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Abstract

The proliferation of consumer smartphones has offered new opportu-
nities for environmental sensing and mobile computation. Recent smart-
phone models – equipped with GPS trackers, accelerometers, multi-megapixel
cameras and rich software stacks – offer the possibility of emulated spe-
cialized tool completely in software. This paper documents recent efforts
to build a robust, smartphone-based illuminance meter application, and
describes its prototype implementation. Though API restrictions prevent
the complete development of such a prototype, its use and potential are
demonstrated.

1 Introduction

Rapid advances in consumer electronics and advertising have transformed the
mobile device market. Single-function mobile phones of the early-1990’s were
overtaken by “feature phones”, only to be usurped by the powerful, touchscreen
smartphones of the last few years. Now standard issue for 74% of Americans
aged 24-35[6], smartphones have been ceaselesly recast as tour guides, news
readers, desktop calculators, event planners, and sound mixers. When one ma-
chine has the ability become most others with the swipe of a finger, there are
two practical issues to consider: what is the upper bound on a smartphone’s
ability to replace specialized tools, and how might this be changed? This paper
explores both questions in the domain of building science, using a smartphone-
based light meter as its test application. Its conclusions are straightforward:
that despite their power, existing smartphones are not yet fit-for-purpose as
digital light meters, and that some of their failings can be fixed. It examines
the limitations of current smartphone software stacks in supporting accurate
illuminance calculation, and speculates on the potential use of smartphones as
tools for teaching building science and architectural daylighting.
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2 Review of Existing Light Meter Apps

The promise of smartphones as tools for environmental monitoring has been
widely published[2][4]. Light meter applications for two leading smartphone
software stacks – Google’s Android and Apple’s iOS – make use of a smart-
phone’s internal light sensor to estimate scene illuminance. User reviews are
consistently poor, due in large part to the limitations of the phone’s ambient
light sensor. Though a photodiode may be an appropriate tool for adjusting
an LCD backlight, it makes a poor illuminance calculator. Of the 12 purported
illuminace meters available in the Google Play and Apple Store, all depend on
the accuracy of phone’s ambient light sensor. Fortunately, the large number of
disappointed reviews demonstrates the clear interest in a more robust smart-
phone light meter, and the release of increasingly sophisticated software stacks
lays fertile ground for their development.

3 Hardware Limitations of Smartphones

Methods for computing scene illuminance using mass-market digital cameras are
well known[7]. Though a smartphone camera has no mechanically adjustable
aperture, its sensor array can transform the number of photons impinging each
sensor into a proportional voltage, perceived as a pixel brightness in the final
image. Many smartphone cameras now support multi-megapixel sensors, but
remain bound to software APIs that encode 24-bit image formats. One byte for
each red, green and blue color channel allows for 16.7 million colors per pixel,
but only 256 values per channel. In scenes with some combination of sunlighting
(105cd/m2) and artificial lighting (102cd/m2), one byte per channel per pixel
will almost always produce an image that is under- or overexposed. However,
capturing multiple images of a static scene with varying exposure times provides
an array of RGB values for each pixel, at least one of which will be properly
exposed. By choosing proper exposures on a pixel-by-pixel basis, a high dynamic
range (HDR) image can be generated that removes the limitations of standard,
low dynamic range (LDR) imaging.

If accurately captured, each pixel in a source image can then undergo a
change of basis from RGB into the CIE XYZ color space, where the CIE Y value
closely matches spectral luminous efficiency of the human eye for phototopic
vision, as defined in ITU-R BT.709.

Y = 0.2162Rlinear + 0.7152Glinear + 0.0722Blinear (1)

Assuming an ideal, linear image sensor, each spot luminance can be normal-
ized by dividing out its exposure time[5, p. 117]. As a practical matter, most
digital cameras do not have an linear response; manufacturers often introduce
gamma correction into their image processing pipelines in order to generate more
pleasing images for monitors and print. Restoring this linear mapping requires
recovery of the camera’s unique response curve, called the Opto-Electronic Con-
version Function (OECF), and described in International Standard ISO 14524.
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Thankfully, once captured and stored, the camera response curve may can be
used for subsequent exposures.

One popular algorithm for recovering this mapping, due to Debevec and
Malik[3], leverages the fact that by capturing different exposures of a static
scene, “one is effectively sampling the camera response function at each pixel.”[5,
p. 137] When the exposure values are plotted against each pixel value, Debevec
and Malik use linear optimization to find a smooth curve that minimizes the
mean-squared error over each of the three red, green, and blue color channels. If
the dynamic range provided by the camera’s exposure parameters is too narrow,
linear optimization on one or more channels will fail, and an accurate response
curve won’t be found.

