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ABSTRACT 
Recent developments in integrated circuit technology 
tend toward increased numbers of cores rather than faster 
clock speeds, so software must use parallelism to achieve 
faster run times. The ray tracing performed by Radiance 
is highly parallelizable in concept, with the exception of 
irradiance caching that serially stores and retrieves 
results of expensive indirect irradiation computations. 
This paper describes a novel method of parallel 
irradiance caching for global illumination on a graphics 
processing unit (GPU). 
The irradiance caching method in this paper closely 
follows the placement and distribution of rays produced 
by Radiance using the free OptiX™ ray tracing engine. 
Ambient values are stored in GPU memory which can as 
necessary be used to create a bounding volume hierarchy 
(BVH) of known irradiance records. Queries into the 
irradiance cache are performed by casting a short ray into 
the BVH. The current implementation is able to generate 
images similar to those created by Radiance’s RPICT 
program up to twenty times faster. 

INTRODUCTION 
Moore’s law gave Radiance a free ride for many years. 
Until the mid-2000’s, central processing unit (CPU) 
clock speeds dependably doubled every 1.5 to 2 years in 
accordance with the law, which states that the number of 
transistors on integrated circuits increases at that rate. 
This allowed Radiance’s developers and users to pursue 
ever more complicated simulations with the assurance 
that the software would speed up accordingly on new 
generations of hardware. However, today’s integrated 
circuit designers favor allocating the extra transistors of 
new chip generations to additional cores rather than 
higher clock speeds. As a result, the speed of serial 
programs like Radiance has not increased in the last ten 
years (Sutter, 2005). In order to integrate 
computationally expensive uses of Radiance, such as 
glare analysis and daylight autonomy studies, into design 

tools that run at interactive speeds, software developers 
must pursue multicore solutions. 
The Radiance suite of programs (Larson & Shakespeare, 
1998) has become the gold standard for global 
illumination calculation used by architects and lighting 
designers. This can be attributed to Radiance’s 
flexibility, open source availability, and extensive 
validation through comparison to physical architectural 
spaces (Grynberg, 1989; Ng, et al., 2001; Galasiu & Atif, 
2002), controlled environments (Mardaljevic, 1995; 
Reinhart & Herkel, 2000; Mardaljevic, 2001; Reinhart & 
Walkenhorst, 2001), and specific material properties 
(Reinhart & Andersen, 2006). Radiance is used as a 
simulation engine by widely-used building performance 
simulation tools such as IES<VE>, Ecotect®, 
OpenStudio, DAYSIM, and DIVA for Rhino. However, 
Radiance simulations tend to be slow, especially in large 
scenes. As a result, global illumination simulation with 
Radiance tends to take place late in the design process, 
after most design decisions are made, or use simplified 
simulation settings that may not accurately predict 
physical conditions. Faster simulations are necessary in 
order to better predict and design interior lighting. 
In this paper, we propose a solution to speed up Radiance 
calculations by tracing multiple primary rays in parallel 
on a graphics processing unit (GPU). First, we introduce 
irradiance caching as a method commonly used in 
Radiance to speed up serial calculations and describe our 
method for reading an irradiance cache (IC) on the GPU 
by mapping it to a bounding volume hierarchy (BVH). 
Then, we describe how to create and adaptively vary the 
size of an IC using a multi-stage method on the GPU. 
Our strategy can be adapted to fit various scenes and 
view types. Finally, we demonstrate the effectiveness of 
our method on two scenes of vastly different scales: a 
fictitious small office and Harvard University’s Gund 
Hall. Our implementation using the OptiX™ 3.5.1 ray 
tracing engine from NVIDIA® produces results up to 
twenty times faster than Radiance with accuracy within 
Radiance’s ambient accuracy parameter. 
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BACKGROUND 
The Radiance package includes a number of executable 
programs built around a specialized backward ray 
tracing engine. In backward ray tracing, primary rays are 
emitted from an origin point (a virtual camera or 
illuminance sensor) to sample the environment. 
Wherever a ray intersects a surface, it recursively spawns 
one or more new rays, depending on the surface material, 
and gathers their results into a single value that is 
returned as the parent ray’s result (Whitted, 1980). 
Typically, a small number of spawned rays are required 
for direct and specular reflections, and a much larger 
number of rays are spawned to sample the indirect 
irradiance due to ambient lighting at the intersection 
point. Consequently, ambient calculations tend to 
dominate the total ray tracing computation time. In 
Radiance, each ray returns red, green, and blue values in 
units of radiance (W•sr−1•m−2). The array of values 
returned from the primary rays produces an image. 

