Real Options in Supply Chain Management

Richard de Neufville Professor of Systems Engineering and of Civil and Environmental Engineering MIT

Objectives of this presentation

- To stress the role of flexibility in design and management of supply chains
 - It provides the means to adjust to the consequences of inevitable risks
- To define Options, as means to create flexibility
 - Build upon their use in financial context
 - Focus is on application to the design and then effective management of the system over time
- Take-away: "options thinking" is crucial

Outline

Managers need flexibility to respond to unexpected

- This concept implies a deep change in way we think about design of supply chain systems
 - From: designing to specified circumstances
 - To: planning for a range of possibilities
- Options analysis is way to value flexibility
 - Builds upon options analysis as used in finance
- Example from current work on disruptions

Managers need flexibility

- Both suppliers and customers need flexibility to deal with unexpected changes
- Aircraft industry has been selling options for years, to benefit of airlines and manufacturers
- Product modularity and platforms enhance ability to adjust products to market demands
- Short life cycles provide flexibility to recognize manufacturing issues, to respond to design changes requested by marketplace

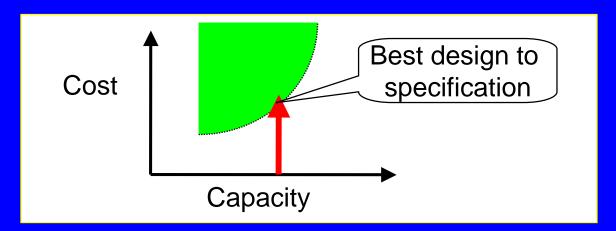
Flexibility for Disruptions

 Managers frequently encounter disruptive situations that demand, or would benefit from, out-of-ordinary responses

Recent Examples:

- Key supplier cannot deliver (fire in a chip plant)
- Normal links broken (West Coast shipping strike)
- Product demand surges (hit fashion or holiday item)
- Ability to respond quickly can be critical
 - Nokia responded fast to chip plant fire, Ericsson couldn't => Nokia was able to expand market share significantly

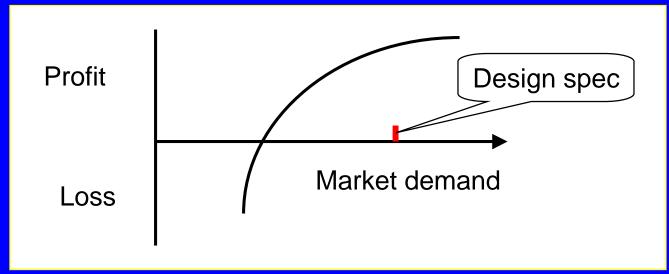
Flexibility => Insurance, Opportunity


- One way to view flexibility is as "insurance", the capability to avoid bad outcomes
- Another: readiness to capitalize on opportunities
- [these are like 'puts' and 'calls' see later]
- Either way, flexibility requires prior preparation
 - Backup suppliers or alternative designs
 - Commitments by manufacturers for extra capacity
 - Capacity to re-deploy supply chain

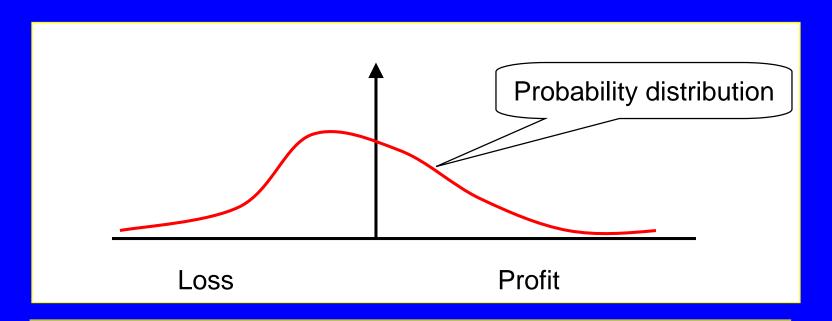
Flexibility thinking => Mental Shift

- Building flexibility into system requires a mental shift in framing of supply chain
- Problem viewed as
 - managing risk over time (time varying practices)
 - and over range of circumstances
 - not traditional optimization of performance for given specifications
- Need to face a more complex problem, building on our capability to optimize for particular situations

