson 
would later calculate using spherical harmonics (in 1811), and it is also the very thing that atmospheric theories have nothing to say 
about: since they do not localize electricity on surfaces, the very phrase "charge density" has little meaning, and the kinds of things that 
might thereby be computed (such as the effective net force between a pair of spheres of unequal size with their centers at given 
distances from one another) remained essentially outside atmosphere theories' abilities. 
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Egen did not interpret the issue as one between Simon's theory (atmospheres, surface distances) and Coulomb, but rather as 
the question of whether the force between electric point masses runs as the inverse-square or as the inverse distance. Supposing it to 
run as the inverse-distance, we do not know without a calculation, not performed by Egen, what the force would be as a function of the 
distance between the centers of the balls - since only an inverse-square force reduces the action of a spherical distribution to the same 
result as if the material were concentrated at the center, and the centers acted directly on one another.

Calculation shows that a point-to-point inverse distance action produces the following resultant force at a distance r from the 
center of  a spherical distirbution with diameter d for a total mass M:

force = 
M

r2 d⋅









4 r2
⋅ d2

−( ) ln
2 r⋅ d+

2 r⋅ d−








⋅ 4 d⋅ r⋅+







⋅ = Mg(r)

In effect, a point-to-point inverse distance force produces net forces between spherical distributions that may be considered to vary with 
the inverse-square distance from their centers, with the 'mass' being multiplied by a factor that depends on the center-center distance 
and on the sphere's diameter. This expression leads (as before) to the following relationship that can be used with Simon's data:

predicted weights = alpha1(g(r2)/g(r1)-alpha2) 

We can calculate both sides of the equation from experimental data and see how much they differ.
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g x( )

4 x2
⋅ bc2

−( ) ln
2 x⋅ bc+

2 x⋅ bc−








⋅ 4 bc⋅ x⋅+







x2 bc⋅
:=

theoreticalweightsi degtomg
g ab α

2〈 〉( )
i
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
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
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:=
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mean expmntotheory( ) 1.519=

So the mean  percentage ratio of experiment to 
theory is here:

correctexpmntotheoryinvdist 100− 1 mean expmntotheory( )−( )⋅:=

correctexpmntotheoryinvdist 51.862=

Precision demands that we compare this with the inverse-square law.
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Egen had assumed that he could use his expression to calculate n from Simon's data. He was incorrect: except in the special case 
that n is actually 2, Egen's formula fails because it presumes that the appropriate distance to use is always the one between the centers of 
the spheres. We have just seen that this does not hold in the case of n=1, and in fact it fails for any n other than 2, since the following is the 
general expression for the inverse nth power force of a spherically-symmetric mass, excepting n=1: 

force = 
M

2r2 d⋅









r2 bc2

4
−









1 n−
r

d

2
+








1 n−

r
d

2
−








1 n−

−








⋅
1

3 n−








r
d

2
+








3 n−

r
d

2
−








3 n−

−




⋅+











⋅ = Mg(r)

We can use this result to compare Simon's data among a possible sequence of n, say for n running from 1.1 to 2 in steps of .1 For each 

possible value of n, the weights measured ( δ )  should again be equal  to  α2−( ) α1

g r2( )
g r1( )

⋅+

l 1 2, 10..:=

g x y,( )

x2 bc2

4
−









1 y−
x

bc

2
+








1 y−

x
bc

2
−








1 y−

−








⋅
1

3 y−








x
bc

2
+








3 y−

x
bc

2
−








3 y−

−








⋅+











2 x2
⋅ bc⋅

:=

theoreticalweightsi l, degtomg
g ab α

2〈 〉( )
i

deg⋅



 1 .1 l⋅+,





g ab α
1〈 〉( )

i
deg⋅



 1 .1 l⋅+,















α
1〈 〉( )

i




⋅ α

2〈 〉( )
i

−










:= experimentalarrayi l, actualweightaddedi:=

expmntotheoryi l,

experimentalarrayi l,

theoreticalweightsi l,

:= difffrom1i l, 1 expmntotheoryi l,−:=
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expmnt/theory diff from unity for a range of indexes