Ray Tracing on the GPU 
While GPUs have been primarily designed for raster 
rendering, the development of GPU-based ray tracers has 
closely paralleled the development of programmable 
GPU raster pipelines. Early GPU ray tracers relied 
significantly on coopting elements of the raster pipeline 
and imitated its state machine programming interface 
(Purcell, et al., 2002; Deitrich, et al., 2003). General 
purpose GPU (GPGPU) language extensions such as 
Compute Unified Device Architecture (CUDA™) from 
NVIDIA® made it possible to implement all components 
of a ray tracing engine on GPU shader processors (Aila 
& Laine, 2009; Wang, et al., 2009). In 2010, NVIDIA® 
released the OptiX™ ray tracing engine, which uses 
CUDA™ to perform both ray traversal and shading on 
the GPU (Parker, et al., 2010). 
The OptiX™ library is designed to replace serial CPU-
based ray tracing engines in existing source code. 
OptiX™ provides built-in BVH creation and ray 
traversal algorithms to detect potential ray-surface 
intersections. The programmer is only required to re-
implement ray generation, intersection testing, closest 
hit, any hit, and miss algorithms as CUDA™ programs. 
OptiX™ compiles these programs into assembly code 
and uses a just-in-time compiler to create device-specific 
instructions at runtime. 
OptiX™ has been used to accelerate other building 
performance simulation tasks. Clark (2012) and 
Halverson (2012) demonstrate its use for modeling 
radiative heat transfer involved in the urban heat island 
effect. Andersen et al. (2013) use it for interactive 
visualization of cached Radiance results. We have 
previously demonstrated that by editing the source code 
of Radiance’s RPICT and RTRACE programs, they can 

perform ray tracing using OptiX™ at speeds twenty 
times faster than Radiance’s default ray tracing engine, 
provided no irradiance caching is performed (Jones & 
Reinhart, 2014). However, in order to make the OptiX™ 
engine’s speed competitive with Radiance, irradiance 
caching must be implemented on the GPU. 

Irradiance Caching 
While direct and specular reflections change abruptly 
over spatial dimensions, ambient lighting due to indirect 
irradiance is less variable. A single ambient value may 
be applied to all ray intersections within a calculated 
radius of the point where it was measured. An irradiance 
cache (IC) is a collection of indirect irradiance values 
and associated validity radii stored in a hierarchical 
acceleration structure (an octree in Radiance) that allows 
them to be quickly retrieved based on geometric 
position. Given two cached irradiance values at points 
E1 and E2 in Figure 1, the irradiance at point A may be 
found by interpolation, and the irradiance at point B may 
be found by extrapolation. Only when a ray intersection 
is not contained within the validity radius of any IC 
record (such as at point C) must a new record be 
calculated and added to the IC. This strategy reduces 
overall ray tracing time by an order of magnitude 
(Larson & Shakespeare, 1998), but it also eliminates the 
potential for straightforward parallelization because the 
final value of each ray depends on the IC records created 
by previous rays. 
 

 
Figure 1 IC records may be applied to all points within 

their valid radii (Larson & Shakespeare, 1998). 
 