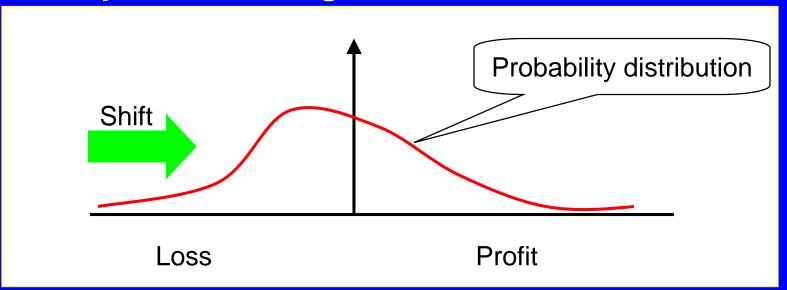
Traditional Practice


- Typically focuses on design to specifications
- This is a complex optimization process
- These specs decided outside the optimization process (for example, by market analyses)

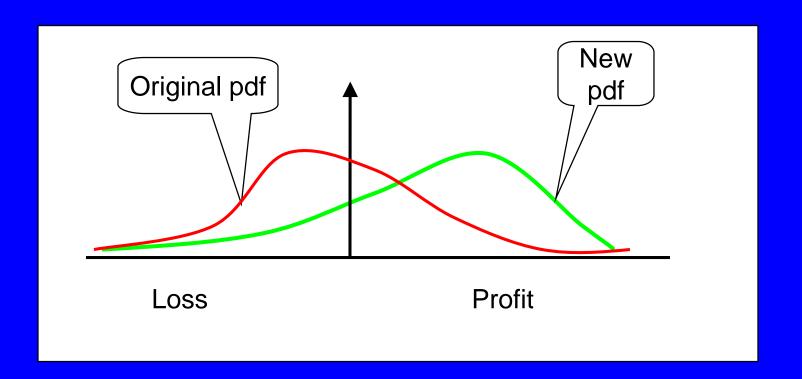
Actual System Performance is Risky


- Why is this?
- Because market and other conditions uncertain

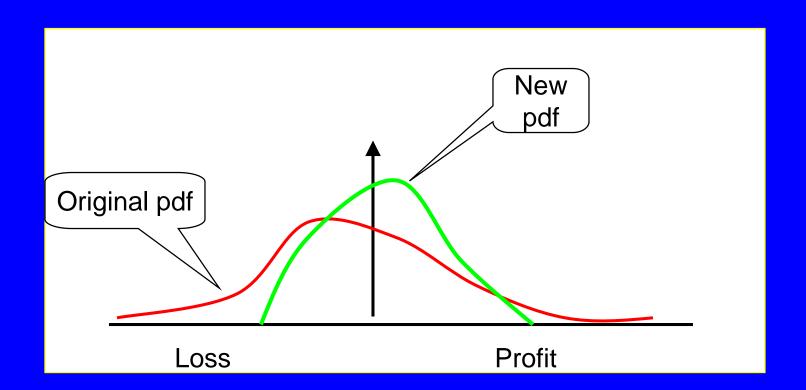
Example: Profitability depends on market size


Design involves a distribution of risk

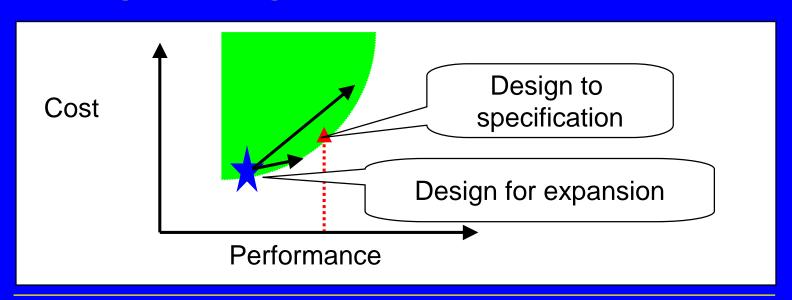
- Outcomes vary in probability
- Results of outcomes times probability => pdf (probability distribution function)