Response recovery on a Samsung Galaxy Nexus, a Google-endorsed smart-
phone running Android 4.1, proved unsuccessful for just this reason. Anywhere
Software’s Photosphere failed to produce an accurate response curve on all of
seven independent trials, each using seven input images taken with Android’s
built-in camera application (one for each of the four available capture modes, and
three additional images using the built-in area metering feature). Few image
sets converged at all, and those that did gave polynomials of the first or second
degree – less accurate than a generic sRGB response curve. Response recovery
on images taken with the manual exposure settings of a Canon XXYY, in con-
trast, were consistently successful, implying that the lack of manual exposure
control in Android’s camera parameters was stunting response recovery.

Existing Android camera parameters – like area metering, and exposure
compensation – are not appropriate substitutes for manual exposure: the former
for its inability to reliably alter the automatic exposure settings of the camera
firmware, and the latter for its application as a post-processing step, after pixel
values have been encoded. Apple’s iOS camera APIs, which provide similar
features, have similar shortcomings. Unfortunately, use of a generic response
curve is also ill-fated, as Reinhard, Ward et. al. note:

“Assuming an sRGB response curve is unwise, because most makers
boost image contrast beyond the standard sRGB gamma to produce
a livelier image. There is often some modification as well at the
ends of the curves, to provide software highlights and reduce noise
visibility in shadows.”

It is a surprising fact that, at the time of writing, neither Google Android
nor Apple’s iOS provide official support for manual exposure control – requisite
for HDR generation, response curve recovery, and accurate illuminance calcu-
lation. This restriction is well documented for the Android platform in Google
Android Issue #5692, and on iOS in the AVCaptureDevice Class Reference.
Given that illuminance calculation with mass-market digital cameras is well
understood[7], it is clear this is purely a restriction of existing software stacks,
and not a fundamental limitation of smartphone hardware. The limited field
of view of smartphone cameras, and tight memory restrictions of their software
APIs, create additional challenges.
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4 Proposal for a New Light Meter

A proper smartphone light meter should embody the basic qualities of a special-
ized meter (small size, easy of use), but leverage the symbol processing power
and network connectivity of mobile phones. To accurately measure scene illu-
minance, it must use a fine sensor, recover spot luminance from encoded pixel
values, and give results in reasonable time (less than one-two minutes) in side-,
as well as toplit, spaces. These requirements demand that illuminance calcula-
tion be converted into (at least) a three-stage pipeline: capture, merging, and
calculation. Each module, along with its prototype implementation built on a
Samsung Galaxy Nexus running Android 4.1, will be described in the following
sections.

4.1 The Capture Pipeline

To accurately estimate scene illuminance, a smartphone light meter must have
a field of view large enough to account for top and side lighting. As most
smartphone cameras (including the Galaxy Nexus) have a relatively narrow
field of view (50-60 degrees), multiple images must be captured to allow for
panorama generation in the following stage. However, allowing the user to take
any scene images he wishes is not advised, especially when the camera must
remain steady between successive shots. To guide the image capture process, a
new interface is needed.

In the prototype implementation, the user is presented with a ”mass and
spring” simulation, controlled by the phone’s orientation sensors and a software-
based Verlet path integrator. As the phone shifts orientation, the virtual mass
stretches away from the screen’s center proportional to the tilt. The virtual mass
can take one of several colors, each corresponding to one on-screen target. Once
in contact with a target, the phone’s front-facing camera captures several lossy
(i.e. JPEG encoded) images of the current scene – ideally with varying exposure
times – and writes them to internal storage for later processing. The targets
are positioned to maximize the chance of feature matching. As the simulation
is rotationally invariant, it is assumed the user remains stationary throughout
the capture exercise.

[CAPTURE IMAGE INTERFACE IMAGE]

The intent behind a mass-and-spring simulation is two-fold: first, to force
the user to slow his movement, and focus his attention, so that crisp scene frag-
ments can be captured for stitching and analysis; and second, to reduce his
perception of elapsed time while background threads complete image analysis.
If illuminance calculations must be computationally intensive, the best an an
application designer can do is make the wait an imperceptible one.

[SECOND INTERFACE IMAGE (?)]
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4.2 The Merging Pipeline

Once captured, the application aligns images pairwise, storing the homogra-
phies calculated using the algorithms of BoofCV (a pure-Java implementation
of OpenCV). It then attempts to collapse these images into a single mosiac with
a 90◦effective field of view. These images become the input for the next pipeline
stage, which implements fisheye projection using a cubic environment mapper.