Radiance spawns many ambient rays to create each new 
IC record. Each ray may in turn spawn new ambient rays 
if it fails to hit within a preexisting IC record. Every IC 
record is assigned a level corresponding to the number 
of ambient bounces taken by the ray that created it. The 
number of levels is limited by the “-ab” argument in 
Radiance. At each lower level, IC records accumulate 
more radiance as a result of a greater number of bounce 
paths that reach their positions. An IC record cannot 
influence the ambient radiance of a ray spawned more 
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than one level below, as this would reduce the number of 
ambient bounces contributing to the calculated radiance 
at that point. Only level zero IC records contribute to the 
ambient radiance of primary rays. Thus, increasing the 
number of ambient bounces also increases the indirect 
illumination from sources that reaches the camera 
(Figure 2). This creates a paradox for parallel IC 
creation: the number and position of IC records at each 
level depends on the radiance magnitude received from 
the level above and the visibility to IC records at the level 
below. If creation of records within each level is to be 
fully parallelized, there is no starting place. 
Various methods have been proposed for creating an IC 
using concurrent threads. Strategies for CPU clusters 
typically involve occasional synchronization of separate 
local ICs assigned to each thread. This can occasionally 
result in duplicate IC records created simultaneously by 
more than one CPU. On UNIX systems, multiple 
instances of Radiance may share a single irradiance 
cache using network file locks (Larson & Shakespeare, 
1998). Synchronization can also be performed using the 
Message-Passing Interface (MPI) (Koholka, et al., 1999; 
Debattista, et al., 2006). Dubla et al. (2009) propose a 
multi-threaded approach that allows wait-free 
synchronization of local ICs. All of these methods allow 
different threads to create overlapping IC records, but 
this happens infrequently because the number of 
concurrent CPU threads is small. 
Unfortunately, this assumption does not hold for the 
GPU. Modern GPUs implement single-instruction, 
multiple-thread (SIMT) architectures in which groups of 
32 threads called warps simultaneously execute the same 
command on different data. SIMT architecture allows 
threads within a warp to take divergent execution paths 
as a result of the data they receive, but this reduces 
parallel efficiency, as some threads must idle while 
others perform the divergent task (NVIDIA, 2012). 
Faster GPU ray tracing is achieved when the rays 
computed by each warp are coherent, hitting the same 
triangles and calling the same intersection programs. 
Were the Radiance IC strategy to be implemented 
directly on the GPU, it is highly likely that many threads 
in each warp would attempt to create overlapping IC 
records, severely reducing computational efficiency. 

Furthermore, adding records to the IC’s hierarchical 
acceleration structure can require redistribution of nodes 
within the structure, leaving the IC temporarily 
unreadable to threads from other warps. Hence, efficient 
IC creation is, by nature, a serial operation. 
Using GPUs, others have implemented IC creation as a 
pre-process carried out prior to ray tracing-based image 
creation. The key insight of these approaches is that 
appropriate locations for IC records can be predicted 
based on the camera’s location within the scene. 
Křivánek and Gautron (2009) use splatting to store 
irradiance values in a two-dimensional cache that may 
be projected onto the scene from the camera’s vantage 
point. This avoids the need to store IC records in a 
hierarchical acceleration structure, but it only considers 
one ambient bounce. Wang et al. (2009) use adaptive 
seeding and k-means clustering to select locations for IC 
records, followed by photon mapping to evaluate 
irradiance values at these points. Frolov et al. (2013) 
create an irradiance cache in 20 to 30 passes, where each 
pass involves both addition of IC entries visible to the 
camera and elsewhere in the scene for secondary rays. 
Locations for IC records within the field of view are 
selected using image processing techniques, while those 
elsewhere in the scene are chosen by z-curve clustering. 
All of these existing methods have some limitations. 
Because they depend on the camera’s field of view to 
determine IC record locations, they do not scale well to 
situations in which the camera moves or rotates, such as 
in adaptive zone glare analysis (Jakubiec & Reinhart, 
2012). They also assume that the rendered spaces are at 
least mostly enclosed, and they provide no explicit 
mechanism for dealing with views to the exterior, which 
will be common in analysis of daylit scenes. We seek to 
address these shortcomings. 

ALGORITHMS 
On the GPU, we must read from and write to the IC at 
separate times. First, we discuss our method for reading 
from the IC, which may be performed in conjunction 
with various methods of IC creation. Then, we describe 
two methods for creating IC records on the GPU, one 
optimized for small enclosed spaces and the other 
adapted to large open spaces. 

      
Figure 2 RPICT renderings with number of ambient bounces ranging from 0 (left) to 5 (right). Adding ambient 
bounces increases the overall radiance of the scene originating from the sky, though the effect is imperceptible 

beyond five bounces. Mean image luminance (μ) is shown in cd/m2. 

