KUWAIT NEIGHBORHOOD PROPOSAL

Apoorv Kaushik and Bradley Tran

4.433 Urban Energy Modeling May 3, 2016

Image source: en.aegeanair.com

Team Introduction

APOORV KAUSHIK

Master of Design Studies Energy & Environments | Harvard GSD B.Arch | Chandigarh College of Architecture, Chandigarh, India

BRADLEY TRAN

Executive, Accenture Smart Buildings
S.M. Building Technology | MIT
HVAC Certificate Core | University of California, Berkeley
B.S. Mechanical Engineering | University of Illinois, Urbana-Champaign

HOLLY JACOBSON

Master of City Planning | MIT B.S. Biology and Environmental Studies | Bowdoin College

Guiding Principles

1

Minimize Energy Intensity

Focus on reducing the energy consumption per floor area

2

Create Comfortable, Healthy Spaces

Improving access to daylight and outdoor thermal comfort

3

Improve Resource-efficiency

Decrease water consumption

Methodology

Completed several studies to determine the relationship between several variables and EUI and average daylight autonomy.

Parametric Studies

- 1. WWR
- 2. Dimming
- 3. Building Height
- 4. Building Spacing
- Internal Mass
- Infiltration Rate
- 7. Cooling CoP

Energy Supply

- Single cycle natural gas turbine
- Combined Cycle Gas
 Turbine with a
 Secondary Steam
 Turbine
- 3. Combined Cooling, Heat, and Power Plant with a natural gas turbine

Thermal Comfort Analyses

- Conducted initial evaluation of outdoor thermal comfort
- Attempted to model photovoltaic panels and trees for use as shading materials
- Lack of time allowed full investigation

NEIGHBORHOOD DEVELOPMENT

SITE

PROTOBLOCK GRID

STREET GRID

OFFICE SPACES

WALKING PATHS

RETAIL SPACES

OFFICE + RETAIL STACK

APARTMENT BLOCKS

INDEPENDENT VILLAS

RECLAIM GREEN

SOLAR FARM

PROPOSED NEIGHBORHOOD

NEIGHBORHOOD DENSITY

PROPOSED NEIGHBORHOOD

INSIDE THE CANYONS

INSIDE THE CANYONS

Kuwait City

Land area (m²)
Building area (m²)
Residents (pp/m² land)
Workers (pp/m² land)

312,536 0.032 0.056

188,178

141

kWh/m²y
OPERATION
ENERGY

kWh/m²

2,100 8,500

kgCO2/m²
BUILDING GHG
EMISSIONS (50y)

72

% DADAYLIGHT

AREA

74

% WSWALKABILITY
SCORE

16

% ROIFINANCIAL
RETURN (1y)

Energy Usage Color Map

Energy Consumption Details

ENERGY USE BY TYPE

11 MW Peak Demand

Energy Supply Strategies

Annual Metrics	Single Cycle Gas Turbine Plant	Combined Cycle GT + ST Plant	Combined Cooling Heat, and Power
NG Input Therms	5.3M	2.9M	3.0M
Fuel Cost	\$9.0M	\$4.9M	\$5.1M
CO2 Metric Tons	28.1k	15.3k	15.9k

Natural Gas Input Required

Combined Cycle and CCHP plants' predicted energy consumption are ~45% of a standard, single cycle natural gas turbine plant.

72% Daylight Autonomy

Primary drivers of high access to daylight were (1) large 80% WWRs and (2) use of short residential villas

Next Steps

- 1. Include financial analysis of power plant options
- 2. Determine feasibility of using a Rankine power cycle in Kuwait
- Combine photovoltaic potential analysis with the previously shown power plant models
- 4. Apply power plant models to larger areas

APPENDIX

URBAN RULE | PERFORMATIVE

DESIGN SIDE: Maximum EUI

OCCUPANT SIDE: pricing

175 kWh / sq.m.

Building owners pay

4 fils (0.01 USD) per kWh

for all energy consumed

under the threshold

75 kWh / sq.m.

Building owners pay

60 fils (0.15 USD) per kWh

for all energy consumed

above the threshold

115 kWh / sq.m.

icons by: Dennis Nicolai Andersen, Ralf Schmitzer, chiccabubble

URBAN RULE | PRESCRIPTIVE

	MINIMUM COOLING COP	DIMMING REQUIREMENTS	MAXIMUM INFILTRATION		
RETAIL	6	continuous	0.08 ACH		
OFFICE	6	continuous	0.03 ACH		
RESIDENTIAL	6	continuous	0.03 ACH		

icons by: Dennis Nicolai Andersen, Ralf Schmitzer, chiccabubble

PARAMETRIC ANALYSES | cooling CoP

PARAMETRIC ANALYSES | cooling CoP percent change in EUI

Residential							
Cooling COP	3	4	5	6	7	8	9
EUI	125	115	109	105	102	100	98
% Change		-8.0%	-5.2%	-3.7%	-2.9%	-2.0%	-2.0%

Office							
Cooling COP	3	4	5	6	7	8	9
EUI	78	72	69	66	64	63	62
% Change		-7.7%	-4.2%	-4.3%	-3.0%	-1.6%	-1.6%

Retail							
Cooling COP	3	4	5	6	7	8	9
EUI	199	178	166	158	153	149	145
% Change		-10.6%	-6.7%	-4.8%	-3.2%	-2.6%	-2.7%

Financial Results

Embodied Energy Falsecolor

Energy Parametric Studies

Approach: We used the simplified blocks below to determine the impact of 6 different parameters on EUI.