difffrom1

Simonarrayofexpmnttotheoryl mean expmntotheory l〈 〉( ):=

differencefrom1arrayl 1 Simonarrayofexpmnttotheoryl−:=

differencefrom1array

1

1

2

3

4

5

6

7

8

9

10

0.419

0.328

0.244

0.166

0.094

0.027

0.034

0.092

0.145

0.194

=

Simonbestexpmtotheory 100min differencefrom1array( ):=

fullformulaexpmntotheoryinvsqr 100 1 mean expmntotheory 10〈 〉( )−( )⋅:=
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The graph shows quite clearly that the best fit between theory and experiment for Simon's data occurs in the vicinity of index 
value 6, corresponding to n of 1.6 (where the ratio is closest overall to one). This is interestingly  consistent with our previous 
computation, in which we used Egen's formula for calculating n (which also produced a mean value from the data of 1.6). Specifically, we 
find here that the mean difference ratio of experiment to theory for n equal to 1.6 is only Simonbestexpmtotheory 2.75= percent. This is 

considerably better than the correctexpmntotheoryinvdist 51.862=  percent that we just found for a point-to-point inverse distance law. 

Apparently Egen's method (in which he calculated the value of n by assuming that, whatever the force law might be, one could assume 
the unaltered values of the masses to be located at the centers of the balls) works perfectly well for Simon's apparatus. The 
appropriateness of the approximation must certainly be a function of the ratio between the ball diameter and the distance between the 
balls' centers.

Turn now to compare with the inverse-square law. Previously, using Simon's method of computation (comparing predicted and 
measured weights), we had found, for the inverse-square and the center-to-center inverse distance laws respectively, mean percentage 
ratios of  experiment to theory of SimonCoulomb 19.777= and Simonexpmntotheoryinvdistcentocent 47.357= , yielding a difference 

between the two of Simonexpmntotheoryinvdistcentocent SimonCoulomb− 27.58= percent. For n equal to 2 (the Coulomb law), we find 

from the present method of computation a mean percentage ratio between experimental and theoretical values of 
fullformulaexpmntotheoryinvsqr 19.439= percent; the comparable value for a point-to-point inverse-distance law is, again, 

correctexpmntotheoryinvdist 51.862= percent, yielding now a difference between the two of  

correctexpmntotheoryinvdist fullformulaexpmntotheoryinvsqr− 32.423= percent. The difference between using a point-to-point 

inverse-distance law and just assuming an action between centers with masses concentrated there is insiginficant, though the 
inverse-distance theory does becomes marginally worse than before using a point-to-point calculation..
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using Egen's (theoretically unsupported) method for calculating n
without a small angle approximation & without ignoring the balls' diameters:

mean exactn( ) 1.621= for n

% diff expmnt and theory is 100 1
mean exactn( )

2
−








⋅ 18.961=

with a small angle approximation & without ignoring the balls' diameters:
mean appxmtn( ) 1.616= for n

% diff expmnt and theory is 100 1
mean appxmtn( )

2
−








⋅ 19.195=

with a small angle approximation & ignoring the balls' diameters: 
mean SimonfromEgenn( ) 0.852= for n

% diff expmnt and theory is 100 1 mean SimonfromEgenn( )−( )⋅ 14.771=

using Simon's method for comparing predicted and measured weights & ignoring the balls' diameters
for an inverse-distance law the percentage
difference between experiment and theory is Simonexpmntotheoryinvdistsurftosurf 17.159=

for an inverse-square distance law the percentage
difference between experiment and theory is Simonexpmntotheoryinvsqrsurftosurf 64.776=

using Simon's method for comparing predicted and measured weights & without ignoring the balls' diameter
1.) for n=1 and n=2
for a center-to-center inverse-distance law the percentage
difference between experiment and theory is Simonexpmntotheoryinvdistcentocent 47.357=

for a point-to-point inverse-distance law the percentage
difference between experiment and theory is correctexpmntotheoryinvdist 51.862=

for an inverse-square distance law the percentage
difference between experiment and theory is fullformulaexpmntotheoryinvsqr 19.439=

2.) for n from 1 to 2 in steps of .1 the best fit between theory and experiment yields n equal to 1.6 , where
the difference between experiment and theory is Simonbestexpmtotheory 2.75=
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ERROR ANALYSES: 

errorfromalpha1i j,

ln α
2〈 〉( )

i
δi+



 ln erroralpha1i j,( )−





ln erroralpha1i j, degs
bc

R








+







ln α
2〈 〉( )

i
degs

bc

R








+







−











ln α
2〈 〉( )

i
δi+



 ln α

1〈 〉( )
i





−





ln α
1〈 〉( )

i
degs

bc

R








+







ln α
2〈 〉( )

i
degs

bc

R








+







−

−










:=

errorfromalpha2i j,

ln erroralpha2i j, δi+( ) ln α
1〈 〉( )

i




−





ln α
1〈 〉( )

