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Abstract

An important step in the analysis of fMRI time-series data is to detect, and as much as possible, correct for subject motion during the
course of the scanning session. Several public domain algorithms are currently available for motion detection in fMRI. This paper compares
the performance of four commonly used programs: AIR 3.08, SPM99, AFNI98, and the pyramid method of The´venaz, Ruttimann, and Unser
(TRU). The comparison is based on the performance of the algorithms in correcting a range of simulated known motions in the presence
of various degrees of noise. SPM99 provided the most accurate motion detection amongst the algorithms studied. AFNI98 provided only
slightly less accurate results than SPM99, however, it was several times faster than the other programs. This algorithm represents a good
compromise between speed and accuracy. AFNI98 was also the most robust program in presence of noise. It yielded reasonable results for
very low signal to noise levels. For small initial misalignments, TRU’s performance was similar to SPM99 and AFNI98. However, its
accuracy diminished rapidly for larger misalignments. AIR was found to be the least accurate program studied. © 2001 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is anin
vivo imaging technique for the study of brain function. Very
fast imaging pulse sequences, such as the echo-planar im-
aging (EPI), are used to scan a time-series of volumes (the
term “volume” here refers to a set of 2D parallel image
slices) from the brain. By studying the changes in the MR
signal as a function of time in conjunction with sensory,
motor, or cognitive stimulation, it is possible to localize
regions in the brain that are “activated” as a consequence of
the task performed by the subject [1].

The changes in the MR signal intensity that result from
the subject stimulation are typically small as compared to
the baseline signal intensity and noise level. Hence, the data
can be easily corrupted by small involuntary movements by
the subject between volume acquisitions. Therefore, it is
essential to “correct” for the motion between volumes over
the course of the fMRI experiment. The ideal approach to
deal with motion is to detect it online and adjust the scan-

ning field of view before the next volume is acquired. While
several such methods have been published in recent years
[2–4], the technology is still not widely available. By far the
most often used approach in dealing with the problem of
motion in fMRI is retrospective image registration [5–8].
The problem of image registration can be separated into two
parts: motion detection, and correction. Motion detection is
the problem of estimating the set of translational and rota-
tional parameters that give the exact position of the brain in
3-dimensional (3D) space for each volume in the time-series
relative to its position at the start of the experiment or
another reference time point. In the correction step, the
estimated parameters are used to realign the volumes by
interpolation. The focus of this paper is on motion detection.
An excellent survey of the latter problem (interpolation) is
provided by Lehmann et al. [9].

Several public domain programs are available that can be
used for motion detection. These algorithms, when applied
to common data sets, do not always produce the same
results. This immediately raises two questions: (a) which
algorithm gives more accurate motion estimation?; and (b)
to what extent do the differences in the results affect the
final activation maps? The objective of this study was to
answer the first question, that is to evaluate the relative
accuracy of these algorithms and to characterize their per-
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formance. Four programs that are commonly used by fMRI
researchers for image registration were compared: SPM99
[5], AIR 3.08 [6], AFNI98 [8,10], and the pyramid approach
by Thévenaz et al. [7] (TRU). A comparison of the first
three algorithms has been previously published by Morgan
et al. [11] based on the number of false positives each
algorithm generated when used in analyzing simulated
fMRI time-series with simulated activation foci. In this
study, we compare the algorithms based on their actual
accuracy in detecting the motion in simulated fMRI time-
series with a range of known motions and different levels of
added noise. A brief overview of the algorithms is presented
in the following section. The subsequent sections include
the methods used for generating the simulated data, results
of applying the registration programs to the data, and con-
clusions.

2. Motion detection in fMRI

While many different and general image registration
methods have been published, the algorithms for fMRI
motion detection are usually designed to take advantage of
three characteristics of fMRI time-series data: (a) the mo-
tion can be modeled as a rigid body motion in 3D described
by a set of six parameters (three rotations about and three
translations along the axes of a Cartesian coordinate sys-
tem); (b) the image contrast does not change appreciably
from one volume to the next; and (c) the motion is generally
small compared to image resolution.

Let fn(r) represent the nth volume from a total of N
volumes acquired during the fMRI experiment (n � 1,
2, . . . , N), where r � [ x y z]T is a position vector variable
pointing to the space coordinates ( x, y, z). Properties (a)
and (b), above, imply the following model relating the nth
volume to the first:

fn�r� � �nf1�Rnr � tn� � en�r� (1)

where Rn is a 3 � 3 orthonormal rotation matrix with a
determinant of 1 (i.e., no reflection) fully characterized by
three rotational parameters, tn is a 3 � 1 translation vector
comprised of three translational parameters, and e(r) repre-
sents noise. The factor �n accounts for a possible global
difference in intensity between the two volumes. The matrix
Rn and vector tn represent the motion from time point 1 to
n. The objective of motion detection algorithms in fMRI is
to estimate, as accurately as possible, the six parameters that
specify Rn and tn.

