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This study discusses the development of a computer-generated
phantom to compare the effects of image realignment programs
on functional MRI (fMRI) pixel activation. The phantom is a whole-
head MRI volume with added random noise, activation, and mo-
tion. It allows simulation of realistic head motions with controlled
areas of activation. Without motion, the phantom shows the ef-
fects of realignment on motion-free data sets. Prior to realign-
ment, the phantom illustrates some activation corruption due to
motion. Finally, three widely used realignment packages are ex-
amined. The results showed that the most accurate algorithms are
able to increase specificity through accurate realignment while
maintaining sensitivity through effective resampling techniques. In
fact, accurate realignment alone is not a powerful indicator of the
most effective algorithm in terms of true activation. Magn Reson
Med 46:510–514, 2001. © 2001 Wiley-Liss, Inc.
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Functional MRI (fMRI) is a noninvasive imaging technique
which takes advantage of small magnetic field distortions
in cerebral blood flow to localize areas of the brain utilized
during specific tasks (1–3). When a brain region is engaged
to control a task, the blood flow to that area is increased in
response to increased metabolic demand. This increase in
blood flow is more than required by increased cellular
oxygen demand and thus results in a regional increase in
the local ratio of oxyhemoglobin to deoxyhemoglobin.
Through the use of a T*2-weighted pulse sequence, this
ratio shift can be detected as an MR signal increase. This
signal increase is usually less than 5% at a field strength of
1.5T. To distinguish the areas of activation from noise, the
brain is imaged repeatedly in both a baseline (rest) state
and an activation state during which the brain is attending
to a specific task. The areas of the brain used exclusively
during the task are determined statistically by comparing
signal intensities between the images acquired in each
state. Comparison between the resting and activation
states assumes no motion has occurred between the two
states. This may be accomplished if the subject remains
completely still throughout the acquisition. However, in
most cases it is not possible for subjects to be completely
motionless (4). Motion can be especially troublesome in
those studies involving patients or children. This problem
has led to the development of various image realignment
programs.

Image registration programs are now available that cor-
rect for 2D (5–7) and 3D motion (6–13). Some algorithms
are considered to be intensity-based (6–9,11–13), while
others are feature-based (14). Some are combinations of
both techniques (10). Our hypothesis is that these methods
will have different results when applied to different types
of motion and levels of activation. When conducting an
fMRI study, the decision as to which type of algorithm
would be most appropriate could be very important to the
results. Previous comparisons of these algorithms have
been either qualitative in nature or quantitative in spatial
measurements of alignment of images. The first objective
of this study was to develop a software phantom that
would contain realistic head motions and predetermined
areas of activation to facilitate quantitative comparisons of
activation localization and intensity post realignment. The
second objective was to test the validity of the phantom by
comparing three of the most widely used algorithms using
this technique. More than one version of each program has
been included to illustrate changes and improvements in
the algorithms.

METHODS

To compare the realignment methodologies, a phantom
was created using IDL (Research Systems, Inc., Boulder,
CO). A full brain volume collected from an adult male
volunteer with an echo planar imaging (EPI) pulse se-
quence was used as the basis for the phantom (64 3 64,
TE 5 60 ms, TR 5 4000 ms, 5 mm thick, 1 mm gap, 21 or
23 axial slices, FOV 5 24 cm, 1.5 T GE Signa Horizon
scanner). The volume was copied to create 76 identical
temporal samples. Additional uniformly distributed ran-
dom noise of no more than 5% of the pixel intensity was
added to each pixel in each volume. Six different areas of
activation were then added to the data set by increasing
the intensity of the pixel by a designated percent during
predetermined stimulus periods of 10 volumes interleaved
with rest periods of 10 volumes (except for the first rest
period, which is made up of six volumes). The percent
increases were chosen as 1%, 1.5%, 2%, 2.5%, 3%, and
4% to approximate the level of activation commonly ob-
served at 1.5T. For each signal increase, the area of acti-
vation covered three slices and was 36–90 pixels in size.
No areas of activation were created on the edge of the
brain. This phantom (without motion) was saved as the
activation-only phantom.

