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Abstract

The computational role of the local recurrent network in primary visual cortex is
still a matter of debate. To address this issue, we analyze intracellular record-
ing data of cat V1, which combine measuring the tuning of a range of neuronal
properties with a precise localization of the recording sites in the orientation pref-
erence map. For the analysis, we consider a network model of Hodgkin-Huxley
type neurons arranged according to a biologically plausible two-dimensional to-
pographic orientation preference map. We then systematically vary the strength
of the recurrent excitation and inhibition relative to the strength of the afferent
input. Each parametrization gives rise to a different model instance for which the
tuning of model neurons at different locations of the orientation map is compared
to the experimentally measured orientation tuning of membrane potential, spike
output, excitatory, and inhibitory conductances. A quantitative analysis shows
that the data provides strong evidence for a network model in which the affer-
ent input is dominated by strong, balanced contributions of recurrent excitation
and inhibition. This recurrent regime is close to a regime of “instability”, where
strong, self-sustained activity of the network occurs. The firing rate of neurons
in the best-fitting network is particularly sensitive to small modulations of model
parameters, which could be one of the functional benefits of a network operating
in this particular regime.

1 Introduction

One of the major tasks of primary visual cortex (V1) is the computation of a representation of
orientation in the visual field. Early models [1], combining the center-surround receptive fields of
lateral geniculate nucleus to give rise to orientation selectivity, have been shown to be over-simplistic
[2; 3]. Nonetheless, a debate remains regarding the contribution of afferent and recurrent excitatory
and inhibitory influences [4; 5]. Information processing in cortex changes dramatically with this
“cortical operating regime”, i. e. depending on the relative strengths of the afferent and the different
recurrent inputs [6; 7]. Recently, experimental and theoretical studies have investigated how a cell’s
orientation tuning depends on its position in the orientation preference map [7–10]. However, the
computation of orientation selectivity in primary visual cortex is still a matter of debate.

The wide range of models operating in different regimes that are discussed in the literature are an
indication that models of V1 orientation selectivity are underconstrained. Here, we assess whether
the specific location dependence of the tuning of internal neuronal properties can provide sufficient
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constraints to determine the corresponding cortical operating regime. The data originates from in-
tracellular recordings of cat V1 [9], combined with optical imaging. This allowed to measure, in
vivo, the output (firing rate) of neurons, the input (excitatory and inhibitory conductances) and a
state variable (membrane potential) as a function of the position in the orientation map. Figure 1
shows the experimentally observed tuning strength of each of these properties depending on the
distribution of orientation selective cells in the neighborhood of each neuron. The x-axis spans the
range from pinwheels (0) to iso-orientation domains (1), and each y-axis quantifies the sharpness
of tuning of the individual properties (see section 2.2). The tuning of the membrane potential (Vm)
as well as the tuning of the total excitatory (ge) and inhibitory (gi) conductances vary strongly with
map location, whereas the tuning of the firing rate (f ) does not. Specifically, the conductances and
the membrane potential are sharper tuned for neurons within an iso-orientation domain, where the
neighboring neurons have very similar orientation preferences, as compared to neurons close to a
pinwheel center, where the neighboring neurons show a broad range of orientation preferences.

Figure 1: Variation of the orientation selectivity indices (OSI, cf. Equation 2) of the firing rate (f ),
the average membrane potential (Vm), and the excitatory (ge) and inhibitory (gi) input conductances
of neurons in cat V1 with the map OSI (the orientation selectivity index of the orientation map at the
location of the measured neuron). Dots indicate the experimentally measured values from 18 cells
[9]. Solid lines show the result of a linear regression. The slopes (values± 95% confidence interval)
are −0.02± 0.24 (f ), 0.27± 0.22 (Vm), 0.49± 0.20 (ge), 0.44± 0.19 (gi).

This paper focuses on the constraints that this specific map-location dependence of neuronal prop-
erties imposes on the operating regime of a generic network composed of Hodgkin-Huxley type
model neurons. The model takes into account that the lateral inputs a cell receives are determined
(1) by the position in the orientation map and (2) by the way that synaptic inputs are pooled across
the map. The synaptic pooling radius has been shown experimentally to be independent of map
location [9], resulting in essentially different local recurrent networks depending on whether the
neighborhood is made up of neurons with similar preferred orientation, such as in an iso-orientation
domain, or is highly non-uniform, such as close to a pinwheel. The strength of lateral connections,
on the other hand, is unknown. Mariño et al. [9] have shown that their data is compatible with a
model showing strong recurrent excitation and inhibition. However, this approach cannot rule out
alternative explanations accounting for the emergence of orientation tuning in V1. Here, we sys-
tematically explore the model space, varying the strength of the recurrent excitation and inhibition.
This, in effect, allows us to test the full range of models, including feed-forward-, inhibition- and
excitation-dominated models as well as balanced recurrent models, and to determine those that are
compatible with the observed data.