The strategy in almost all motion detection methods is to
define a “cost function” J(�n) as a function of the unknown
parameters, �n, and minimize this cost function with respect
to �n. Discrepancies between the results of applying differ-
ent methods to the same data can arise from two main
sources: differences in their optimization strategies for find-
ing the minimum of the cost function; and differences in the
definitions of the cost functions and their sensitivities to

motion and noise. The cost functions of the four algorithms
that are considered in this paper are all special cases of the
least-squares cost function:

J��n� � �
r��

��r��fn�r� � �nf1�Rnr � tn��
2 (2)

where �n represents the six rigid body motion parameters in
Rn and tn in addition to the scale parameter �n, and �
represents the regular grid of voxel positions. The function
�(r) is a weighting factor. Since all algorithms considered
in this paper employ variants of the least-squares cost func-
tion, any discrepancies observed between their results are
more likely due to differences in their optimization strate-
gies.

3. Methods

3.1. Data acquisition

MRI scans were obtained using a Siemens 1.5 T Mag-
neton Vision system (Siemens AG, Erlangen, Germany)
equipped with a quadrature transmit/receive RF head coil. A
high resolution multislice transverse brain turbo spin echo
(TSE) scan was acquired from a normal healthy volunteer.
The subject was positioned supine on the scanner bed.
Subject motion was restrained by placing foam pads around
his head. The data consisted of 50 interleaved slices of 2
mm thickness with no gaps, approximately covering the
entire brain. The image size was 256 � 256 pixels with a
resolution of 1 � 1 mm2. The acquisition parameters were:
TE � 96 ms, TR � 9.5 sec, � � 90°, and ETL � 7. The
imaging time was approximately 4 minutes and 40 seconds.
This scan was used to simulate an fMRI time-series with
motion. This pulse sequence was selected in order to obtain
an image contrast similar to T*2-weighted EPI images (Fig.
1a).

4. Motion simulation

In order to simulate an fMRI time-series with a wide
range of motions, 3000 �’ s (sets of six rigid body motion
parameters) were generated randomly by sampling from a
uniform distribution with limits of 	7.2° on angles and
	6.0 mm on translations. The TSE volume was thresholded
at 20% of the maximum voxel intensity to isolate the brain.
A test set of voxels consisting of approximately 1/16 of the
brain voxels was selected. The test voxels on each slice
were located on a grid of points at 16 mm intervals. Let
�0 � {ri} represent this test set. The average misalignment
of voxels in �0 was computed for each of the 3000 �’ s as
follows:

d �
1

card��0�
�

ri��0

�ri � Rri � t�2 (3)
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where card(�0) denotes the number of voxels in �0. The
100 parameter sets that produced misalignments closest to
the 0.1 mm marks between 0.0 and 10.0 mm were taken as
our test parameters. For each of the 100 �’ s thus selected,
the original high resolution TSE volume was transformed
and interpolated using the “3drotate” module of AFNI98.
They were then down-sampled to a 64 � 64 � 25 resolution
with isotropic voxels of size 4 � 4 � 4 mm3. Interpolation
of the finer resolution TSE image followed by collection
into coarser voxels reduces the interpolation errors in the
simulated fMRI volumes. Thus, we obtained 100 volumes
with progressively increasing misalignments from 0.1 mm
to 10.0 mm. The original TSE volume was also down-
sampled to the lower resolution, resulting in a total 101
volumes, where the exact motions of all the volumes with
respect to the first volume were known. This data set was
used to assess the accuracy of the motion detection algo-
rithms.

4.1. Noise simulation

The 101 test volumes generated using the procedure
outlined above were modified by the addition of Rician
noise [12]. Four different signal-to-noise ratios (SNR) were
simulated: SNR � 2, 5, 10, 20. The SNR was defined as
A/�, where A is the mean voxel intensity over the thresh-
olded brain region and � is the standard deviation of the
noise in the real and imaginary channels. Since A is known,
� can be computed for a given SNR. For a given �, the
value of each voxel in the volume was replaced by a sample
from the Rician probability distribution function:

p�v� �
v

�2 exp �

v2 � v0

2

2�2 � I0 �v � v0

�2 � (4)

where v0 represents the initial voxel intensity in the absence
of noise, v represents the random variable whose realization
replaces v0, and I0 is the modified zeroth order Bessel
function of the first kind. A representative slice without
noise, and at two noise levels (SNR � 5, 10) is shown in
Fig. 1.

