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“Cortical plasticity” encompasses a broad set of mechanisms through which 

cortical circuits adapt their responsiveness to their history of input. In several 

brain systems, the field has now distilled robust regimes for examining and 

demonstrating plasticity at the circuit level. In recent years there has also been a 

rough consensus on cellular and signaling changes which can account for circuit 

plasticity. In contrast, the control signals that command adjustments in the 

circuit’s “plasticity status” remain largely unknown, as do the specific cues that 

they monitor—candidate frameworks for these are emerging and are detailed 

below. A clear articulation of the phenomena, rules, and mechanisms that govern 

cortical plasticity during development is critical for understanding their 
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misregulation in specific neurodevelopmental disorders. This far-reaching vision, 

that mechanisms of developmental plasticity can be used to reveal mechanisms of 

brain disorders and even treat them, owes much to the work and scientific insights 

of Lamberto Maffei, whom this volume honors. 

The Visual Cortex as a Model System for Experience-

Dependent Plasticity 

Many critical observations on plasticity in the nervous system have been made in 

the visual cortex. Wiesel and Hubel (1963) had the original insight that the two 

eyes represent distinct input sources which can be driven differentially with light 

to evaluate how a circuit responds over time. In a sense, it remains the most 

straightforward junction for probing the complex circuitry of the cerebral cortex 

with well-characterized sensory stimuli. More recently, progress in detailing the 

phenomena and mechanisms of cortical plasticity has been augmented through 

transgenic mice, which has allowed for the elucidation of a growing network of 

proteins and pathways, isolated to specific regions and distinct cell types. 

Another useful property of the visual cortex for studies of plasticity is the 

enormous dynamic range of plasticity that it expresses during the course of 

development and with experience (Katz and Callaway, 1992). Over the life span 

of cortical circuits, synaptic refinement leads to an increase in organization and 
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correlated activity, while the malleability of the circuit is decreased 

concomitantly. Through cell-specific rules of plasticity (Desai et al., 2002), a 

large number of weak synapses with motile spines (the sites of excitatory 

synapses on cortical neurons) are sculpted into a refined number of strong 

synapses with stable spines (Majewska and Sur, 2003; Oray et al., 2004). As 

excitatory transmission is consolidated, it contributes to the release of feedback 

signals such as brain-derived neurotrophic factor (BDNF; Bonhoeffer, 1996), 

which eventually attains a critical level for the activation of inhibitory signaling 

(Buonomano and Merzenich, 1998). This onset of inhibition initiates a brief time 

frame of exceptional plasticity known as the “critical period” in which the pattern 

of cortical input is particularly important for organizing and strengthening a 

functional architecture for future processing (Hensch, 2004). As the synaptic 

architecture underlying this organization stabilizes, it comes to resist further 

change (Abraham and Bear, 1996; Bi and Poo, 1998), the specific balance of 

excitation and inhibition becomes important for delimiting plasticity (Artola and 

Singer, 1987; Maya Vetencourt et al., 2008), and a network of extracellular matrix 

proteins begins to entangle the entire circuit to provide an additional measure of 

circuit stability (Berardi et al., 2004). 
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Parameterizing Cortical Plasticity 

Across development, circuit plasticity itself is modulated by the level of input 

drive, which stimulates key molecular pathways to reconfigure circuit properties. 

Received activity is coupled to downstream and intercellular molecular events, 

and this allows activity at input locations to impact circuit function and plasticity 

at multiple loci. Here we will review several “feedforward” mechanisms that can 

initiate circuit change, together with a host of emerging “feedback” network 

processes that respond to those changes. 

