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An approximate expression for Henry’s function, describing the electrophoretic mobility of a spherical
colloidal particle in the limit of low surface potentials, is developed through a physical analogy to a col-
loidal particle with a linearly slipping surface (i.e. satisfies the Navier slip condition). The resulting
expression reproduces Henry’s function with a relative error of no more than 0.1%. This approach is gen-
eralized for the electrophoretic mobility of a particle regardless of surface potential though necessary
data for rigorous testing is lacking.
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The electrophoretic mobility of an insulating spherical colloid in
the low surface potential and weak applied field limits:

U= f(xa), (1)

relates the velocity of the particle with radius a and zeta potential {
through a fluid with viscosity # and dielectric permittivity € to the
electric field driving the electrophoresis (viz. U= uE). f(xa) is
Henry’s function and depends on the thickness of the Debye or dou-
ble layer x~! which acts to screen the electrostatic interactions
around the particle [1]. This particular form of the electrophoretic
mobility is valid for weak, constant surface potentials so that the
electrostatic potential in the fluid is governed by the linearized
Poisson-Boltzmann equation.

In the limit of a thick double layer (i.e. ka < 1), f{ka) ap-
proaches unity and the Hiickle mobility is recovered [2]. Here,
the Stokes drag force on the particle directly balances with the
Coulomb force to determine the particle’s velocity. In the limit of
a thin double layer (i.e. ka > 1), f{xa) — 3/2 and the Smoluchowski
mobility is recovered [3]. In this case, near the particle, an imbal-
ance of cations and anions leads to a flow which relieves the shear
stress on the particle as it moves. The full form of the Henry func-
tion is

(ka)? - o (ka)® —

x {ﬁ(l - Ka) — <1 —%(KG)2>6K‘151(KG) ,

(ka)*

where E;(xa) is the exponential integral of order one.
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Interestingly, we may write the electrophoretic velocity in
the form of a hydrodynamic mobility multiplied by an applied
force: U= MyF with Myr=frxa)(6nna)~' and F = 4necoalE. Here,
the force F takes on the form of a Coulomb force while the
mobility is a modified Stokes drag law. The limit of thick and
thin double layer suggest that the colloid behaves as a particle
subject to a no-slip boundary condition (Myr=(6mna)!) and a
no shear stress condition (Myr=(4mna)~!) in each case, respec-
tively. That is, the Hiickle solution represents the motion of a
rigid no-slip particle while the Smoluchowski solution repre-
sents the motion of a rigid bubble as if both have charge 4mee,.
a¢ in the electric field E. Here, “hydrodynamic,” can refer to the
forces of the medium (solvent plus ions) acting on the charged
particle.

From colloidal hydrodynamics, we know that a smooth transi-
tion from the no-slip to the shear stress free mobility can be
achieved by hypothesizing a particle for which the fluid undergoes
prescribed slip along the particle’s surface. The Navier slip condi-
tion states that the fluid velocity relative to the particle and tan-
gential to its surface, t-u is related linearly to the density of
force exerted by the fluid tangential to that surface, tn:e as
t-u=(i/n)nt:e. The length scale / is termed the slip length and
corresponds physically to the distance below the particle’s surface
at which u would reach zero, the no-slip value, were it to continue
changing linearly at a rate given by the surface rate of strain. For a
spherical particle with 0</a<1, this interpretation suggests a
spherical, no-slip surface at a depth 4 within the particle. Regard-
less of the interpretation, it is simple to show that the mobility
of such a particle is Myr = g(//a)(6mna)~! with

s() =12 3)

a/ 1+2(%)
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In the limit of small slip lengths, g(i/a) approaches unity and the
particle moves as though subject to the no-slip condition. In the
limit of large slip lengths, g(1/a) — 3/2 and bubble-like motion re-
sults [4].

Now we are left with a compelling analogy between the mobil-
ity of a slipping spherical particle and the electrophoretic mobility
in the low potential limit. By doing an admittedly naive thing and
equating the two, we find that the slip length can be related to the
double layer thickness as
A f(xa)-1
a 3 -2f(ka) @
In the limit of thick double layers (xa < 1), we find the scaling rela-
tion /a = (xa/4)? while in the thin double layer limit (xa > 1) the
slip length scales as A/a = ka/18. The equivalent slip length is plot-
ted as a function of ka in Fig. 1.

This equivalence between mobilities allows us to write Henry’s
function is written in terms of the equivalent slip length as

floca) = 1557 )

Therefore, in the limit that xa< 1, flka)~(16+3(xa)?)/
(16 +2(xa)*) and in the limit that xa>>1, flixa)~ (18 + 3ka)/
(18 + 2ka). These approximations for Henry’s function are within
2% of the exact value for xa <1 and xa > 1 respectively. The slip
length can be interpolated by a rational function which takes
on the correct values in the limits of thick and thin double layers:
Ala=(xal4)*(1 + 9xa/8)~'. With this, a deceptively simple empirical
approximation to Henry’s function, denoted fs{xa), is

16 + 18ka + 3(ka)?
16 + 18xa + 2(ka)*’

fse(1ca) (6)
For all values of ka, this differs from Henry’s formula by less than
0.1%. This is an order of magnitude improvement over the interpo-
lation formula due to Ohshima [5],

1
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Fig. 1. On proposing an equivalence of mobilities, the slip length corresponding to a
particular double layer thickness is plotted. We see that the slip length is quadratic
in double layer thickness in the thick double layer limit, but linear in double layer
thickness in the thin double layer limit.
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Fig. 2. The error in various approximations to Henry’s formula is plotted as a
function of double layer thickness. The formula proposed in Eq. (6) out performs
that of Ohshima by an order of magnitude.

with & =(5/2)[1 + 2exp(—xa)]~'. It is also superior to the limiting
forms just discussed over the entire range of xa. The relative error
in these approximations is plotted in Fig. 2.