Two “motion” phantoms were then created using the
activation-only phantom. Phantom motion was derived
using the center of mass motion of a blind volunteer read-
ing Braille during an fMRI study. The coordinates of the
center of mass were measured along three axes using Stim-
ulate (15) and added to the phantom. Rotation about the x
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and z axes of less than 0.5° was added to each volume
arbitrarily to reflect small up–down and right–left head
tilts. The resulting image volumes were then saved as the
rigid-body phantom. The second phantom used nonrigid-
body motion maps derived from a normal volunteer per-
forming a finger-tapping fMRI task using an in-house elas-
tic registration program (16). This motion was then added
to the activation-only phantom to create an elastic-motion
phantom.

Three freely available realignment software packages
were used to register the phantom data sets. All volumes
were realigned with the first volume in the set. The details
of each trial are given below:

1. SPM99b (8): SPM99b (release 5/17/99) with reslicing
using sinc interpolation.

2. AFNI98 (13): AFNI 2.23.1 3D image registration
plug-in using quintic resampling.

3. SPM96-0 (8): SPM 96 using sinc interpolation with
no adjustment.

4. SPM96-2 (8): SPM96 using sinc interpolation with
second-order adjustment.

5. AFNI96 (5): AFNI 2.01a 2D image registration plug-in
run with no fine fitting.

6. AIR-L (6,7): AIR 3.08 linear 3D, rigid-body image
alignment using the following parameters: 8 mm 3
8mm 3 8mm FWHM Gaussian spatial smoothing,
scaled least-squares difference image cost function,
secondary termination criteria 5 25 total iterations or
five iterations without improvement, sampling from
every 81 to 1 voxel, a convergence threshold of 1.0,
and image reslicing with trilinear interpolation.

7. AIR-W (6,7): AIR 3.08 nonlinear, 3D image alignment
using the following parameters: third-order nonlinear
60-parameter model, 8 mm 3 8 mm 3 8 mm FWHM
Gaussian spatial smoothing, secondary termination
criteria 5 50 total iterations or five iterations without
improvement, sampling every 81 to 9 voxels, a con-
vergence threshold of 0.1, and image reslicing with
trilinear interpolation.

The results were compared based on three parameters:
1) percent of true-positive activations (sensitivity), 2) level
of activation (percent signal change) of true-positive acti-
vations, and 3) number of false-positive activations (spec-
ificity). For each phantom, for each realignment method, a
realigned data set was produced. Activation maps of each
were determined using a t-test with P , 0.05 using Stim-
ulate (15). In each area of activation, the percent of true-
positive activations was defined as the number of pixels
activated in the data set divided by the number of pixels in
the region of interest (ROI) multiplied by 100%. The per-
cent of expected signal change of each area of activation
was defined as the percent signal change of the activated
pixels in the data set divided by the percent signal change
designed into the phantom in that ROI multiplied by
100%. In addition, the number of false-positive activations
in the volume was counted.

RESULTS

An axial slice through the motion-free phantom is given in
Fig. 1a. This image shows simulated activation (arrow) and

FIG. 1. a: An axial slice through the motion-free phantom (with
noise) showing simulated activation within the ROI (arrow). b: Acti-
vation in the rigid-body motion phantom in the same slice. Some
strongly activated pixels outside the ROI are highlighted with a
dashed-line box. All of the activated pixels outside the ROI are
considered false-positive activations. c: Activation in the same slice
after rigid-body motion was corrected using SPM99b (see text). The
number of false-positive activations (in dashed-line box) is reduced.
All activation was determined using a t-test (P , 0.05).
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activation due to noise. In Fig. 1b the same slice is shown
in the rigid-body motion phantom. The activation due to
motion is apparent. Some of these areas are highlighted by
dashed-line boxes. The same slice after rigid-body motion
is corrected by SPM99b (8) is shown in Fig. 1c.

In the activation-only phantom (motion-free), all algo-
rithms except SPM96-2 were able to retain 100% of the
activated pixels and percent signal change present prior to
realignment. With SPM96-2 there was no activation de-
tected at levels less than 4% signal change.