Feedforward Synaptic Plasticity 

Feedforward changes are initiatory events where input activity to a circuit triggers 

direct synaptic changes across its synapses, with subsequent reverberatory 

consequences elsewhere in the circuit. A cardinal example of a feedforward 

change is long-term potentiation (LTP), in which a pattern of robust input activity 

triggers the long-term strengthening of that same input to further stabilize its 

postsynaptic influence over the circuit (Bliss et al., 2003). LTP also provides a 

link between synaptic changes and the formation and maintenance of cortical 

maps (Buonomano and Merzenich, 1998). Its sister process is long-term 

depression (LTD), in which weak activity across a synapse leads to the long-term 
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weakening of that synapse, and loss of influence over the circuit. LTD has also 

been advanced as a basis for cortical phenomena such as ocular dominance 

plasticity (Smith et al., 2009). LTP and LTD are further complemented by 

mechanisms such as spike-timing dependent plasticity, which trigger synaptic 

plasticity based on how well matched the timing of an input is to firing of the 

postsynaptic cell (and circuit) on which it impinges (Song and Abbott, 2001; Dan 

and Poo, 2006). Together these canonical mechanisms lay a foundation for focal 

circuit changes upon and between cells that depend only on the magnitude and 

timing of the input itself, independent of the other inputs in the circuit. However, 

as we will see below, inputs across the cortical circuit are intimately connected 

via multiple pathways and time courses which add richness to a simple “push–

pull” dissection of cortical plasticity phenomena. 

Molecular Pathways of Feedforward Plasticity 

Modifications to the strengths of excitatory synapses are likely to be enacted via 

postsynaptic changes in AMPA receptor number and conductance (Malenka and 

Bear, 2004), and.or presynaptic changes in probability of release (Bolshakov and 

Siegelbaum, 1995) and vesicular glutamate content (Edwards, 2007). Input 

strength can also be adjusted via synaptogenesis and synaptic elimination. 

However, the degree to which such plasticity occurs is gated by a host of 
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molecular pathways that determine the “plasticity status” of the synapse, cell, and 

circuit. 

The NR2B.NR2A Switch 

Plasticity is prominently gated by the activation of N-methyl-D-aspartate 

(NMDA) receptors, which respond to excitatory synaptic transmission by 

enabling calcium flux into the target synapse and its neuron, with more calcium 

triggering more plasticity and rearrangement. However, the receptor’s capacity to 

drive plasticity depends on its subunit composition. Some receptors are built from 

“NR2B” subunits, which enable a high calcium permeability and thus enhanced 

plasticity, and some are built from “NR2A” subunits, which have a reduced 

calcium flux (Flint et al., 1997). The ratio of 2B.2A receptors in the synapse and 

the neuron thus has a pivotal effect on the overall calcium flux upon synaptic 

activation and determines the capacity for plasticity in response to arriving input. 

Here again, a crucial determinant of plasticity is itself regulated by the 

activity level of the circuit. As animals are exposed to visual experience, the 

NR2B.NR2A ratio declines (Quinlan et al., 1999), thus reducing the capacity for 

further plasticity, whereas placing animals in the dark for extended periods 

recovers the NR2B.NR2A ratio (Chen and Bear, 2007), thereby restoring the 

capacity for plasticity. Thus, the molecular composition of NMDA receptors is a 
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critical determinant of calcium-mediated cellular plasticity that is directly 

responsive to activity levels. 

Calcium-Calmodulin Kinase II Signaling 

Calcium entry at synaptic sites upon activation leads to eventual synaptic change, 

prominently via calcium-calmodulin kinase II (CaMKII), which is extraordinarily 

abundant and accounts for 1% to 2% of the total protein found in neurons (Fink 

and Meyer, 2002). CaMKII is spatially positioned in the synaptic spine to directly 

sense NMDA-mediated calcium fluxes (Bayer et al., 2001) and respond by 

mobilizing additional AMPA receptors to synapses (Hayashi et al., 2000). 

Moreover, its binding and activation is directly specified by the NR2B.NR2A 

subunit composition described above (Barria and Malinow, 2005). α-CaMKII has 

been shown to be critical for cortical LTP, as well as for the consolidation of 

cortical memory traces (Frankland et al., 2001). It also has the interesting property 

of autophosphorylation, which allows it to undergo long-term modification, and 

has led to the proposal that it could provide a sort of “molecular memory” of 

synaptic activity (Lisman, 1994): persistently active CaMKII can indeed bring 

about LTP effects (Pettit et al., 1994). Interestingly, CaMKII seems be critical for 

synaptic plasticity yet without impacting large-scale cortical architecture, as its 

mutations prevent the consolidation of sensory plasticity without disrupting the 

topography of sensory cortex (Glazewski et al., 1996; Gordon et al., 1996). 
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The ERK.MAPK Pathway 