μ=1.18 μ=66.3 μ=147 μ=194 μ=204 μ=214 
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Reading from an Irradiance Cache in Parallel 
Whether or not we use the GPU for IC creation, we can 
save an IC to a binary file to enable multiple simulations 
of a scene. Here, we describe how to use an existing IC 
in OptiX™. Our first step is to enter all available level 
zero IC records into a BVH acceleration structure. Each 
IC record represents a disc over which a given indirect 
irradiance value is valid, along with directional vectors 
indicating the disc’s orientation in space and gradients in 
the plane of the disc. While OptiX™ generates the BVH 
automatically, we must specify a bounding volume for 
each disc. Our OptiX™ bounding box program defines 
an axis-aligned bounding box (AABB) for each entry as 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝑃𝑃𝑖𝑖 ± 𝑎𝑎𝑎𝑎�1 − 𝐷𝐷𝑖𝑖2 (1) 

where Pi and Di are the ith coordinates of the disc’s 
center point and normal direction, respectively, r is its 
radius, and a is Radiance’s ambient accuracy parameter 
(Figure 3). The AABBs of all IC records are independent 
and can be computed in parallel on the GPU, although 
their insertion into the BVH tree is a serial operation. 
 

 
Figure 3 An axis-aligned bounding box for a disc. 

 

Once the IC records are mapped to the BVH, we proceed 
with the final gather. We use the OptiX™ 
implementation described in Jones & Reinhart (2014), 
which is itself based on the source code of RPICT. This 
implementation follows the behavior of Radiance as 
closely as possible at material intersections (although 
currently only plastic, metal, translucent, glass, and light 
materials are implemented). However, we make the 
following alteration: at each intersection with a normal 
material, instead of spawning thousands of ambient rays 
into the scene, we spawn a single very short ray into the 
IC BVH acceleration structure. Our OptiX™ 
intersection program checks each intersected IC record’s 
level, validity radius, and normal direction using the tests 
from Radiance’s sumambient() method, which is 
responsible for summing the contributions of relevant IC 
records, and adjusts the radiance value in the ray’s 
payload accordingly. At the conclusion of this short ray’s 
traversal, its payload contains the weighted average of 

the ambient contributions from all IC records it 
intersected that passed the tests. 
If the existing IC does not provide good coverage of the 
scene, it is possible that a short ray into the IC BVH will 
not hit any IC records. In this case, it will return an 
ambient radiance value of zero (Figure 4). To handle 
this, we calculate the ambient value at the intersection 
point by spawning new rays into the scene as in 
Radiance’s doambient() method, which calculates 
indirect irradiance at a point when no IC is available. 
However, this causes poor warp coherence since each 
ray’s samples are likely to hit different objects. To 
improve performance, we use this method to fill gaps 
only during the final gather and allow only one ambient 
bounce in an attempt to reach other IC records. 
 

  

  

 
Figure 4 The scene with poor ambient coverage (left) 

can be filled in during final gather (right). 

Creating an Irradiance Cache for Enclosed Spaces 
In enclosed spaces, there is limited surface area that 
needs to be covered by the IC, and there is a good chance 
that each surface patch will be covered at multiple levels 
of the IC. In this case, we sample the scene geometry 
once to choose IC record locations, and we reuse the 
same locations for new IC records at each level. This 
eliminates the need to resample the scene geometry for 
each IC level using additional OptiX™ kernel calls that 
can double the overall computation time. We first sample 
the scene to generate a list of candidate IC record 
locations, then reduce the number of candidates while 
maintaining even scene coverage using k-means 
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clustering, and finally create IC records at each cluster in 
an iterative manner, proceeding from highest to lowest 
levels (Figure 5). The IC records for level zero are fed 
into the final gather algorithm described in the previous 
section. 
 

 
Figure 5 In enclosed spaces, IC record locations from a 
single call to the sampling kernel are used to create the 