2 Methods

2.1 Simulation: The Hodgkin-Huxley network model

The network consists of Hodgkin-Huxley type point neurons and includes three voltage dependent
currents (Na+ and K+ for generation of action potentials, and a non-inactivating K+-current that
is responsible for spike-frequency adaptation). Spike-frequency adaptation was reduced by a factor
0.1 for inhibitory neurons. For a detailed description of the model neuron and the parameter values,
see Destexhe et al. [11]. Every neuron receives afferent, recurrent and background input. We

2



used exponential models for the synaptic conductances originating from GABAA-like inhibitory
and AMPA-like excitatory synapses [12]. Slow NMDA-like excitatory synapses are modeled by a
difference of two exponentials (parameters are summarized in Table 1). Additional conductances
represent background activity (Ornstein-Uhlenbeck conductance noise, cf. Destexhe et al. [11]).

Table 1: Parameters of the Hodgkin-Huxley type neural network.

PARAMETER DESCRIPTION VALUE

NAff Number of afferent exc. synaptic connections per cell 20
NE Number of recurrent exc. synaptic connections per cell 100
NI Number of recurrent inh. synaptic connections per cell 50
σE = σI Spread of recurrent connections (std. dev.) 4 units (125 µm)
Ee Reversal potential excitatory synapses 0 mV
Ei Reversal potential inhibitory synapses -80 mV
τE Time constant of AMPA-like synapses 5 ms
τI Time constant of GABAA-like synapses 5 ms
τ1 Time constant of NMDA-like synapses 80 ms
τ2 Time constant of NMDA-like synapses 2 ms
µd

E , σd
E Mean and standard deviation of excitatory synaptic delay 4 ms, 2 ms

µd
I , σd

I Mean and standard deviation of inhibitory synaptic delay 1.25 ms, 1 ms
gAff

E Peak conductance of afferent input to exc. cells 141 nS
gAff

I Peak conductance of afferent input to inh. cells 0.73 gAff
E

gII Peak conductance from inh. to inh. cells 1.33 gAff
E

gEI Peak conductance from inh. to exc. cells 1.33 gAff
E

The network was composed of 2500 excitatory cells arranged on a 50 × 50 grid and 833 inhibitory
neurons placed at random grid locations, thus containing 75% excitatory and 25% inhibitory cells.
The complete network modeled a patch of cortex 1.56× 1.56 mm2 in size. Connection probabilities
for all recurrent connections (between the excitatory and inhibitory population and within the popu-
lations) were determined from a spatially isotropic Gaussian probability distribution (for parameters,
see Table 1) with the same spatial extent for excitation and inhibition, consistent with experimental
measurements [9]. In order to avoid boundary effects, we used periodic boundary conditions. Re-
current excitatory conductances were modeled as arising from 70% fast (AMPA-like) versus 30%
slow (NMDA-like) receptors. If a presynaptic neuron generated a spike, this spike was transferred
to the postsynaptic neuron with a certain delay (parameters are summarized in Table 1).

The afferent inputs to excitatory and inhibitory cortical cells were modeled as Poisson spike trains
with a time-independent firing rate fAff given by

fAff(θstim) = 30Hz
(
rbase + (1− rbase) exp

(
− (θstim − θ)2

(2σAff)2

))
, (1)

where θstim is the orientation of the presented stimulus, θ is the preferred orientation of the cell,
rbase = 0.1 is a baseline firing rate, and σAff = 27.5° is the tuning width. These input spike
trains exclusively trigger fast, AMPA-like excitatory synapses. The orientation preference for each
neuron was assigned according to its location in an artificial orientation map (Figure 2A). This map
was calibrated such that the pinwheel distance and the spread of recurrent connections matches
experimental data [9].

In order to measure the orientation tuning curves of f , Vm, ge, and gi, the response of the network
to inputs with different orientations was computed for 1.5 s with 0.25 ms resolution (usually, the
network settled into a steady state after a few hundred milliseconds). We then calculated the firing
rate, the average membrane potential, and the average total excitatory and inhibitory conductances
for every cell in an interval between 0.5 s and 1.5 s.