i
degs

bc

R








+







ln erroralpha2i j, degs
bc

R








+







−











ln α
2〈 〉( )

i
δi+



 ln α

1〈 〉( )
i





−





ln α
1〈 〉( )

i
degs

bc

R








+







ln α
2〈 〉( )

i
degs

bc

R








+







−

−:=

errorfromdeltai k,

ln α
2〈 〉( )

i
errordeltai k,+



 ln α

1〈 〉( )
i





−





ln α
1〈 〉( )

i
degs

bc

R








+







ln α
2〈 〉( )

i
degs

bc

R








+







−











ln α
2〈 〉( )

i
δi+



 ln α

1〈 〉( )
i





−





ln α
1〈 〉( )

i
degs

bc

R








+







ln α
2〈 〉( )

i
degs

bc

R








+







−

−:=

minweighterror .1≡

minangerror .05≡
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error in n due to errors in alpha1 ranging from minangerror 0.05=  to minangerror 10⋅ 0.5=  deg

max errorfromalpha1( ) 0=

min errorfromalpha1( ) 1.016−=

stdev errorfromalpha1( ) 0.156=

mean errorfromalpha1( ) 0.139−=

n would run from

a minimum of mean appxmtn( ) mean errorfromalpha1( )− 1.477=

to

a maximum of mean appxmtn( ) mean errorfromalpha1( )+ 1.755=
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error in n due to errors in alpha2 ranging from minangerror 0.05=  to minangerror 10⋅ 0.5=  deg

max errorfromalpha2( ) 3.006=

min errorfromalpha2( ) 0=

stdev errorfromalpha2( ) 0.334=

mean errorfromalpha2( ) 0.197=

n would run from

a minimum of mean appxmtn( ) mean errorfromalpha2( )− 1.419=

a maximum of mean appxmtn( ) mean errorfromalpha2( )+ 1.813=
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error in n due to errors in added weights ranging from minweighterror 0.1=  to minweighterror 20⋅ 2=  in units of 
Gran

250
3.2mg=

max errorfromdelta( ) 2.522=

min errorfromdelta( ) 0=

stdev errorfromdelta( ) 0.349=

mean errorfromdelta( ) 0.195=

n would run from

a minimum of mean appxmtn( ) mean errorfromdelta( )− 1.422=

to

a maximum of mean appxmtn( ) mean errorfromdelta( )+ 1.811=
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SORTED DATA 

column 1 gives initial angles in degrees
column 2 gives second angles in degrees
column 3 gives added weights in degrees

csort Data1 1,( )

1 2 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

6.75 1 15

7.25 3.75 10

7.75 0.5 20

7.75 2.5 15

8 3.5 10

8.25 2.75 20

10 5 15

11 6 14

11.25 5 20

11.25 3 35

11.5 7.5 10

11.75 1.5 45

12.5 4.5 30

12.5 3.5 35

13.25 7.5 15

13.5 7.5 15

= csort Data2 1,( )

1 2 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10 7 7.3

10 5 15

10 6 10.6

10 1.75 30.3

10 3.5 21

10 0 48

10 8 4.5

10 9 2.1

12 6 18

12 7 13.5

12 8 10

12 9 7

12 10 4.4

12 5 23.8

12 0 70

12 11 2

=
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errordelta( ) k〈 〉 minweighterror k 1−( )⋅ δ+ ≡
erroralpha1 j〈 〉 minangerror j 1−( )⋅ α

1〈 〉
+ ≡

δ SORTED_DATA 3〈 〉
≡

k 1 21..≡
erroralpha2 j〈 〉 minangerror j 1−( )⋅ α

2〈 〉
+ ≡

α
2〈 〉

SORTED_DATA 2〈 〉
≡

j 1 11..≡α
1〈 〉

SORTED_DATA 1〈 〉
≡

actualweightaddedi degtomg SORTED_DATA( )
i 3, ≡

SORTED_DATA csort stack Data1 Data2,( ) 1,( )≡

i 1 rows stack Data1 Data2,( )( )..≡

nodiam .0000000001≡

degtomg x( ) 800
x

250
⋅≡Data2

10

10

10

10

10

10

10

10

12

12

12

12

12

12

12

12

12

12

9

8

7

6

5

3.5

1.75

0

11

10

9

8

7

6

5

3.5

1.75

0

2.1

4.5

7.3

10.6

15

21

30.3

48

2

4.4

7

10

13.5

18

23.8

32

45

70





















































≡Data1

11.5

15

13.25

11.0

13.5

7.25

16.0

8

13.75

15

10

11.25

12.5

8.25

7.75

12.5

11.25

6.75

11.75

7.75

7.5

9.5

7.5

6

7.5

3.75

9

3.5

6

6.5

5

5

4.5

2.75

2.5

3.5

3

1

1.5

.5

10

15

15

14

15

10

20

10

25

25

15

20

30

20

15

35

35

15

45

20

























































≡
degs x( )

x rad⋅

deg
≡

UNSORTED DATA
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Remarks on the forces exerted at points within the space enclosed by a spherically-symmetric shell