Design Opportunity

- To vary the distribution of probability distribution to increase, maximize value
- Key means of doing this: flexibility that permits adaptation of design to circumstances


Consequences of Flexibility (1)

 Accentuate the positive -- take advantage of opportunities (also known as "call options")


Consequences of Flexibility (2)

 Minimize the negative -- avoid big losses (as with insurance) (also known as "put" options)

Stress on Flexibility

- Represents a real change in concept of design and management of systems over time
- Why is this?
- Because: instead of designing to a specification, design for range of possible levels of performance

Flexibility Adds Value

- Flexible systems allow managers to
 - Recover from bad events, such as disruptions
 - Take advantage of opportunities
- Flexibility can reduce total costs
 - Costs less to adapt to variability and change
- Example: Fire in chip plant
 - Ability to redesign product with alternative chips permitted Nokia to reduce cost of interruption and, in this case, to take advantage of weakness of competitor

Flexibility Costs

- Money
 - Inventories, investment in design, computer systems
 - Extra Space for Expansion
- Complexity
 - Management systems more complex
- Time
 - Design and Planning Efforts take time

Central Issue

- What Flexibility should we incorporate in System?
- The question is in effect:

"What elements of flexibility are more valuable than their cost?"

- How do we value flexibility?
- This is the central topic of options analysis

"Options" = Formal Notion of Flexibility

- An Option is a formal way of defining flexibility
- Options valuation well developed for finance markets
- Field of "real" options applies theory to real projects
 - Future decisions have features similar to financial options
 - Financial options valuation can be extended to projects
- However, adaptation not simple:
 - We do not have statistics on future events
 - Developments unlikely to be random

What is an Option?

- A right, but not an obligation...
 - Asymmetric returns; exercise only if advantageous
 - Acquired at some cost
- to take some action...
 - to switch fuels, drop project, buy or sell something, etc, etc,
- now, or in the future...
 - May be indefinite, as for dual fuel burner
 - Often for a limited time after which option expires
- for a pre-determined price.
 - Cost of action separate from cost of option (down time for switching burners different from cost of dual fuel burner)

Example Financial Option

- Example: An Option to buy 100 shares of ATT at 20 through Oct. 3, 2003
- Option is a right. It allows, doesn't force owner to ...
- ... buy shares at a specified price
- ... for a specific time (up to October 3, 2003)
- "Strike" price is set in advance (at \$20 in this case)
- Note: on May 23, 2003, quoted prices were:
 - <u>- 1 share of ATT</u> = \$ 19.25
 - option on 1 share = \$ 1.95
 (Source: finance.yahoo.com)

Asymmetry of Option

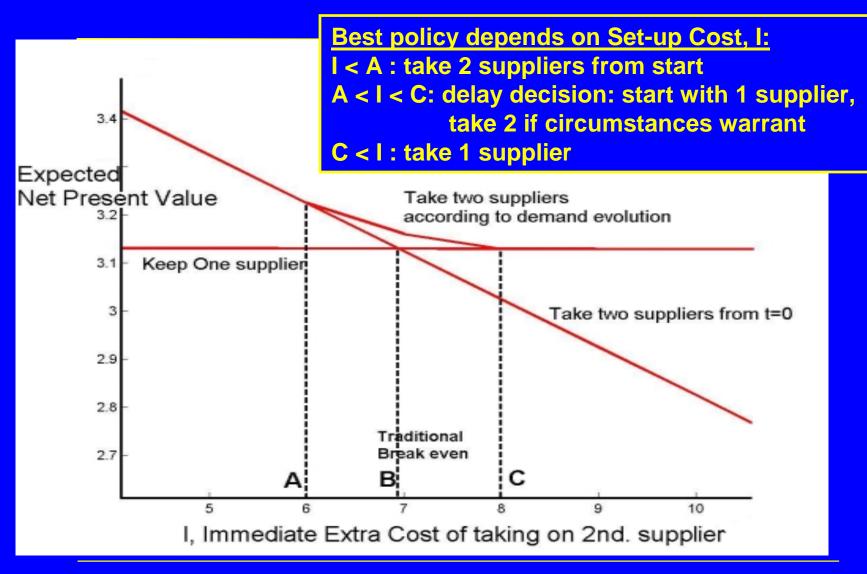
- Owner of Option Likely to exercise right to buy stock if its price > strike price or \$S > \$20
 - owner then makes profit = \$(S 20)
 - these profits may be unlimited
- Owner not required to exercise option
 - Loss limited to cost of buying option (example: \$1.95/share)
 - losses are limited
- Once you own this option, Value is not symmetric
 - In this case: All gain, No pain
- Note: Other options might be all pain, no gain...

