Dynamic Pricing to improve Supply Chain Performance

David Simchi-Levi M.I.T.

November 2000

Presentation Outline

- The Direct-to-Consumer Model
 - Motivation
 - Opportunities suggested by DTC
- Flexible Pricing Strategies
- Future Research Directions

Characteristics of the Industrial Partner

- Make-to-stock environment
- Annual revenue in 1998 was about \$180 billion
- Annual spending on supply is more than \$70 billion
- Huge product variety and a large number of parts
- Inventory levels of parts and unsold finished goods is about \$40 billion

Direct to Consumer (DTC)

The Impact of the DTC Model

• Valuable Information for the Manufacturer

- e.g., accurate consumer demand data

Traditional Supply Chain

Source: Tom Mc Guffry, Electronic Commerce and Value Chain Management, 1998

The Dynamics of the Supply Chain

Source: Tom Mc Guffry, Electronic Commerce and Value Chain Management, 1998

We Conclude:

In Traditional Supply Chains....

- Order Variability is amplified up the supply chain; upstream echelons face higher variability.
- What you see is not what they face.

Consequences...

- Increased safety stock
- Reduced service level
- Inefficient allocation of resources
- Increased transportation costs

Source: Tom Mc Guffry, Electronic Commerce and Value Chain Management, 1998

The Impact of the DTC Model

• Valuable Information for the Manufacturer

– e.g., accurate consumer demand data

• Product variety for the Consumer

– e.g., allows for an assemble-to-order strategy

From Make-to-Stock Model....

....to Assemble-to-Order Model

A new Supply Chain Paradigm

- A shift from a Push System...
 - Production decisions are based on forecast
- ...to a Push-Pull System
 - Parts inventory is replenished based on forecasts
 - Assembly is based on accurate customer demand

The Impact of the DTC Model

- Valuable information for the Manufacturer
 - e.g., accurate consumer demand data
- Product variety for the Consumer
 - e.g., allows for an assemble-to-order strategy
- Flexibility
 - e.g., price and promotions

Revenue Management

- "Allocating the right type of capacity to the right kind of customer at the right price so as to maximize revenue or yield"
- Traditional Industries:
 - Airlines
 - Hotels
 - Rental Car Agencies
 - Retail Industry

FOR EXAMPLE...

• McGill, J. and G. van Ryzin (1999), Revenue Management: Research Overview and Prospects. *Transportation Science*, 33, 2, pp. 233-256.

Traditional Requirements

- Perishable inventory
- Limited capacity
- Ability to segment markets
- Product sold in advance
- Fluctuating demand

FOR EXAMPLE...

• Weatherford, L. and S. Bodily (1992), A Taxonomy and Research Overview of Perishable-Asset Revenue Management: Yield Management, Overbooking, and Pricing. *Operations Research* 40, 5, pp. 831-844.

Dynamic Pricing in Manufacturing

- Non-perishable inventory
- Production schedule needs to be determined
- Production has capacity limitations
- Demand and prices over time are bi-directional
- Lost sales

FOR EXAMPLE...

- Federgruen, A. and A. Heching (1999), Combined Pricing and Inventory Control under Uncertainty. *Operations Research*, 47, 3, pp. 454-475.
 - Stochastic demand, allows for backlogging but not lost sales

Flexible Pricing in Manufacturing

- Goals:
 - To extend the application of dynamic pricing and revenue management to non-traditional areas
 - Manufacturing industry with non-perishable products
 - Capacity allocation is the allocation of a perishable resource (i.e., build or no build decisions)
 - To integrate pricing, production and distribution decisions within the supply chain
- "Allocate product to the right customer at the right price and at the *right time*"

Model Features

- Determines "when" and "how much" to sell
- Capacity limitations on production
- Incorporates lost sales
- Known, time-dependent demand curves

Model Assumptions

- Deterministic model
- Single product of discrete units
- T periods
- Periodically varying parameters:
 - Production Capacity: Q_t
 - Holding Cost: h_t per unit
 - Production Cost: k_t per unit
 - Upper and lower bounds on price
 - Concave Revenue Function: R_t(D_t)
 - D_t: the units of satisfied demand at period t
 - Example: Demand is a linear function of price

Revenue Curve

• Revenue curve incorporates lost sales or limits on demand and remains concave with respect to satisfied demand

The Pricing Problem: Problem PP

Maximize Profit

 $\mathbf{f}(\mathbf{D}) = \mathbf{?}_{1 \le t \le T} \left(\mathbf{R}_t(\mathbf{D}_t) - \mathbf{h}_t \mathbf{I}_t - \mathbf{k}_t \mathbf{X}_t \right)$

Subject to:

- (1) Beginning Inventory:
- (2) Inventory Balance:
- (3) Production Capacity:
- (4) Integrality:

$$\begin{split} I_0 &= 0 \\ I_t &= I_{t-1} + X_t - D_t, & t = 1, 2, ..., T \\ X_t ? Q_t, & t = 1, 2, ..., T \\ I_t, X_t, D_t, \text{ integer ? } 0, & t = 1, 2, ..., T \end{split}$$

At each period t,

- X_t is the units of product produced
- I_t is the end of period inventory
- **D**_t is the satisfied demand (sales)

When does flexible pricing matter?