The reason for this fortuitous agreement is made clear partly by
examining the limits ka < 1 and xa > 1, for which Henry’s for-
mula takes on the particular scaling matched exactly by our
approximation, viz.

f(;ca<<1):f5F(;ca<<1):1+(%)2, ®)

and
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Fig. 3. Henry’s formula and various approximations are plotted as a function of the
double layer thickness. Eq. (6) is indistinguishable from the exact result over the
entire range of xa.
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Neither of these are reproduced correctly by the Ohshima interpo-
lation. In fact, an expansion of Eq. (6) in double layer thickness to
terms of the next order of magnitude yields coefficients that differ
by only a small fraction from the value predicted by Henry’s for-
mula (30% for thick double layers, 2% for thin double layers). The re-
sult of Henry and the approximates discussed herein are plotted in
Fig. 3.

The analogy between electrophoretic mobility and hydrody-
namic mobility has its short-comings, however. Chiefly that the
flow around a bubble is not irrotational while the flow around an
electrophoretic particle in the thin double layer limit is. The con-
tradiction comes from what we considered the origin of the thrust
driving the motion. For the slipping particle, if we treat the effec-
tive thrust (4meegal) as external to the fluid system, then the irro-
tational flow cannot result. If however, the thrust comes from an
appropriate surface flow, the proper flow far-field flow may be
modeled as well. Anymore discussion in this vein is too much spec-
ulation for a note, however.

If we relax the restriction on the surface potential so that line-
arization of the electrostatic equations is not possible, the problem
is too complex to solve analytically [6]. However, for a 1-1 electro-
lyte, it must have the form

2€€ol 5
= 31; f(xa,0), (10)

where ¢ = ¢e/kT is the zeta potential made dimensionless on the
thermal potential. In the limit that { — 0, f(ia, ) becomes Henry’s
function. Troublingly, this solution has a non-monotonic depen-
dence on double layer thickness. Values of f(ia, () less than one
are possible when the surface potential is large enough. The double
layer polarization retards the electrophoretic motion in a way that
is unaccounted for in Henry’s approach. Conversely, the Smol-
uchowksi limit is never exceed.

Contrast that with the function g(//a) for the slipping particle.
For positive slip lengths, it varies monotonically in the range
(1,3/2). However, for //a>—1/3, g(4/a) can take on any value in
the range (0,3/2). Therefore equivalence of mobilities postulated
earlier may still be applicable. A negative slip length corresponding
to conditions where the electrophoretic mobility is smaller than
the Hiickle limit may even make some physical sense as the double
layer polarization has the equivalent effect enhancing the Stokes
drag.

Drawing on our experience with Henry’s formula we might sus-
pect that in the limit of thin double layers, the electrophoretic
mobility is it = €€ol/n[1 — A(xa,{)], where A(xa,{) is a function of
the surface potential, reduces to 3/(xa) as { — 0 and scales as
(rca)~! in the limit that xa — co. A number of asymptotic analyses
conducted in the thin double layer limit confirm this form and are
suitable approximations for A(xa,{) [7,8]. There are many other
approximations that extend Henry’s result asymptotically beyond
the limit of small surface potentials [9]. Any of these could be used

to formulate an equivalent relationship in the thick double layer
limit but with limits on applicability with increasing the zeta po-
tential. A most useful approximation would be an asymptotic
expansion of the electrophoretic mobility in powers of ka, in the
limit xa < 1 and valid for all surface potentials. This would have
the form u = 2€€ol/(3n)[1 + B(xka,{)]. However, an exact result
for B(ica, ) valid for arbitrary ¢ has not been determined. Certainly,
it must agree with Henry’s formula, (xa/4)?, in the limit of small
zeta potentials. An extension of the thick double layer problem
in this manner is complicated by identification of a far-field bound-
ary layer at which the charge neutralization condition is satisfied
[10]. The present analysis suggests tantalizingly that this expan-
sion could be used to form a simple and accurate approximation
to the exact electrophoretic mobility valid for arbitrary double
thickness and surface potential.

Following the same procedure as before (equating this mobility
with that of a slipping particle), we find that in the thick double
layer limit the slip length is 1/a = B(kxa,{) while in the thin
double layer limit it is J/a=[6A(xa,{)]"'. We suggest the
interpolation formula between thin and thick double layers
2/a =B(xa,{)[1 +6C(xa,{)]"!, which captures these two limits
exactly when the function C(xa,{) — 0 as xa — 0 and C(ka,{) —
A(xa,{)B(xa,?) > 1 as ka — co. From this we have another simple
formula for determining the electrophoretic mobility which may
prove valid for arbitrary surface potentials:

~ 1+6C(ka,{) +3B(ka,{)
1+6C(ka,?) +2B(ka,l)’

for(rca, ) (11)

Testing this specific interpolation requires more data: the electro-
phoretic mobility represented as an asymptotic series in ka with
Ka < 1 beyond the Hiickle solution.
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