IC E

 

dθ

 
θ

P

 

β E

 

β
I
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Let's investigate the force at any point within or outside a spherically-symmetric surface distribution of total quantity Q, radius r, under 

the assumption that a point at which unit quantity is located exerts a force equal to 1/ xn  at I (internal) or E (external) located a 

distance x from the point. 

Case 1: Point E external to the spherical shell

let xE =EP, r=CP, XE =CE

a. xE( )2 = r2 XE( )2
+ r XE cos θ( )−  which yields sin θ( ) dθ =

x dx⋅( )

rXE

bE . xE cos β E( ) = XE rcosθ− whence cos β E( ) =
XE r cos θ( )⋅−( )

xE

c. area dS of slice normal to CE =(rdθ)(2πrsin(θ))= 2πr xE⋅
dx

XE

⋅

d. dF=

QdS

4πr2









xE( ) n












cos β E( ) because the force components normal to the line CE cancel out  by symmetry

eE . resulting integral is F=
Q

4r XE( )2









XE r−

XE r+

xE
1

xE( ) n









XE( )2 r2
− xE( )2

+ ⋅
⌠


⌡

d










f. If n=1

F=
Q

4r XE( )2









XE( )2 r2
−  ln

XE r+

XE r−









⋅ 2r XE⋅+








For any other value of n

F=
Q

4r XE( )2









XE( )2 r2
−

1 n−









XE r+( )1 n− XE r−( )1 n−
− ⋅

1

3 n−








XE r+( )3 n− XE r−( )3 n−
− ⋅+








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Case 2: Point I within the area enclosed by the spherical shell

let xI =CP, r=CP, XI =CI

From the figure, we see that the only effects are to change the sign of the expression (b) and the limits in the integral (e):

bI . XI xI cos β I( )⋅+ = r cos θ( )⋅ whence cos β I( ) =
r cos θ( )⋅ XI−( )

xI

eI . resulting integral is F=
Q

4r XI( )2









r XI−

r XI+

xI
1

xI( ) n









r2 XI( )2
− xI( )2

− ⋅
⌠


⌡

d










f. If n=1

F=
Q

4 r⋅ XE( )2
⋅









r2 XI( )2
−  ln

r XI+

r XI−









⋅ 2r XI⋅−








⋅

For any other value of n

F=
Q

4r XI( )2









r2 XI( )2
−

1 n−
r XI+( )1 n− r XI−( )1 n−

− ⋅
1

3 n−








r XI+( )3 n− r XI−( )3 n−
− ⋅−








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Exploring the force within the space enclosed by the spherical shell for several values of n

For n equal to 2, our expression (f) above at once shows that the force withint the enclosed space vanishes altogether. 
Putting aside n equal to 1 for a moment, we can explore the enclosed space to see where in it the force will vanish for other values of 
n. From our expression (f) we see that the force will vanish wherever the following two functions f and g are equal to one another (note 
that here r 4:= ):

f x n,( )
r2 x2

−( ) r x+( )1 n− r x−( )1 n−
− ⋅ 

1 n−
:= g x n,( )

r x+( )3 n− r x−( )3 n−
−  

3 n−
:=

m 1 2, 50..:= p 1 25..:= nrunp 1 p
6

25
⋅+:=

xrunm m

r

2

50
⋅:=

diffmapm p, f xrunm nrunp,( ) g xrunm nrunp,( )−:=

Wherever the surfaces represented below reach zero, the force vanishes. 

In the figure below left, the axis that runs more or less horizontally represents values of n running from just above 1 through 
7. The axis pointing more or less into the plane of the page in figure left, and parallel to the page in figure right, represents distance, 
with the 0 point marking the center of the sphere and the other end marking half the radial distance to the surface.  

We can see where the line on the surface at n=2 lies in the zero vertical plane, indicating the complete absence of force. 
All other powers will exert a finite force everywhere within the enclosed space. Note that for regions close to the mid-radial point the 
force decreases with increasing exponent but then actually reverses sign as the exponent grows past two, only to drop again 
towards zero as the exponent increases further.