Generating large image mosaics on a small phone is not easy. It is compu-
tationally expensive (both in time, and space), especially on a machine with
a 16-24MB memory limit per application1.Fortunately, experiments with the
prototype image stitching module were largely successful, generating complete,
90◦field of view planar images in 20-30 seconds each in more than 75% of trials.
With some adjustment to the Capture module’s on-screen target positions, and
a reimplementation at the OS level, this could be improved.

[SAMPLE MOSAIC]

However, there are strong caveats to this approach. Images used to stitch a
mosaic with an effective 90◦field of view must also undergo HDR processing. It is
unnecessary to process every pixel of every image, as most image pairs will have
substantial overlap. At minimum, a lookup table between the pixels of source
images and an output mosaic must be generated, so that HDR generation is
efficient. Without manual exposure control, the prototype implementation had
to skip HDR processing, and focus on image alignment and merging only.

Fundamental properties of this workflow that make it a poor match for
smartphones. Successful feature matching of the overhead scene required 8-12
source images, pairwise homography calculation, and repeated reading from ex-
ternal storage to avoid Android’s internal memory constraints. Homography
calculation depends on the success of feature correspondence between overlap-
ping images, a challenge if the overhead scene has few distinguishing features.
In order to generate a full 180◦fisheye perspective, four additional mosaics must
be generated, each representing the upper half of the user’s view in each of the
cardinal directions. This says nothing of HDR generation, or response curve
recovery. At least one research-grade mobile software stack can automate this
process[1], at the cost of specific smartphone hardware, a custom operating
system installation, and modified firmware.

Though each of the above obstacles can be overcome, they cannot be reduced
to a few seconds of calculation. The price to an all-digital, purchase-with-a-
swipe illuminance meter is time; what a fisheye lens can do at light speed, a
mobile computer must do sequentially, and stochastically. A lens will always
merge its inputs, but a panorama generator makes no such guarantee.

1See the section Displaying Bitmaps Efficiently of the Android Training Manual for de-
tails: http://developer.android.com/training/displaying-bitmaps/index.html. There is some
discussion that this hard limit can be overcome through use of Google’s Native Development
Kit (NDK), though this option was not pursued in this paper; tight resource constraints are
not the only count against a smartphone-based illuminance meter.
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Other efforts to perform multi-directional HDR panorama generation have
either offloaded the feature correspondence calculations to back-end servers, or
used one of the two image registration routines outlined in Reinhard, Ward et.
al.[5, p. 122]. The faster of these routines – the mean threshold bitmap alignment
routine – is unsuited for images taken at different view angles, making it a poor
match for smartphone deployment. It is a fair criticism to claim that any
smartphone application intending to bridge the gap between computation and
intuition ought to give incrememental results in less than 30 seconds. Designers
of future smartphone-based building science tools should keep this point front-
of-mind.

4.3 The Calculation Pipeline

Under the assumption that an HDR image mosaic can be generated from scene
fragments, an implementation of an luminance integral – the central calculation
in a smartphone light meter – is trivial. Once a response curve is known, inte-
gration involves a linear transformation, lookup, and Reimann sum for all pixels
in the input image. In the prototype implementation, luminance integration on
sample, low dynamic range images never took more than a few seconds.

While outputting a single illuminance value would fulfill all the require-
ments of a fit-for-purpose light meter, the high resolution display and network
connectivity of smartphones offers new opportunities. With user permission,
illuminance calculations could be uploaded to an online database, capable of
archiving HDR images and GPS coordinates along with a qualitative descrip-
tion of the scene. Such an archive could become the basis of further work in the
human factors associated with architectural daylighting, and improve student
intuition of lighting fundamentals. Such collaborative tools have been deployed
in other fields (like the SoundAroundYou.com environmental audio archive from
the University of Salford), and there’s little reason to think their success could
not be replicated by daylighting practioners and students.

