Prime III, the single most accessible voting system, was conceived in 2003 at Auburn University, and later was developed and refined at Clemson University’s Human Centered Computing Lab. It offers a secure, multimodal electronic voting system that delivers the necessary system security, integrity and user satisfaction safeguards in a user-friendly interface that accommodates all people regardless of ability. Prime III implements a Universal Design. By Universal Design, we mean "an approach to the design of all products and environments to be as usable as possible by as many people as possible regardless of age, ability or situation. Other terms for Universal Design used around the world include Design For All, Inclusive Design, and Barrier-Free Design." (Universal Design Education Online)

Prime III enables those who may have difficulty seeing, hearing, speaking, or reading, as well as those who may have other physical disabilities, such as missing limbs, with the ability to vote securely, privately, and with dignity.

Dr. Juan E. Gilbert thusly named Prime III because it is considered a third-generation voting device. First generation voting was done with mechanical equipment and paper (e.g., lever machines, punch cards, etc.) Second-generation voting uses computers (e.g., optical scan, Direct Recording Electronic [DRE] voting machine.) Third generation devices are multimodal. These are machines that accommodate multiple voters on one machine using multimodality. Prime III is a third generation voting device that allows voters to privately and securely cast their ballot using touch or voice interchangeably.
Balloting

To address the issue of long lines and wait times, Balloting is a concept aimed at speeding up the voting process. Balloting allows a voter to fill out a ballot via phone or online system prior to Election Day or casting a ballot. The Balloting process gives the voter an opportunity to:

- Read
- Understand
- Fill out
- Review
- Print the completed ballot in the form of a QR code at his/her convenience and prior to going to the polls.

On Election Day, the voting machine is used to scan the voter’s QR code, which brings up the voter’s prior completed ballot for review and modification before officially submitting it. When the voter submits the ballot, it will print on the voting machine where the voter can verify the ballot.

Since a voter would already be familiar with the ballot and have fully or partially completed the ballot, the hypothesis is that Balloting would reduce the voting time and errors in the voting process compared to other methods of voting.

In a study using the 2012 Presidential Ballot from Broward County, Florida, a significant reduction in the average voting times using balloting versus paper ballots or voting machines was observed.

Paper Ballots- 4.5 minutes
Voting Machines- 3.8 minutes
Balloting- 48 seconds
VoterPass

VoterPass is a voter-line management tool designed to make voting more efficient. Voters will access VoterPass through multiple interfaces, including, but not limited to, Internet web browsers, mobile phone applications, interactive voice response over a phone line, etc.

Upon identifying the registered voter, the voter will select their assigned precinct and VoterPass will provide him or her with timeslots available for voting. VoterPass can provide the voter with a reminder email, phone call, or another form of communication to confirm the chosen time slot.

On Election Day, the voter will arrive at the voting precinct where he or she will bypass the regular voting line and enter the VoterPass line. When the voter reaches the front of the VoterPass line, his or her identity will be verified for voting as well as for the VoterPass time slot.
Televoting

Because many members of the armed services are overseas during elections, they are unable to cast their ballot in person. As a result, The Uniformed and Overseas Citizens Absentee Voting Act (UOCAVA) was passed allowing them to vote by mail. According to a 2010 survey conducted by the United States Election Assistance Commission, only about 35% of the ballots sent to UOCAVA voters were returned to the states.

Of those returned ballots, almost seven percent were not counted for various reasons. Because their ballots are often not received or are received and not counted, military and overseas voters are being disenfranchised. While many have considered Internet voting to be the solution to this problem, there are those who worry about its security.

This research suggests development of Televoting, a process that will give UOCAVA voters the ability to cast a ballot that will be counted on Election Day. Televoting is presented as a secure alternative to the problem of mailed ballots and Internet voting for UOCAVA communities.