Stimulation at the synaptic and cellular level drives the Raf.MEK.ERK pathway, 

which also serves to promote synapse stabilization (Sweatt, 2001). A direct link 

has been established between its downstream effector, extracellular signal-

regulated kinase 1,2 (ERK, also called p42.44 mitogen-activated protein kinase) 

and insertion of AMPA receptors into activated synapses (Zhu et al., 2002). The 

degree of ERK activation also determines the magnitude of LTP in visual cortex 

and is required for ocular dominance plasticity (Di Cristo et al., 2001). As with 

several of the plasticity cues described above, the ERK pathway is responsive to 

activity levels (Fiore et al., 1993), as well as NMDA receptor-mediated calcium 

levels (Hardingham et al., 2001), and plasticity cues such as BDNF (Patterson et 

al., 2001). Its downstream targets include critical plasticity triggers such as cyclic 

AMP response element binding protein (CREB; Impey et al., 1998) and Arc 

(Ying et al., 2002), and transcription factors that regulate the expression of 

activity-dependent immediate early genes (Xia et al., 1996). Activity within the 

ERK pathway therefore offers a number of channels through which NMDA 

activation can stimulate cell-wide changes in synaptic function, thus promoting 

coherent integration of inputs between cells and networks (Thomas and Huganir, 

2004). 

The PI3K.Akt.mTOR Pathway 
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Along with the now-canonical plasticity pathways listed above, increasing 

attention has been paid to another protein kinase called mammalian target of 

rapamycin (mTOR). It is driven by both synaptic stimulation (Cammalleri et al., 

2003) and PI3K.Akt activation (Jaworski and Sheng, 2006), which is known to 

strengthen synapses by delivering PSD-95 (a critical post-synaptic density 

protein) into dendrites (Yoshii and Constantine-Paton, 2007). Functionally, 

increased mTOR activity has been linked to larger and fewer spines with larger 

AMPA currents (Tavazoie et al., 2005) and seems to serve to facilitate and 

accentuate LTP (Ehninger et al., 2008b; Hoeffer et al., 2008). Consequently, 

mTOR signaling seems well placed for stimulating growth, elevating excitatory 

drive, and forging stronger and more stable synaptic circuits. 

Feedback.Homeostatic Plasticity 

When a change is exerted at one or more synaptic pathways via the mechanisms 

described above, a concurrent group of normative processes may arise to 

rebalance the net function of the circuit. These mechanisms are considered 

“homeostatic” or “feedback” events because they appear aimed at restoring the 

net excitability of the circuit back toward its original state prior to plasticity 

induction (Turrigiano and Nelson, 2000; Davis and Bezprozvanny, 2001). 
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Sites of Feedback Regulation 

Feedback processes that rebalance the strength of excitatory synapses have been 

identified which operate postsynaptically, via AMPA receptor number and 

conductance (Turrigiano, 2008), and presynaptically, via probability of release 

(Murthy et al., 2001) and vesicular glutamate content (Wilson et al., 2005), 

among others. An input may also be renormalized by scaling its number of 

connections. Feedback processes that might rebalance at a network level beyond 

the excitatory synapse include modifications to inhibitory synapses (Maffei et al., 

2006), homeostatic modifications to a cell’s intrinsic excitability (Pratt and 

Aizenman, 2007), and changes to the excitatory drive onto inhibitory neurons 

(Wilson et al., 2007). Feedback regulation within cortical circuits has even been 

demonstrated to extend from one sensory modality to another (Goel et al., 2006). 