We can (see below) demonstrate that the function f-g must have no roots except at the center of the space unless n=2.
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viewed with the exponent axis parallel to the page

diffmap

viewed with the radial distance axis parallel to the page

diffmap
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a

P

d

c

If we assume on some physical grounds (e.g. ones given by Egen among others) that there can 
be no net electric force at any point within the substance of a conductor, then a demonstration first 
provided by Newton in the Principia easily shows that the exponent in the force law must be 2. 
Specifically (see fig.), it's a property of the circle that the rectangles on intersecting chords are equal 
among one another, i.e. that aP * dP = cP * bP . Taking the limit of small surface arcs cd, ab, it follows 
that the triangles cPd and cPb are similar, whence cd/dP = ab/bP. Squaring, we have 

cd2

dp2
= 

ab2

bP2
. In our limit we take cd2 , ab2 as the surface areas intercepted by the cones that meet at P, 

and of course dP, bP represent the distances from P to cd, ab respectively. If we assume that the force 
must be inversely as the nth power of the distance, it follows at once that n must be 2.
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Effect of mutual induction between the conducting spheres on the force

l ly

q q
Q-q Q-q

bc/2 bc/2

Each sphere bears the same charge, say Q, and will therefore distort by induction the charge distribution on the other. To calculate the 
effect in principle requires a complicated expansion in Legendre ploynomials (given by both Poisson and Maxwell), but we can 
approximate using images. If the chaarge on the sphere on the right in the figure were concentrated at its center, then we could calculate 
the force between the concentrated charge and the sphere on the left by replacing the latter with two point charges: one, located at the 
left sphere's center, would have the charge Q(1+bc/y), where y is the center-center distance and bc the radius; the other point charge 

would have a magnitude -((bc/2)/y)Q and be located a distance l equal to 

bc

2








2

y
to the right of the sphere's center. If we approximate by 

assuming that each sphere acts as a charge concentrated at its center in respect to its inductive effect on its neighbor, then we replace 
the spheres with 4 charges and can recompute the force between them, which will have the ratio G(x,y) to the force computed without 
taking account of induction, where G(x,y) is given below, with x=bc/2:

remove zeros from alpha2 distances to avoid calculation singularities: alpha2nozero( )
i

α
2〈 〉( )

i
10 10−

+:=  

G x y,( )

1
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+






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x
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
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
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




−

x2

y2









y 2
x2

y
⋅−









2
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
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
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δCoulombinductioni degtomg

G
bc

2
R alpha2nozeroi deg⋅( ) bc+,








G
bc

2
R α

1〈 〉( )
i
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
 bc+,







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
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α
1〈 〉( )
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



⋅ alpha2nozeroi−




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



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:=

Ratio of experiment to theory  with induction taken into account is: 

expmtntotheoryCoulombindi

actualweightaddedi

δCoulombinductioni

:=

The mean ratio is mean expmtntotheoryCoulombind( ) 0.914=

SimonCoulombind 100 1 mean expmtntotheoryCoulombind( )−( )⋅:=
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We see at once that taking induction into account changes the difference between theory and experiment from 
SimonCoulomb 19.777= to SimonCoulombind 8.632= percent, which is a considerable improvement. Evidently mutual induction does 

have a significant effect in SImon's experiment, worsening the apparent fit between theory and experiment by  
SimonCoulomb SimonCoulombind− 11.145= percent. 

There is no apparent way that Egen could have taken this directly into account, since the method of images was unknown, and 
Poisson's 1811 calculations give relative charge distributions - not their integral effects, which are of no compelling interest to convinced 
Coulombians.But Egen was well aware that the effect would be to worsen the apparent agreement, remarking the point explicitly (pg. 
299), and even attempting an ad-hoc correction of it by displacing the effective centers of repulsion away from the spheres' geometric 
centers. That is, since the actual weight added is always less than the amount that it should be, assuming that the centers of repulsion 
are not displaced from the centers of the spheres', then the repelling force must be less than assumed, in which case the distance 
between the centers of repulsion must be increased, which is what one would expect since the electric distributions push one another 
to opposite ends of the spheres. Since the second angle of a triad is always smaller than the first (it being the one produced by adding 
weight to the balance), we can crudely simulate the effect by increasing the effective distance for this second repulsion, say by 15%, 
but not for the first angle (which, being - usually - much larger - would be less affected by induction). If we do so then we can 
compensate for induction, and this is what Egen realized. 

displacefact 1.15:=
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