2.2 Quantitative evaluation: Orientation selectivity index (OSI) and OSI-OSI slopes

We analyze orientation tuning using the orientation selectivity index [13], which is given by

OSI =
√(∑N

i=1
R(φi) cos(2φi)

)2
+
(∑N

i=1
R(φi) sin(2φi)

)2
/
∑N

i=1
R(φi). (2)
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Figure 2: (A) Artificial orientation map with four pinwheels of alternating handedness arranged on
a 2-dimensional grid. The white (black) circle denotes the one-(two-) σ-area corresponding to the
radial Gaussian synaptic connection profile (σE = σI = 125 µm). (B) Map OSI of the artificial
orientation map. Pinwheel centers appear in black.

R(φi) is the value of the quantity whose tuning is considered, in response to a stimulus of ori-
entation φi (e. g. the spiking activity). For all measurements, eight stimulus orientations φi ∈
{−67.5,−45,−22.5, 0, 22.5, 45, 67.5, 90} were presented. The OSI is then a measure of tuning
sharpness ranging from 0 (unselective) to 1 (perfectly selective). In addition, the OSI was used to
characterize the sharpness of the recurrent input a cell receives based on the orientation preference
map. To calculate this map OSI, we estimate the local orientation preference distribution by binning
the orientation preference of all pixels within a radius of 250 µm around a cell into bins of 10° size;
the number of cells in each bin replaces R(φi). Figure 2 shows the artificial orientation map and the
map OSI for the cells in our network model. The map OSI ranges from almost 0 for cells close to
pinwheel centers to almost 1 in the linear zones of the iso-orientation domains.

The dependence of each tuning property on the local map OSI was then described by a linear re-
gression line using the least squares method. These linear fits provided a good description of the
relationship between map OSI and the tuning of the neuronal properties in the simulations (mean
squared deviation around the regression lines was typically below 0.0025 and never above a value
of 0.015) as well as in the experimental data (mean squared deviation was between 0.009 (gi) and
0.015 (f )). In order to find the regions of parameter space where the linear relationship predicted by
the models is compatible with the data, the confidence interval for the slope of the linear fit to the
data was used.

3 Results

The parameter space of the class of network models considered in this paper is spanned by the peak
conductance of synaptic excitatory connections to excitatory (gEE) and inhibitory (gIE) neurons.
We shall first characterize the operating regimes found in this model space, before comparing the
location dependence of tuning observed in the different models with that found experimentally.

3.1 Operating regimes of the network model

The operating regimes of a firing rate model can be defined in terms of the strength and shape of the
effective recurrent input [7]. The definitions of Kang et al. [7], however, are based on the analytical
solution of a linear firing rate model where all neurons are above threshold and cannot be applied
to the non-linear Hodgkin-Huxley network model used here. Therefore, we characterize the param-
eter space explored here using a numerical definition of the operating regimes. This definition is
based on the orientation tuning of the input currents to the excitatory model cells in the orientation
domain (0.6 < map OSI < 0.9). Specifically, if the sum of input currents is positive (negative) for
all presented orientations, recurrent excitation (inhibition) is dominant, and the regime thus excita-
tory (EXC; respective inhibitory, INH). If the sum of input currents has a positive maximum and a
negative minimum (i. e. Mexican-hat like), a model receives significant excitation as well as inhibi-
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Figure 3: (A) Operating regimes of the network model as a function of the peak conductance of
synaptic excitatory connections to excitatory (gEE) and inhibitory (gIE) neurons: FF – feed-forward,
EXC – recurrent excitatory dominated, INH – recurrent inhibitory dominated, REC – strong re-
current excitation and inhibition, and unstable. The conductances are given as multiples of the
afferent peak conductance of excitatory neurons (gAff

E ). The figure summarizes simulation results
for 38× 28 different values of gEE and gIE. (B) Tuning curves for one example network in the REC
regime (marked by a cross in A). Mean responses across cells are shown for the firing rate (f ), the
membrane potential (Vm), the total excitatory (ge), and the total inhibitory conductance (gi), sep-
arately for cells in iso-orientation domains (0.6 < map OSI < 0.9, thick lines) and cells close to
pinwheel centers (map OSI < 0.3, thin lines). For each cell, responses were individually aligned
to its preferred orientation and normalized to its maximum response; for the Vm tuning curve, the
mean membrane potential without any stimulation (Vm = −64.5 mV) was subtracted beforehand.
To allow comparison of the magnitude of gi and ge responses, both types of conductances were
normalized to the maximum gi response.

tion and we refer to such a model as operating in the recurrent regime (REC). An example for the
orientation tuning properties observed in the recurrent regime is shown in Figure 3B. Finally, if the
sum of the absolute values of the currents through excitatory and inhibitory recurrent synapses of
the model cells (at preferred orientation) is less than 30% of the current through afferent synapses,
the afferent drive is dominant and we call such regimes feed-forward (FF).