Positive Feedback Regulation via TNF-Alpha 

What are the signals that control feedback regulation? One molecule that has been 

shown to be both necessary and sufficient for the activity-dependent scaling up of 

AMPA receptor function is the tumor necrosis factor TNF-alpha (Stellwagen and 

Malenka, 2006). Still more recently, the scaling up of open-eye responses 

following light deprivation in visual cortex was shown to require TNF-alpha 
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(Kaneko et al., 2008). A particularly intriguing possibility is that the 

excitatory.inhibitory balance is coordinated via a few or even a single molecular 

control point. Indeed, increases to TNF-alpha signaling have been shown to 

coordinately increase AMPA receptor surface expression while simultaneously 

decreasing GABA receptor surface expression (Stellwagen et al., 2005). 

Negative Feedback Regulation via CDK5 and Arc 

What is responsible for the scaling down of excitability? One pathway that is 

emerging for rebalancing high levels of activity is CDK5.Polo-like kinase 2 (Plk2; 

Seeburg et al., 2008). Another likely possibility is the immediate-early gene Arc, 

the expression of which is regulated by activity, triggers AMPA receptor 

endocytosis (Chowdhury et al., 2006) and is required for synaptic scaling 

(Shepherd et al., 2005). Perhaps through its known homeostatic role, Arc has been 

found to be important for organizing representations in visual cortex (Wang et al., 

2006) and has recently been found to underpin the loss of cortical territory that 

occurs during ocular dominance plasticity (McCurry et al., 2008). The scaling 

down of input strength mediated by Arc could also lead to the functional 

elimination of extraneous inputs during cortical refinement; indeed, mice that lack 

Arc exhibit visual cortical neurons that are less precisely tuned (Wang et al., 

2006). 
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Inhibition as a Plasticity Gate 

Inhibitory neurons are widespread in the cortex and may be even more diverse in 

morphology and function than excitatory neurons (Markram et al., 2004). The 

balance of excitation and inhibition appears to be dynamically maintained at the 

level of dendritic branches (Liu, 2004) and neurons (Cline, 2005). In cortical 

dynamics, stimuli that elicit maximal excitation to neurons also elicit maximal 

inhibition at those same neurons (Marino et al., 2005; Okun and Lampl, 2008), 

ensuring that functional responses always result from a precise balance of 

excitatory and inhibitory drive. 

In addition to balancing the firing rates of circuits, inhibition may have a 

complementary role in controlling the plasticity of circuits. Preventing the 

activation of inhibition prevents the critical period of plasticity from happening 

until inhibition is enabled (Hensch et al., 1998). Conversely, augmenting 

inhibitory signaling prematurely launches the critical period prematurely (Iwai et 

al., 2003). Once inhibition is developed to adult levels, however, it may become 

an obstacle to cortical plasticity. Inhibition in the cortex has long been claimed to 

gate adult LTP, wherein robust LTP was only observable when suppressing 

inhibition pharmacologically with bicuculline (Artola and Singer, 1987). In the 

adult visual system of the rat, ocular dominance plasticity is greatly reduced 
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compared to juvenile levels but can be restored to juvenile levels by suppressing 

inhibition with the antidepressant fluoxetine (Maya Vetencourt et al., 2008). 

The Role of Neurotrophins 

Neurotrophins such as BDNF have emerged as an ideal candidate for 

communicating the status of activity across the circuit to regulate plasticity. 

Neuronal activity has a positive feedback relationship with the transcription of the 

BDNF gene, the transport of its protein into dendrites, and its secretion at 

synapses (Lu, 2003). At the cellular level, BDNF is known to support growth and 

strengthening of synapses during development (Cellerino and Maffei, 1996) and 

is critical for the proper establishment of excitatory synaptic transmission 

(Schuman, 1999). 

BDNF also seems to play an instructive role in a host of processes relevant 

to circuit development. BDNF triggers the maturation of inhibition that initiates 

the critical period as described above (Huang et al., 1999), and expressing it 

prematurely accelerates the timing of the critical period (Hanover et al., 1999). 

BDNF also triggers the release of tPA (Fiumelli et al., 1999), which as described 

below is important for liberating structural plasticity. In homeostatic plasticity, 

BDNF has been identified as a signal that triggers the reactive scaling of 
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excitatory and inhibitory synapses to offset recent elevations in activity levels 

(Rutherford et al., 1998). 