Tested Parameters

- 1. WWR Higher WWRs increased EUI
- Dimming decreased EUI
- 3. Internal Mass had no impact
- 4. Infiltration Higher rates increased EUI
- Building Height Taller buildings decreased EUI
- Building Spacing Greater distance between buildings decreased EUI

Daylight Parametric Studies

Other Tested Building Typologies

Daylight Parametric Studies

Reference Block

Our proposed reference block consisted of two residential towers with three floors of retail space below.

Select Characteristics

FAR: 3.4

• Floors: 8

• WWR: 20%

• EUI: 211

Average sDA: 25%

simulation results: larger tower height decreased EUI

"deep street canyons in hot, dry climates experience a considerably lower daytime air temperature than shallow canyons" (Jamei et al., 2016)

"the **small courtyard** is an excellent thermal regulator... if the courtyard's size is kept small enough to achieve **shade during the day**, it will allow more heat dissipation from surrounding indoor spaces" (Heidari, 2010)

"E-W oriented streets suffer from a prolonged period of solar exposure during the summer compared with N-S oriented streets." (Jamei et al., 2016)

Current Block Design

Select Characteristics

FAR: 4.1Floors: 14

• WWR: 80%

• EUI: 124 vs. 211

Average sDA: 51% vs.
 25%

 NV estimated to reduce cooling load by 7%

 Max PV supplies ~35% of annual electric needs

"green areas are usually cooler than their surrounding built up areas, leading to a temperature difference of up to 1 to 7 degrees C" (Jamei, 2016)

ADAPTIVE GREEN SPACE

- high water (and energy) intensity
- consumed 44.8 MM m³/yr (2002)(only 12 MM m³/yr was recycled)
- water table has risen 5m (2001)

- low water (and energy) intensity
- as population grows, so will wastewater quantities; as of 2002, 74 MM m³/yr wastewater was not being re-used

Greenspace Corridors

y

Courtyard

Streetview

Neighborhood

Reference vs. Current Design Comparison

METRIC	REFERENCE CASE	CURRENT DESIGN
Block dimensions	75m x 65m	75m x 65m
Street width	8m	10m E/W 12m for N/S
FAR	3.4	4.1
OD/m ² w/res.	0.06	0.06
OD/m ² w/o res.	0.3	0.3
# of stories	8	14
WWR	20%	80%
PV area	3,225m	2,895m
PV/floor area	36.5 kWh/m ²	47.3 kWh/m ²
EUI	211	124
EUO	1,180 kWh per person/year	2,275 kWh per person/year
Average sDA	25%	51%

REFERENCES

- Abdallah, A. S. H. (2015). The Influence of Urban Geometry on Thermal Comfort and Energy Consumption in Residential Building
 of Hot Arid Climate, Assiut, Egypt. *Procedia Engineering*, 121, 158–166.
- Abdel-Aziz, D. M. (2014). Effects of Tree Shading on Building's Energy Consumption. Architectural Engineering Technology, 3(4).
- Al-Masri, N., & Abu-Hijleh, B. (2012). Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate. Renewable and Sustainable Energy Reviews, 16, 1892–1898.
- Al-Rashed, M., Al-Senafy, M., Viswanathan, M., & Al-Sumait, A. (1998). Groundwater Utilization in Kuwait: Some Problems and Solutions. *Water Resources Development*, *14*(1), 91–105.
- Al-Rashed, M. F., & Sherif, M. M. (2001). Hydrogeological aspects of groundwater drainage of the urban areas in Kuwait City. *Hydrological Processes*, *15*, 777–795.
- Bakarman, M. A., & Chang, J. D. (2015). The influence of height / width ratio on urban heat island in hot-arid climates. *Procedia Engineering*, 118, 101–108.
- Berkovic, S., Yezioro, A., & Bitan, A. (2012). Study of thermal comfort in courtyards in a hot arid climate. *Solar Energy*, *86*, 1173–1186.
- Fattouh, B., & Mahadeva, L. (2014). Price Reform in Kuwait's Electricity and Water Sector.
- Heidari, S. (2010). A deep courtyard as the best building form for desert climate, an introduction to effects of air movement (Case study: Yazd). *Desert*, *15*, 19–26.
- Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. *Renewable and Sustainable Energy Reviews*, *54*, 1002–1017.
- Ruwaih, F. M. Al, & Almedeij, J. (2011). The future sustainability of water supply in Kuwait. *Water International*, 32(4), 604–617. Suleiman, M. K., & Abdal, M. S. (2002). Water availability for the greening of Kuwait. *Limnologica*, 32, 322–328.
- Tahir, H. M. M., & Yousif, T. A. (2013). Modeling the Effect of Urban Trees on Relative Humidity in Khartoum State. *Journal of Forest Products and Industries*, 2(5), 20–24.
- Zaghloul, N. A., & Al-Mutairi, B. L. (2010). Water Harvesting of Urban Runoff in Kuwait. *Civil Engineering*, 17(3), 236–243.