The regions of parameter space corresponding to these operating regimes are depicted in Figure 3A
as a function of the peak conductance of synaptic excitatory connections to excitatory (gEE) and
inhibitory (gIE) neurons. We refer to the network as “unstable” if the model neurons show strong
responses (average firing rate exceeds 100 Hz) and remain at high firing rates if the afferent input
is turned off; i. e. the network shows self-sustained activity. In this regime, the model neurons lose
their orientation tuning.

3.2 Orientation tuning properties in the different operating regimes

We analyzed the dependence of the orientation tuning properties on the operating regimes and com-
pared them to the experimental data. For every combination of gEE and gIE, we simulated the re-
sponses of neurons in the network model to oriented stimuli in order to measure the orientation
tuning of Vm, f , ge and gi (see Methods). The OSI of each of the four quantities can then be plotted
against the map OSI to reveal the dependence of the tuning on the map location (similar to the ex-
perimental data shown in Figure 1). The slope of the linear regression of this OSI-OSI dependence
was used to characterize the different operating points of the network. Figure 4 shows these slopes
for the tuning of f , Vm, ge and gi, as a function of gEE and gIE of the respective Hodgkin-Huxley
network models (gray scale). Model networks with strong recurrent excitation (large values of gEE),
as in the REC regime, predict steeper slopes than networks with less recurrent excitation. In other
words, as the regime becomes increasingly more recurrently dominated, the recurrent contribution
leads to sharper tuning in neurons within iso-orientation domains as compared to neurons near the
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Figure 4: Location dependence of orientation tuning of the conductances, the membrane potential,
and the firing rate in the network model. The figure shows the slope values of the OSI-OSI regres-
sion lines (in gray values) as a function of the peak conductance of synaptic excitatory connections
to excitatory (gEE) and inhibitory (gIE) neurons, separately for the spike rate (A), the membrane po-
tential (B), the total synaptic excitatory (C), and inhibitory conductance (D). The conductances are
given as multiples of the afferent peak conductance of excitatory neurons (gAff

E ). Thin lines denote
the borders of the different operating regimes (cf. Figure 3). The region delimited by the thick
yellow line corresponds to slope values within the 95% confidence interval of the corresponding
experimental data. Note that in (A) this region covers the whole range of operating regimes except
the unstable regime.

pinwheel centers. However, yet closer to the line of instability the map-dependence of the tuning
almost vanishes (slope approaching zero). This reflects the strong excitatory recurrent input in the
EXC regime which leads to an overall increase in the network activity that is almost untuned and
therefore provides very similar input to all neurons, regardless of map location. Also, the strongly
inhibitory-dominated regimes (large values of gIE) at the bottom right corner of Figure 4 are of in-
terest. Here, the slope of the location dependence becomes negative for the tuning of firing rate f
and membrane potential Vm. Such a sharpening of the tuning close to pinwheels in an inhibition
dominated regime has been observed elsewhere [8].

Comparing the slope of the OSI-OSI regression lines to the 95% confidence interval of the slopes
estimated from the experimental data (Figure 1) allows us to determine those regions in parame-
ter space that are compatible with the data (yellow contours in Figure 4). The observed location-
independence of the firing rate tuning is compatible with all stable models in the parameter space
(Figure 4A) and therefore does not constrain the model class. In contrast to this, the observed
location-dependence of the membrane potential tuning (Figure 4B) and the inhibitory conductance
tuning (Figure 4D) excludes most of the feed-forward and about half of the inhibitory-dominated
regime. Most information, however, is gained from the observed location-dependence of the ex-
citatory conductance tuning (Figure 4C). It constrains the network to operate in either a recurrent
regime with strong excitation and inhibition or in a slightly excitatory-dominated regime.
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3.3 Only the strongly recurrent regime satisfies all constraints

Combining the constraints imposed by the OSI-OSI relationship of the four measured quantities (yel-
low contour in both panels of Figure 5), we can conclude that the experimental data constrains the
network to operate in a recurrent operating regime, with recurrent excitation and inhibition strong,
approximately balanced, and dominating the afferent input. In addition, we calculated the sum of
squared differences between the data points (Figure 1) and the OSI-OSI relationship predicted by
the model, for each operating regime. The “best fitting” operating regime, which had the lowest
squared difference, is marked with a cross in Figure 5. The corresponding simulated tuning curves
for orientation domain and pinwheel cells are shown in Figure 3B.