Figures 2a and 3a show the percent of true-positive
activations in the region vs. the level of activation in the
region for the rigid-body phantom and the elastic-motion
phantom, respectively. The percent of expected signal
change in the region vs. the level of activation in the region

for each phantom is shown in Figs. 2b and 3b. In all of
these figures, the ideal result is 100%. Figure 4 shows the
number of false-positive activations after each type of cor-
rection, and prior to any correction for all three phantoms.

DISCUSSION

The activation-only phantom was created to determine
whether image data unaffected by motion will be altered
by the application of motion correction algorithms. In
cases where the activation data is preserved, it is implied

FIG. 2. a: Percent of true-positive activations vs. percent signal
change in the ROI. b: Percent of expected signal change in the
region vs. percent of signal change in the ROI in the rigid-body
motion phantom.

FIG. 3. a: Percent of true-positive activations vs. percent signal
change in the ROI. b: Percent of expected signal change in the
region vs. percent of signal change in the ROI in the elastic-motion
phantom.
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that the algorithm may be considered for use on all data
sets. Otherwise, some threshold of motion would have to
be set. All of the programs studied maintained the correct
activation in the absence of motion except for SPM96-2.
This algorithm removed all false-positive activations in
addition to many true-positive activations. Using AFNI98,
SPM99b and AIR-L, the number of false-positive activa-
tions is similar to those without correction. There were
slightly more false-positive activations when the 2D re-
alignment AFNI96 and SPM96-0 was used. There was a
large increase in false-positive activations using AIR-W.

The data using the rigid-body phantom is more diverse
than the activation-only data. For most algorithms, the
percent of true-positive activations and percent signal
change are accurate for activation levels of 1.5% or higher.
This is true even when no realignment is performed. At
1% signal change, the added noise decreased the true-
positive activations and increased the percent signal
change in the ROI. Added motion and realignment did not
significantly alter this. The SPM96-2 results show a de-
crease in all activation levels, while greatly reducing the
numbers of activated pixels at the lowest activation levels.
Figure 4 shows that the number of false-positive activa-
tions is relatively high if no motion correction is per-
formed. All programs except AFNI96 greatly reduce this
error, with SPM99b and SPM96-2 having results closest to
the motion-free data.

The elastic-motion phantom includes nonrigid, local-
ized motion within the volume to represent apparent im-
age distortion due to cerebral spinal fluid and blood pul-
satility. This more complicated motion produces more
error in the activation maps than does rigid-body motion.
For the elastic-motion phantom, the activation is accurate
at signal increases of 2% or higher after most realignments
and without realignment. Only the SPM96-2 reduces sig-
nal changes and number of activated pixels at these levels.
The number of false-positive activations is higher in this
phantom than in the rigid-body phantom. The only re-
alignment that can reduce these without removing true-
positive activations is SPM99b.

To determine the accuracy of realignment, the standard
deviation of the center of mass in the x, y, and z directions
after each realignment was measured. No correlation was
found between these measures and the activation param-
eters studied. In fact, SPM96-2 had the best realignment
results and the worst activation results. This information,
coupled with the fact that SPM96-2 removed true-positive
activations even when no motion was initially present,
indicates that the resampling may be the primary cause of
error in some of these algorithms. In some cases the errors
caused by resampling may be greater than the benefits of
the accurate realignment. This underscores the importance
of this study in enabling comparisons of algorithms based
on activation rather than realignment. That would lead to
the identification of those algorithms which can optimize
results by minimizing false-positive activations through
accurate realignment while maximizing true-positive acti-
vations through accurate resampling.

In summary, these data illustrate that the computer-
generated phantom can be used to examine the effects of
different realignment algorithms on different types of mo-
tion. The results from this study show that image sets that
are not affected by motion can be corrected by many of
these techniques without degradation of the activation.
Similarly, the data from the phantoms before realignment
imply that the primary error in these data is specificity,
i.e., the number of false-positive activations is highest
prior to realignment. It is clear that the realignment tech-
niques differ in their results for the three parameters cho-
sen. Therefore, the technique applied in a study should be
based on the specific goals of the experiment. This same
strategy can be used to examine other types of motion,
such as task-correlated motion (4). Further, the levels of
activation can be increased to more appropriately model
activation levels found at 3T or higher.
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