4.2. Experiments

The simulated fMRI time-series data were used to assess
the accuracy of the motion detection algorithms. For each
volume in the time-series, the realignment error, denoted by
�, was defined as the average displacement of the voxels in
�0 after image realignment. It is computed as follows:

� �
1

card(�0)
�

ri��0

�ri � R̂
1�Rri � t � t̂��2 (5)

where R and t are the known rotation and translation ma-
trices, respectively; and R̂ and t̂ are their estimates obtained
from the motion detection algorithm. Note that if R̂ � R and
t̂ � t, then the realignment error becomes zero.

Each algorithm was applied to the 4 noisy data sets with
SNR � 2, 5, 10, 20 and to the data set with no noise
(SNR � �). For each case, the realignment error � was
computed for each of the 100 misaligned volumes. The
results are presented in the next section.

5. Results

Figure 2 shows the realignment errors (�) of the four
algorithms as a function of the initial misalignment (d).
Each point in this figure is the average of 10 points in a 1
mm interval. That is, the realignment error at d � 1.0
represents the average of the 10 realignment errors at d �
0.1, 0.2, . . . , 1.0; the realignment error at d � 2.0
represents the average of the 10 realignment errors at d �
1.1, 1.2, . . . , 2.0, etc. The results shown in this figure are
obtained from applying the four motion detection algo-
rithms to the simulated data without noise (SNR � �). This
exercise essentially tested the robustness of the algorithms
with respect to the initial misalignment.

It can be seen that AIR provided the least accurate results
over much of the range. TRU performed well when the
initial misalignment was less than approximately 3 mm. The
realignment errors in TRU and AIR depended strongly on
the initial misalignments. They increased rapidly with in-

Fig. 1. A representative slice from the TSE volume after reduction to a 64 � 64 � 25 resolution with (a) no added noise; (b) SNR � 10; and (c) SNR �
5.
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creasing d. SPM99 provided the most accurate results fol-
lowed by AFNI98. The accuracy of SPM99 and AFNI98
decreased slowly with increasing initial misalignment.

To evaluate the performance of the algorithms in pres-
ence of noise, we averaged the realignment errors in the
range of 0–3 mm for noise levels SNR � 2, 5, 10, 20 and
SNR � �. In this range, for the noise-free case, all algo-
rithms had performed relatively accurately. The results are
shown in Table 1. As expected, the average realignment
error increases as the SNR decreases. An exception was
AIR where the average realignment errors for SNR � 10
was smaller than that of SNR � 20, which was in turn
smaller than that of the noise-less case (SNR � �)! It can be
seen that for large noise levels SNR � 2, 5, AFNI98
provided more accurate realignments than the other 3 pro-
grams, especially for SNR � 2 where there is a significant
increase in the average realignment errors of SPM98, TRU,
and AIR.

Table 2 shows the approximate processing times of the
four programs on a SUN Ultra20 workstation. The process-
ing times shown for AIR, AFNI98 and TRU include reslic-
ing time. The processing time shown for SPM99 is for

motion correction only. AFNI98 was several times faster
than the other three programs.

6. Conclusions

In this article, we applied the four motion detection
programs: SPM99, AIR, AFNI98, and TRU to simulated
fMRI data. Since the motion in the simulated fMRI data is
known, we were able to assess the accuracy of motion
detection in each of the algorithms. Based on the results
obtained and presented in this article, several clear conclu-
sions can be drawn. Amongst the four methods studied, AIR
provided the least accurate results. SPM99 was found to
provide the most accurate motion detection when SNR �
10, 20 or SNR � �. For SNR � 2, 5, AFNI98 performed
better than SPM99. TRU performed well when the initial
misalignment was small but was clearly less accurate than
SPM99 and AFNI98 for larger misalignments. The realign-
ment errors of all algorithms increased with the initial mis-
alignment. However, the increase was much more rapid in
AIR and TRU. AFNI98 was several times faster than the
other three algorithms. In conclusion, the results of this
paper suggest that SPM99 should be the method of choice
when it is known that the noise in the images is not unusu-
ally high and when speed is not critical. AFNI98 provides a
good compromise between speed and accuracy. It also
showed the most robustness with respect to noise.
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