Extraneuronal Influences: Astrocytes and Perineuronal Nets 

Astrocytes constitute more than half of all cortical cells (Nedergaard et al., 2003) 

and have now been shown to exhibit functional responses to stimuli and organize 

into maps that are just as exquisitely defined as those of the neurons (Schummers 

et al., 2008). Astrocytes receive synaptic inputs, express neurotransmitter 

receptors, and can directly modulate the reliability of neuronal synapses (Perea 

and Araque, 2007). Furthermore, many of the factors critical for circuit plasticity 

may be stored by astrocytes and released onto neurons in response to functional 

events. For example, the TNF alpha described above as a potentially pivotal 

homeostatic signal is expressed in and released by astrocytes (Stellwagen and 

Malenka, 2006). 

Extraneuronal circuit changes are also reinforced by “perineuronal nets” 

(PNNs), which are lattice-like structures, comprised of chondroitin-sulfate 

proteoglycans (CSPGs) and other extracellular components, that condense and 

entangle cortical cells and synapses. These lattices restrict further movement and 

growth and provide an obstacle to structural and functional plasticity (Berardi et 

al., 2004). Compounds that degrade CSPGs, such as chondroitinase ABC, have 
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been shown to restore ocular dominance plasticity to adult mice (Pizzorusso et al., 

2002). Similarly, the extracellular protease tissue-type plasminogen activator 

(tPA), which also target CSPGs, has been shown to be most highly expressed at 

periods of maximal plasticity (Mataga et al., 2004) and play a key permissive role 

in enabling circuit remodeling during ocular dominance plasticity (Muller and 

Griesinger, 1998; Mataga et al., 2002; Oray et al., 2004). Recently, it has been 

shown that fear memories in adult mice, which are typically permanent features 

that are resilient to erasure, can be made susceptible to erasure via degradation of 

PNNs (Gogolla et al., 2009). These studies suggest that PNNs provide a form of 

“hard wiring” that can be dissolved or strengthened in order to modulate circuit 

flexibility. 

Together, these findings demonstrate a rich array of mechanisms by which 

changes in input activity lead to changes in the structure and function of synapses, 

cells, and circuits of the cortex. Some of these same mechanisms come into play 

during disorders of brain development—which can thus be understood as 

disorders of cortical plasticity. 
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Disorders of Brain Development 

Rett Syndrome 

Rett syndrome (RTT) is a subset of autism and an X-linked neurological disorder 

affecting 1 in every 10,000–15,000 live births (Chahrour and Zoghbi, 2007). 

Unlike many neurodevelopmental disorders, the basis of RTT is straightforward 

and in approximately 90% of patients suffering from RTT has been traced to a 

single gene coding for methyl CpG-binding protein 2 (MeCP2; Amir et al., 1999; 

Guy et al., 2001). Combining a molecular understanding of RTT with a circuit 

perspective that links activity levels to plasticity could help pave the way for 

effective treatments (Zoghbi, 2003). 

RTT is characterized by a profound reduction in cortical circuit activity 

(Dani et al., 2005), owing to a negative tilt in the balance of excitatory and 

inhibitory transmission (Dani et al., 2005; Chao et al., 2007; Tropea et al., 2009). 

Neurons are smaller (Chen et al., 2001), dendrites exhibit reduced elaboration 

(Armstrong et al., 1998; Kishi and Macklis, 2004), and spine density is reduced in 

key areas (Chao et al., 2007; Tropea et al., 2009). Plasticity, meanwhile, remains 

in an immature state, with impairments to LTP (Moretti and Zoghbi, 2006), and 
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ocular dominance plasticity that aberrantly persist into adulthood (Tropea et al., 

2009). 