5 Apple’s Undocumented Manual Exposure APIs

As of late 2012, the iOS and Android software stacks provide no official support
for manual exposure control for the internal camera. However, beginning with
iPhone 4, HDR image generation is possible within Apple’s built-in camera ap-
plication. If HDR generation occurs, manual exposure must be implemented. A
decompilation of the AVCaptureDevice class headers in iOS 6.0 reveals several
undocumented method calls for manual exposure, including one setExposure-
Duration: that takes a single C structure with the signature {long long x1; int
x2; unsigned int x3; long long x4}. Unfortunately, the decompiler can only pro-
vide information on argument types required by this struct, and can say nothing
about their meaning. With some experimentation, the meaning and use of these
undocumented methods can be recovered. To activate manual exposure control
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Captured Image Exposure Time

0.01 ms

0.02 ms

0.05 ms

1.0 ms

10.0 ms

100.0 ms

in iOS 6.0, first enable manual exposure support:

[avdevice setManualExposureSupportEnabled:YES];

This will allow use of a new exposure mode flag in setExposure:. To set
the camera to manual exposure mode, invoke the new flag constant (3):

[avdevice setExposureMode: 3];

Finally, set the camera shutter speed by sending an Exposure struct to avde-
vice via setExposureDuration:. Though the author is still unclear on the
exact meaning of each entry in Exposure, it is thought that x1, x4 are exposure
times in milliseconds, x2 is f-stop, and x3 is the ISO. Varying the exposure
duration as described generated the following image set:
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This is, as far as the author is aware, the first time use of manual exposure
control on iOS has been publicly documented. Unfortunately, such informa-
tion cannot be used by eager app designers without violating Apple’s iPhone
Developer Program License Agreement :

”3.3.1 Applications may only use Documented APIs in the manner
prescribed by Apple and must not use or call any private APIs.”

While the Android licenses do not impose such restrictions, it is unclear
when manual exposure control or RAW image capture support will be added to
the software stack. As Google’s Dave Sparks noted on the [android-developers]
mailing list in 20092.

On the G1, no data is returned [from the RAW picture callback]
- only a null pointer. The original intent was to return an uncom-
pressed RGB565 frame, but this proved to be impractical...Applications
are restricted to a heap of 16MB. An 8MP image in RG888 will use
32MB...I’m talking about deprecating the raw picture callback that
has never worked.

6 Challenges and Possibilities

The inability to control the underlying camera hardware directly from the iOS or
Android software stack regrettably stall efforts to develop a light meter applica-
tion suitable for design science teaching. Thankfully, this is purely a limitation
of the existing software stacks, and not a conceptual or hardware-based con-
straint. The above workflow can be run piecewise on a traditional workstation,
using a group of low dynamic range images with varied exposure settings. The
short half-life of smartphones (source) also opens new opportunities for porting
these workstation-based implementations (including the underlying kernel) to
older smartphone models.

[Spread of manual exposure settings on Canon, with HDR image, and illu-
minance calculation compared to specialized meter]

Building a robust, smartphone-based light meter appears to be – for the most
part – technically possible. In the worst case, the motivated smartphone user
could modify his phone’s firmware, install a basic Linux installation on its drive,
buy an inexpensive, mountable fisheye lens, and (assuming he’s able to find or
write apprropriate drivers for the camera hardware), emulate the HDR genera-
tion and illuminance calculation workflow normally performed on workstations.
While technically possible, this approach is hardly practical. Smartphone apps
appeal because they’re configuration-free, instantly available, and device agnos-
tic. An application that required an external lens, top-of-the-line hardware, and

2See http://www.mail-archive.com/android-developers@googlegroups.com/msg23290.html
for full discussion transcript.
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two-minute wait time fails on all three counts, and has little to offer relative to
even the most inexpensive specialized meters.

This does not rule out the possibility – and great potential – of a fit-for-
purpose smartphone light meter in the near future. The greatest obstacle to
adoption is the lack of manual exposure control in the iOS and Android software
stack. But this is a fast-moving market, and the demonstration above reveals
that at least one vendor already supports manual exposure, albeit in a private
API. With a clear statement of purpose, there’s little reason to think that the
major vendors could not be convinced to add manual exposure support.

Once manual exposure control is available, true HDR generation becomes
possible. Some technical cleverness may be required to circumvent application
memory limits, but this is a surmountable challenge. Panoramic stitching of
wide-angle scenes – important in spaces with considerable side-lighting – will
remain technically feasible, if unwieldy. API changes providing native support
for panorama generation may improve this lot, though it remains to be seen
whether it will be enough to offset the wait time required between image cap-
ture, and illuminance calculation. Though it may be a slight kludge, the use
of an external, mountable fisheye lens (available for less than the price of some
lunches) avoids many of the problems outlined in previous sections. If, at the
highest level, the goal of a smartphone-based light meter is to develop intuition,
and offer first-order accuracy of calculation, it is a boon to avoid computionally
expensive image stitching at all costs, and use a basic lens. Then users, develop-
ers, and researchers can focus more on the practical implications of calculation,
and less of the technical wizardry that made it possible.
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