Figure 5: Ratio between (A) the excitatory current through the recurrent synapses and the cur-
rent through afferent synapses of excitatory model cells and between (B) the inhibitory recur-
rent and the excitatory afferent current (in gray values). Currents were calculated for stimuli
at the cells’ preferred orientations, and averaged over all model cells within orientation domains
(0.6 < map OSI < 0.9). The region delimited by the thick yellow line corresponds to slope val-
ues that are in the 95% confidence interval for each experimentally measured quantity (spike rate,
membrane potential, the total synaptic excitatory, and inhibitory conductance). The white cross at
(2.0, 1.7) denotes the combination of model parameters that yields the best fit to the experimental
data (see text). Thin lines denote the borders of the different operating regimes (cf. Figure 3).

In line with the definition of the operating regimes, the excitatory current through the recurrent
synapses (gray values in Figure 5A) plays a negligible role in the feed-forward and in most of the
inhibitory-dominated regimes. Only in the recurrent and the excitatory-dominated regime is the
recurrent current stronger than the afferent current. A similar observation holds for the inhibitory
current (Figure 5B). The strong recurrent currents in the excitatory-dominated regime reflect the
strong overall activity that reduce the map-location dependence of the total excitatory and inhibitory
conductances (cf. Figure 4C and D).

4 Discussion

Although much is known about the anatomy of lateral connections in the primary visual cortex of
cat, the strengths of synapses formed by short-range connections are largely unknown. In our study,
we use intracellular physiological measurements to constrain the strengths of these connections.
Extensively exploring the parameter space of a spiking neural network model, we find that neither
feed-forward dominated, nor recurrent excitatory- or inhibitory-dominated networks are consistent
with the tuning properties observed in vivo. We therefore conclude that the cortical network in cat
V1 operates in a regime with a dominant recurrent influence that is approximately balanced between
inhibition and excitation.
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The analysis presented here focuses on the steady state the network reaches when presented with
one non-changing orientation. In this light, it is very interesting, that a comparable operating regime
has been indicated in an analysis of the dynamic properties of orientation tuning in cat V1 [14].

Our main finding – tuning properties of cat V1 are best explained by a network operating in a regime
with strong recurrent excitation and inhibition – is robust against variation of the values chosen for
other parameters not varied here, e. g. gII and gEI (data not shown). Nevertheless, the network ar-
chitecture is based on a range of basic assumptions: e. g. all neurons in the network receive equally
sharply tuned input. The explicit inclusion of location dependence of the input tuning might well
lead to tuning properties compatible with the experimental data in different operating regimes. How-
ever, there is no evidence supporting such a location dependence of the afferent input and therefore
assuming location-independent input seemed the most prudent basis for this analysis. Another as-
sumption is the absence of untuned inhibition, since the inhibitory neurons in the network presented
here receive tuned afferent input, too. The existence of an untuned inhibitory subpopulation is still
a matter of debate (compare e. g. [15] and [16]). Naturally, such an untuned component would
considerably reduce the location dependence of the inhibitory conductance gi. Given that in our
exploration only a small region of parameter space exists where the slope of gi is steeper than in the
experiment, a major contribution of such an untuned inhibition seems incompatible with the data.

Our analysis demonstrates that the network model is compatible with the data only if it operates in a
regime that – due to the strong recurrent connections – is close to instability. Such a network is very
sensitive to changes in its governing parameters, e. g. small changes in connection strengths lead to
large changes in the overall firing rate: In the regimes close to the line of instability, increasing gEE
by just 5% typically leads to increases in firing rate of around 40% (EXC), respectively 20% (REC).
In the other regimes (FF and INH) firing rate only changes by around 2–3%. In the “best fitting”
operating regime, a 10% change in firing rate, which is of similar magnitude as observed firing rate
changes under attention in macaque V1 [17], is easily achieved by increasing gEE by 2%. It therefore
seems plausible that one benefit of being in such a regime is the possibility of significantly changing
the “operating point” of the network through only small adjustments of the underlying parameters.
Candidates for such an adjustment could be contextual modulations, adaptation or attentional effects.

The analysis presented here is based on data for cat V1. However, the ubiquitous nature of some
of the architectural principles in neocortex suggests that our results may generalize to other cortical
areas, functions and species.
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