IC at each level. 
First, we sample the scene to create a list of candidate IC 
record locations. Using an OptiX™ kernel, we cast rays 
from the eye position into the scene and record the 
position and surface normal direction of the first hit 
point. If the eye position and field of view are to remain 
static, we choose the initial ray directions to form a grid 
over the image using Radiance’s “-vt” argument and a 
user-specified sampling density. If the eye rotates 
between images, as it does in glare analysis (Jakubiec & 
Reinhart, 2012), we distribute the initial ray directions 
over equal solid angle sections of a sphere. In order to 
include geometry that is not visible from the eye 
position, we allow a user-defined number of bounces and 
record an additional position and normal pair at each new 
intersection. For each bounce, a random cosine-weighted 
reflection direction is chosen within the hemisphere 
defined by the surface normal. The output of this 
OptiX™ kernel is a list of points and corresponding 
normals which will be candidate IC record locations. 
This list likely contains far more candidates than needed 
to cover the surfaces in the space, which could cause 
excessive ray traversal times. Fortunately, we can reduce 
the list’s size by any of a number of clustering methods. 
For simplicity, we perform iterative k-means clustering 
to find a user-defined number of cluster centers using 
CUDA™, starting from a randomly chosen set of 
candidates. After clustering, the candidate IC record 
location nearest each cluster center will be used in the 
next step to generate an IC record. 
K-means requires a distance metric in order to cluster 
nearby objects. In this case, the metric must consider not 
only Euclidian distance, but also the normal discrepancy 

between candidates. We use the modification by Wang 
et al. (2009) of the error in the split sphere model (Larson 
& Shakespeare, 1998) 

 𝜀𝜀 = 𝛼𝛼‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑘𝑘‖ + �2 − 2(𝑛𝑛𝑖𝑖 ∙ 𝑛𝑛𝑘𝑘) (2) 

to relate error ε to the change in position x and normal 
direction n from candidate i to cluster center k, given a 
user-defined weighting factor α that accounts for scene 
size. This modified error metric is preferable because it 
can be used without calculating the indirect irradiance at 
every candidate location. 
The IC is built through iterative calls to an ambient 
sampling OptiX™ kernel. In each call to this kernel, one 
IC record is created in parallel for each chosen candidate 
location. The process is similar to Radiance’s 
doambient() method, which computes the indirect 
irradiance at a point by sampling the scene with rays, 
except that no supersampling takes place because 
OptiX™ does not provide an efficient sorting 
mechanism or memory to store a large number of 
ambient samples per thread. This is acceptable because 
the cost of using a large number of ambient divisions is 
much lower on the GPU than on the CPU. The first call 
to the kernel creates the highest IC level by sampling the 
environment with no ambient bounces. After each kernel 
call, the new IC records are entered into a BVH as 
described in the previous section. Subsequent calls to the 
kernel repeat the indirect irradiance calculation at each 
location by sampling the IC from the previous round. 
The IC generated at level zero is used by the final gather 
as previously described. 

Creating an Irradiance Cache for Open Spaces 
In open spaces, higher-level IC records are likely to be 
spread out geometrically, while lower-level records will 
tend to cluster near the eye position. This differs from the 
previous case in that we must now choose different 
record locations for each IC level in order to achieve 
optimal coverage for each ambient bounce (Figure 6). 
We make three changes to the method described in the 
previous section. First, the kernel used initially to sample 
the scene generates only one point-normal pair per GPU 
thread as no bounces are needed. The candidate 
locations, again chosen by k-means clustering, serve as 
the locations for only the IC records at level zero. 
Second, we introduce a new scene sampling OptiX™ 
kernel that spawns rays from the previous cluster centers 
to identify new candidate IC record locations using 
Radiance’s ambient sampling distribution. The point-
normal pairs from this kernel also undergo k-means 
clustering, and the results are used both as locations for 
level one IC records and as new input to the same kernel. 
This process recurses through the number of iterations 
specified by Radiance’s “-ab” argument. Third, while the 
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IC creation kernel is still called once per level as in the 
previous section, it now receives a different set of input 
locations on each call, consuming both the cluster 
centers from the corresponding level and the IC from its 
previous invocation. As before, the level zero IC is used 
for the final gather. 
 

 
Figure 6 In open spaces, IC record locations are 
separately calculated for each IC level based on 

locations reached at the previous level. 