Example: "Real" Option

- "Real" Options concerns things, as distinct from "financial" options embodied in contracts
- Example: The spare tire on your car is an option that gives you the right
- ... to change the tire
- ... the right in this case has unlimited time
- "cost" of exercising option = effort to change tire
- Note Similarity to Financial Option
 - You will change tire only if you need to
 - You do not have to do a thing about it

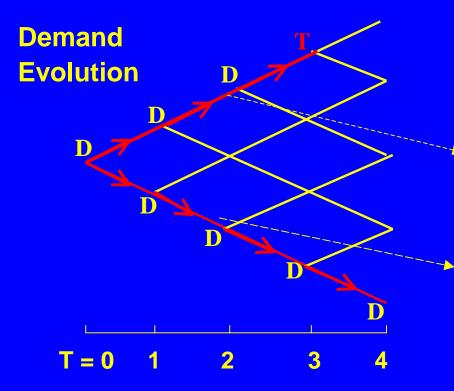
Supply Chain "Real" Options

 "Real" Options for Supply Chain Management can come in many shapes


Examples:

- Maintenance of alternative supplier, perhaps at higher cost, to enable use as needed
- Inventories motivated by disruptive events
- Investment in platforms for products to reduce vulnerability to specific components
- Contracts with manufacturers to insure priority supply
- Cutting cycle-time of product, to make faster response to market and production issues

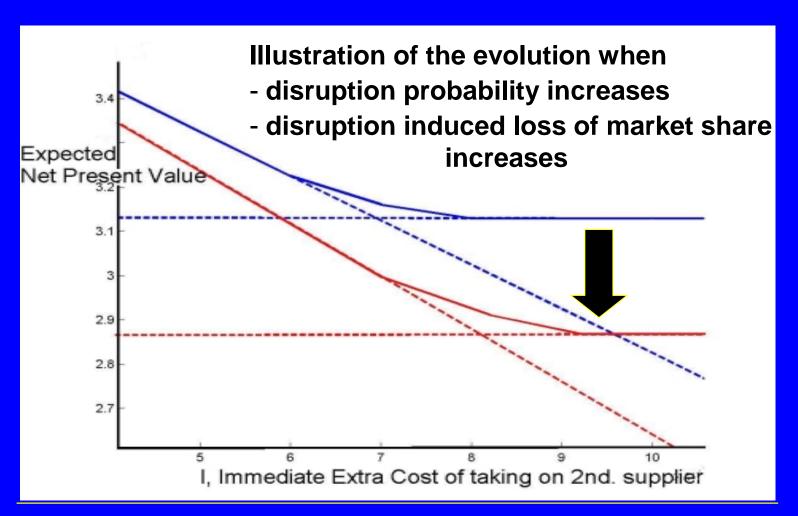
Recent Results (Pochard)


- Research on supply chain disruptions
- What circumstances justify a Second Supplier?
- We developed a model to estimate cost, benefits
 - set up of relationship, part costs, frequency of disruption
 - gain or loss of market share
- Model investigates option of delaying decision
 - This can be worth a lot
- A time-varying dynamic strategic is best!

Best Policy for Second Supplier

Valuing the Delay Option

Delaying decision to invest in dual-sourcing lets firm observe demand changes over time and make right decision at right time



T = 0 Delay investment decision. Value of 2nd supplier not yet clear.

Path 1: Demand keeps increasing.
 Take 2 suppliers at t = 3

Path 2: Demand keeps decreasing.Stick to one supplier

Results Sensitive to Circumstances

Summary

- Flexibility has value, because of risk
- Supply chain design should incorporate flexibility
- Issue is: How do we value flexibility?
- Options embody formal concept of flexibility
- "Options Thinking" key
- Topic of current research