Wollaston's apparatus

Here we go through the geometry, and geometrical optics of Wollaston's apparatus. We show that when there is total internal reflection within the prism at the interface of prism A and the material below, and with the lengths $f e$ and $d e$ chosen in the appropriate ratio, the distance $f g$ is proportional to the material's index of refraction.

c

From the figure: $\quad \sin \alpha=e g / f e \quad$ and $\quad \sin \beta=e g / d e$
so $d e \cdot \sin \beta=f e \cdot \sin \alpha$
Now, refraction at the air/prism interface gives:

$$
\frac{\sin \beta}{\sin \gamma}=\frac{n_{\text {prism }}}{n_{\text {air }}}
$$

so

$$
\left(\frac{n_{p r i s m}}{n_{\text {air }}}\right) \cdot \sin \gamma=\left(\frac{f e}{d e}\right) \cdot \sin \alpha
$$

Now choose: $\left(\frac{f e}{d e}\right)=\left(\frac{n_{\text {prism }}}{n_{\text {air }}}\right)=\frac{1.583}{1.0}$ so $\sin \gamma=\sin \alpha$
Then, with $\gamma=\alpha$ we have $(\mathrm{ef} / \mathrm{fg})=(\mathrm{db} / \mathrm{dh})$

Now, refraction at the material/prism interface gives:

$$
\frac{\sin \psi}{\sin \phi}=\frac{n_{\text {prism }}}{n_{\text {material }}}
$$

We will have total internal reflection within the prism when $\psi=\pi / 2$

But $\sin \phi=\cos \gamma=\frac{d h}{d b}$

So when this is the case, we have

$$
\frac{1}{\sin \phi}=\frac{d b}{d h}=\frac{n_{\text {prism }}}{n_{\text {material }}}
$$

Thus, putting this together with the last equality on the previous page, we have, finally

$$
\frac{e f}{f g}=\frac{n_{\text {prism }}}{n_{\text {material }}} \quad \text { or } \quad n_{\text {material }}=f g
$$

Since ef was chosen proportional to $n_{\text {prism }}$.
The way to think of this in terms of procedure is to imagine one does have total internal reflection within the prism, e.g., the dashed line $d^{\prime} b c^{\prime}$. In this state you will see light entering from the other side of the prism at c'. Then, moving your line of sight up toward d, you will reach the point "...where perfect reflection terminates..." This is the state defined by $\psi=\pi / 2$.