VALIDATION 
We demonstrate the speed and accuracy of our OptiX™ 
implementation by comparing it to Radiance’s RPICT 
program for two scenes. The first, a fictitious small 
furnished office composed of 278,695 triangles, fits the 
criteria for an enclosed space. The second, a model of 
Harvard University’s Gund Hall with 187,208 triangles, 
is characteristic of open spaces. We calculate the 
speedup factor as the ratio of RPICT computation time 
to the computation time of our OptiX™ implementation 
with the same number of ambient bounces. In order to 
quantify the error introduced by our method, we report 
the mean radiance of the OptiX™-generated image as a 
percentage of the mean radiance in the RPICT-generated 
image with the most ambient bounces. This is an 
imperfect metric because RPICT does produce rendering 
artifacts, but it serves to demonstrate the extent of 
agreement between RPICT and the OptiX™ 
implementation. 
Simulations were run on two machines. The first was an 
active workstation with a 3.4 GHz Intel® Core™ i7-4770 
processor and an NVIDIA® Quadro® K4000 graphics 
card with 768 CUDA™ cores. The second was a 
dedicated graphics workstation with a 2.27 GHz Intel® 
Xeon® E5520 processor and two NVIDIA® Tesla® K40 
graphics accelerators with 2880 CUDA™ cores each. 
The OptiX™ implementation was configured to use 
either one or both accelerators. The standard version of 
RPICT was run only on the first machine with the faster 
processor. 

Enclosed Space 
The small office scene was rendered with varying 
numbers of ambient bounces in both RPICT and our 
OptiX™ implementation (Figure 7). Using an ambient 
accuracy of 5%, minimum ray weight of 0.2%, and 3000 
ambient divisions, the number of rays cast by RPICT 
leveled off at 1.28×108 after five ambient bounces, which 
took 46.5 minutes. We take five ambient bounces to be 
optimal for this scene with these settings. 
 

  

  

 
Figure 7 The small office scene rendered with five 

ambient bounces in RPICT (left) and 17 times faster in 
our OptiX™ implementation (right). 

 

The small office scene was rendered using the OptiX™ 
implementations for both enclosed and open spaces. The 
enclosed method returned results in half the time of the 
open method for tests with 4096 or more clusters. 
Because ICs of this size provide good coverage of the 
small scene, the two methods have comparable accuracy. 
As a result, we report only the performance of the faster 
enclosed method. 
As with RPICT, the OptiX™ implementation’s 
rendering time increases and its error decreases until five 
ambient bounces, after which they become essentially 
constant (Figure 8). Because IC records at higher levels 
can be built using exponentially fewer rays, the speedup 
factor is greater for higher numbers of bounces, reaching 
a maximum of 17 times RPICT’s speed when using 4096 
clusters. 
Increasing the number of clusters also reduces error, 
though the effect on speed is more complicated. Low 
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cluster counts result in reduced ambient coverage, which 
produces more incoherent work during the final gather, 
increasing computation time. High cluster counts 
increase the time for ray traversal of the IC BVH. Using 
five ambient bounces, a 24-fold speedup can be achieved 
with 2048 clusters per IC level, but increased accuracy 
can be achieved with more clusters. 
In all cases, the OptiX™-generated images display less 
radiance than their RPICT counterparts, though the 
difference is minimal beyond five ambient bounces. The 
discrepancy is due to less than optimal ambient 
coverage. The 5% ambient accuracy value used for 
RPICT produced visually-apparent poor coverage in the 
OptiX™ implementation. The reported OptiX™ 
implementation trials used a setting of 10% ambient 
accuracy, 5% less accurate than RPICT, in order to 
increase the validity radii of IC records according to 
equation (1). While this would introduce rendering 
artifacts into RPICT by spacing IC records farther apart, 
the ambient accuracy setting does not have this effect in 
our OptiX™ implementation because the spacing of IC 
records is determined by the clustering algorithm. In fact, 
certain rendering artifacts introduced by RPICT are 
notably absent in the OptiX™ rendering (e.g. the lower 
left-hand wall in Figure 7) because the latter builds the 
entire IC before calculating any pixel value. We also note 
that the measured error in our images is less than the 
difference in ambient accuracy settings. 

Open Space 
The Gund Hall scene was also rendered with varying 
numbers of ambient bounces in RPICT and our OptiX™ 
implementation, although the enclosed method was not 
used due to the scene’s size (Figure 9). Using the same 

settings as before, the number of rays cast by RPICT 
leveled off at 1.15×109 after five ambient bounces, which 
took 198 minutes. We again take five ambient bounces 
to be optimal for this scene with these settings. 
 