Viewed through this lens, RTT seems to arise from a failure of brain 

circuitry to mature or sustain a mature phenotype (Magee and Johnston, 1997; 

Moretti and Zoghbi, 2006). This failure has been shown to be reversible by 

driving pathways that promote circuit maturation and stabilization such as BDNF 

(Guy et al., 2007), which stimulates synaptic strengthening via PI3K.pAkt.PSD-

95 and MAPK signaling (Carvalho et al., 2008). A similar stimulus to circuit 

maturation may also be derived through the systemic delivery of other 

neurotrophic factors such as insulin-like growth factor 1 (Tropea et al., 2009) that 

are capable of crossing the blood-brain barrier (Aberg et al., 2000; Lopez-Lopez 

et al., 2004; Jaworski et al., 2005) and which stimulate these same pathways 

(Zheng and Quirion, 2004; Tropea et al., 2006). Thus, RTT syndrome offers a 

prime example for how an understanding of circuit plasticity may aid in 

elucidating pathways for targeted intervention. 

Tuberous Sclerosis 

Tuberous sclerosis (TSC) is another neurodevelopmental disorder associated with 

cognitive impairment, seizures, perseverative behavior, and other disabilities 

similar to autism (Ehninger et al., 2008a). It has been linked to specific 
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heterozygous mutations in 2 genes—TSC1 and TSC2. TSC may offer an excellent 

model for how too much synaptic potentiation can lead to cortical rigidity. 

Disruption of TSC1.2 brings about a fundamental shift in spine morphology—

converting numerous small spines into fewer large spines, with stronger 

excitatory transmission (Tavazoie et al., 2005). A likely reason for this is that 

TSC results in enhanced mTOR signaling (Ehninger et al., 2008a; Meikle et al., 

2008), which lowers the threshold for plasticity and makes long-lasting LTP more 

likely to occur, thus pathologically stabilizing synaptic pathways (Hoeffer et al., 

2008). Compatible with this interpretation, application of mTOR inhibitors in a 

mouse model of TSC suppresses seizures, rescues the aberrantly stable synaptic 

potentiation, and reverses neurocognitive deficits (Ehninger et al., 2008b). 

Fragile X 

Fragile X is a condition of moderate to severe mental retardation (Loesch et al., 

2002) that has been methodically linked to pathologies in cortical circuits (Bear, 

2005). In mouse models of the disorder, circuits are characterized by an increased 

spine density (Grossman et al., 2006), comprised of weaker spines (Hinton et al., 

1991; Irwin et al., 2001) with fewer AMPA receptors (Li et al., 2002) that are 

functionally “hyperplastic” in terms of synaptic changes (Bear et al., 2004) and 

cortical plasticity (Dolen et al., 2007). According to one hypothesis, increased 
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translation of fragile X mental retardation protein (FMRP) underlies enhanced 

LTD in the mouse model for the disorder, and blockade of metabotropic 

glutamate receptors would act as a corrective. Indeed, a genetic rescue of multiple 

phenotypes of fragile X in the mouse model demonstrates the feasibility of this 

hypothesis (Dolen et al., 2007). 

Conclusion and Future Directions 

The development of effective interventions for disorders of cortical plasticity will 

require tools for rapidly assessing the plasticity status of a circuit in a manner that 

goes beyond single synapse measures to take into account the host of network 

influences described above. Promisingly, new imaging methods are allowing 

more subtle changes in circuit function to be measured optically, including in the 

intact animal (Grinvald and Hildesheim, 2004; Pologruto et al., 2004; Schummers 

et al., 2008). Another promising tool is the advent of optical probes of plasticity 

(Wang et al., 2006; Hayashi et al., 2009), which offer the potential of reporting 

either the plasticity event or the plasticity status of cells within a circuit. Assays 

are also becoming available that can detect changes in protein levels in response 

to specific activity paradigms or plasticity and connect those into functional 

pathways that might drive or be driven by the plasticity (Tropea et al., 2006). 

Finally, advances in virally mediated gene transfer and optogenetics continue to 
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provide increasingly pinpointed experimental control over specific cells’ genetic 

makeup and electrical input (Zhang et al., 2007). 

As these tools are brought into play, they are revealing that plasticity is not 

merely a synaptic phenomenon but one that results from the coordinated interplay 

of excitatory, inhibitory, and glial cells, operating in tandem via feedforward and 

feedback mechanisms to regulate the plasticity tone of the circuit. Perhaps the 

greatest challenge in the coming years will be to devise methods for selectively 

understanding these network components to comprehend how they give rise to the 

choreographed processes of development and disease. 
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