- Computational analysis performed to answer the following questions:
 - How much does flexible pricing affect profit?
 - When does flexible pricing have the most impact on profit?
 - What other impacts does flexible pricing have?
 - How many prices in a horizon are needed to obtain significant profit benefit?

Profit Benefit

• Define profit potential due to flexible pricing to be:

Profit Potential ? Profit with Dynamic Prices ?1 Profit with Constant Price

• Profit potential is the percentage of profit to be gained from dynamic prices

Computational Details

- Demand curves obtained from an Industrial Partner
- Curves are aggregated over a number of products
- 10 period problem
- Varied capacity, demand, or both

Managerial Insights

- Flexible pricing has the most impact on profit when:
 - Capacity is tightly constrained
 - Variability in capacity or demand exists

Impact of Changes in Capacity

- As capacity becomes more constrained, the benefit of flexible pricing increases
- As the variability in capacity increases, the benefit of flexible pricing increases

Impact of Changes in Demand

- As the variability in demand increases, the benefit in flexible pricing increases
- As capacity becomes more constrained, the benefit in flexible pricing increases

Other Potential Impacts

- Reduction of variability in sales or production schedule
- Increase in average sales
- Reduction of inventory
- Reduction in average (or weighted average) price

Impact on Variability of Sales

• When demand is variable and capacity is constant, flexible pricing reduces the variability in sales compared to fixed pricing policies.

Impact on Production Schedule

• When demand is variable and capacity is constant, flexible pricing often results in a smoother production schedule than that obtained using fixed pricing policies.

Impact on Average Sales

• Flexible pricing policies increase average sales compared to fixed pricing policies.

Impact on Inventory

• Flexible pricing policies decrease the average inventory level compared to fixed pricing policies.

Impact on Price

• Flexible pricing policies decrease the weighted average price compared to fixed pricing policies.

Number of Prices

- How many prices in a horizon are needed to obtain significant profit benefit?
- 12 periods analyzed
 - Considered 1, 2, 3, 4, 6, and 12 prices
- Test cases:
 - Varied capacity over the horizon, fixed demand curves
 - E(Capacity) = 0.50 * Optimal Uncapacitated Demand
 - For all patterns shown,
 Coefficient of Variation (Capacity) = 0.25

Number of Prices

- Usually 1 price every 3 periods gives ? 75% of the potential profit increase
- Less is sometimes more

Number of Prices

- Number of prices needed varies depending on the pattern of variability
- The potential profit benefit varies depending on the pattern of variability

Multiple Products

- Deterministic multi-product model
- Multiple products share common production capacity
- Finite time horizon
- Each product uses the same amount of the resource per unit production
- Time varying, product dependent parameters
 - Production and inventory costs
 - Demand curves

Multiple Products: Computational Results

- 12 period horizon
- Demand curves based on typical products
- Demand Scenarios:
 - Seasonality (car): low demand at beginning, increases in middle, decreases at end of horizon
 - Decreasing Mean (laptop): demand steadily decreases from beginning to end of horizon
 - Each product experiences the same seasonality effect

Profit Potential with Multiple Products

• The percentage of profit potential often decreases as the number of products increases

Future Research Directions

- Multiple Products and Multiple Parts
 - Shared production capacity
 - Limited supply of common parts
 - Determine the most general model that can be solved by the greedy algorithm

Future Research Directions

- Realistic Demand:
 - Stochastic Demand
 - Computational analysis
 - Demand Diversions
 - Price changes in one product influence customers to divert from or to other products
- Production Set-up cost
 - Consecutive policy is optimal
 - DP that incorporates the MAA

Multiple Products, Part II

- Stochastic Demand
- Assumptions:
 - Single period, n products
 - Production cost and salvage value
 - Products share limited production capacity
 - Demand for each product j is an r.v. with a known cumulative probability distribution, F^j_{P,D}, which is independent of the other products
- Goal: Set prices and production for all products to maximize expected profit

Problem Definitions

 For product j set at price P, let M^j_P(X) be the marginal expected profit to increase production from X-1 to X

 $-\mathbf{M^{j}}_{P}(\mathbf{X}) = \mathbf{S^{j}}\mathbf{F^{j}}_{P,D}(\mathbf{X-1}) + \mathbf{P}[\mathbf{1-F^{j}}_{P,D}(\mathbf{X-1})]$

- with $M_{P}^{j}(0) = 0$, where S^{j} is salvage value

• Define expected profit of producing X units of product j:

$$R^{j}(X)$$
? Max_{P} ? $M_{P}^{j}(x)$

Problem Formulation

- Problem PPE:
 - Max - Subject to $F^{E}(X)$?? $(R^{j}(X^{j})?k^{j}X^{j})$ 1?j?n $X^{j}?Q$ j
 - X^j integer ? 0, j ? 1,2,...,n

- Result:
 - If Rj(X) is a concave function of X for all j, then problem PPE can be solved by MAA
 - Otherwise, PPE can be solved by a DP.

Problem Formulation

Max $F^{E}(X) = ?_{1 \le j \le n} (R_{j}(X_{j}) - k_{j}X_{j})$

Subject to:

(1) Production Capacity: ${}^{2}_{j}X_{j}$? Q,(4) Integrality: X_{j} integer ? 0, j = 1, 2, ..., n

Theoretical Result:

If Rj(X) is a concave function of X for all j, then problem PPE above can be solved by MAA. If not, problem PPE can be solved by a DP.

Multiple Products/Demand Scenarios