  

  

 
Figure 9 The Gund Hall scene rendered with five 

ambient bounces in RPICT (left) and 20 times faster in 
our OptiX™ implementation (right). 

 

Again, the OptiX™ implementation’s rendering time 
increases and its error decreases until five ambient 
bounces, after which they become more or less constant 

10 104103 cd/m2102

  
Figure 8 For the small office scene, the speedup factor increases and error decreases with the number of ambient 

bounces using 4096 clusters (left). Error decreases with the number of clusters, but large numbers of clusters 
require greater traversal time using five ambient bounces (right). 
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(Figure 10). In this larger scene with 4096 clusters, the 
maximum speedup is 21 times RPICT’s speed. Faster 
speeds can be achieved using fewer clusters because the 
coherence of final gather rays does not degrade as 
quickly when IC level zero has its own set of record 
locations. However, error still increases due to poor 
coverage at higher levels when the number of cluster 
centers is low. 
The increased error in the Gund Hall scene indicates that 
coverage is generally poorer here than in the small office 
scene. This is to be expected, given that Gund Hall is a 
larger space. To offset this effect, the OptiX™ 
renderings use an ambient accuracy setting of 25% to 
increase IC record validity radii. This ultimately 
produces a 17% difference in mean radiance between 
RPICT and our OptiX™ implementation with 4096 
clusters. While this error appears large, some of it must 
be attributed to rendering artifacts produced by RPICT 
(e.g. under the table in Figure 10). We again note that the 
error observed is less than the 20% difference between 
the OptiX™ implementation and RPICT ambient 
accuracy settings. 

CONCLUSION 
Ray tracing for global illumination simulation has many 
potential uses for architectural design, both actively used 
and as yet unexplored. In many cases, such as in early 
design or when global illumination simulation serves as 
a preprocessing step to another type of analysis, it is 
important that the simulation execute quickly. However, 
software developers can no longer depend on faster clock 
speeds to produce shorter execution times. Instead, they 
must rely on parallelism. 

In this paper, we have demonstrated that irradiance 
caching, along with other core algorithms from 
Radiance, can be implemented in OptiX™ to achieve a 
twenty-fold speed increase in global illumination 
simulation. By precomputing a separate IC for each 
ambient bounce level, we can duplicate RPICT results 
with reasonable accuracy. In enclosed spaces, we can 
further reduce computation time by reusing the same 
locations for IC records at each level. 
The primary source of error at this preliminary stage of 
development is poor ambient coverage of the scene. We 
have shown that in enclosed spaces, ICs that provide 
good scene coverage can be generated in parallel on the 
GPU. However, ICs generated in parallel can produce 
poor coverage for open spaces. Additional ambient rays 
in the final gather stage can improve image appearance, 
but it is still necessary to make up for the missing 
radiance in other ways. Continued work is necessary to 
determine appropriate number and placement of IC 
records so as to maximize scene coverage. Ultimately, 
the accuracy achieved by OptiX™ must be judged 
against measurements of physical spaces in order to 
avoid bias from RPICT rendering artifacts. 
There are many potential benefits to the architecture 
profession if Radiance algorithms can be parallelized on 
the GPU. While single-threaded programs cannot be 
expected to run faster on new generations of hardware, 
newer generations of GPUs, like the Tesla® in our trials, 
continue to outperform their predecessors. Future 
hardware generations are likely to surpass the twenty-
fold speed increase we have demonstrated. Faster 
simulation results can be produced more frequently as an 
aid to design, and their sooner availability makes it less 
likely that the design will change during the simulation, 

 
Figure 10 For Gund Hall, the speedup factor increases and error decreases with the number of ambient bounces 

using 4096 clusters (left). Error decreases with the number of clusters, but large numbers of clusters require 
greater traversal time using five ambient bounces (right). 
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which renders the results useless. Accurate simulation 
results make it easier for architects to correctly size 
windows and provide adequate artificial lighting without 
consuming unneeded electricity. They also reduce the 
likelihood of glare, which can decrease productivity in a 
work environment. Faster ray tracing will also make 
annual simulations such as daylight autonomy studies 
more practical, as these take much longer than point-in-
time simulations. Thus, we believe that the ability to 
create and use ICs on the GPU will be of great benefit to 
building designers. 
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