
1

Movement-related effects in fMRI time-series

Friston KJ1, Williams S2, Howard R2, Frackowiak RSJ1 and Turner R1.

1. The Wellcome Dept. of Cognitive Neurology, The Institute of Neurology, Queen Square,

WC1N 3BG, UK

2. and The Institute of Psychiatry, Denmark Hill, SE5 UK

Address for correspondence

Karl J Friston

c/o The MRC Cyclotron Unit,

Hammersmith Hospital

DuCane Road, London W12 OHS, UK

Tel (0181) 740 3162,  Fax (0181) 743 3987, email karl@cu.rpms.ac.uk



2

Running Title  Movement artifacts in fMRI



3

Abstract

   This paper concerns the spatial and intensity transformations that are required to adjust for the

confounding effects of subject movement during fMRI activation studies.  We present an approach

that models, and removes, movement-related artefacts from fMRI time-series.  This approach is

predicated on the observation that movement-related effects are extant even after perfect

realignment.  These effects can be divided into those that are some function of position of the object

in the frame of reference of the scanner, and a component that is due to movement in previous

scans.  This second component depends on the history of excitation experienced by spins in a small

volume and consequent differences in local saturation.  The spin excitation history will itself be a

function of previous positions.  This suggests an autoregression-moving average model for the

effects of previous displacements on the current signal.  We describe such a model and the

adjustments for movement-related components that ensue.  Our empirical analyses suggest that (in

extreme situations) over 90% of fMRI signal can be attributed to movement, and that this artifactual

component can be successfully removed.

Key words: Realignment, fMRI, Movement artifacts, Autoregression-moving average models.
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Introduction

   This paper is about realigning and adjusting functional MRI time-series to remove the

confounding effects of subject movement.  The main issue, considered in this paper, is that

movement-related changes are a complex function of position and scan to scan movement, or past

positions.  Our results suggest that simply realigning the images is not a sufficient correction for

movement effects.  The aim of this work was to develop an approach that was simple,

computationally expedient and capable of removing all movement artefacts.

   The usual strategy in functional MRI is to collect a sequence of multi-slice images of the brain

every one to three seconds.  Changes in signal intensity, that are related to changes in a stimulus or

task, are used to infer something about functional anatomy.  However changes in signal intensity

can also arise from head motion and this represents one of the most serious confounds in fMRI

studies.  Despite restraints on head movement willing and cooperative subjects still show

displacements of up to a millimetre or so.  With very young, old, ill or disturbed subjects head

restraints may not be appropriate.  In such circumstances head movements of several millimetres

are not uncommon.  Previous approaches to this problem are based on the assumption that simply

moving the images back into register, post-hoc, is sufficient to 'undo' the effects of movement.

We now re-evaluate this assumption.

    Time-dependent changes in a fMRI signal, at a given point in the brain, have many components.

This paper is concerned with movement-related components.  These components can arise from:

♣    Differences in the position of the object in the scanner  Spatial variation in sensitivity will render

the signal a function of the object's position at the time of scanning.  This spatial variability can
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include large scale field inhomogeneity or can be expressed at a much finer scale.  An important

example of the latter is found in slice-selective irradiation, used for example in multi-slice

acquisition.  The degree to which spins are excited in any small volume of the object will depend on

an interaction between the local magnetic field and the Fourier transform of the slice-selective pulse.

For example the excitation of spins in a small region on the edge of a slice will be exquisitely

sensitive to small displacements in and out of that slice.  In other words signal intensity will be a

strong function of position relative to the volume excited or the scanner's frame of reference.

♣    Differences due to the history of the position of the object.  If the number of excited spins is a

function of position in the scanner it follows that the number of excited spins (and implicitly the

signal) will also be a function of position in previous scans.  This dependency is due to changes in

saturation of spin magnetization, that is a function of the number of spins excited in the previous

scan.  This excitation will in turn be a function of position and so, by induction, a function of all

previous positions.   In summary the current signal is a function of current position and the spin

excitation history.  The spin excitation history is in turn determined by the history of past

movements.  This effect will manifest if the recovery of magnetization in the z direction is

incomplete by the time the next slice-selective pulse arrives (i.e. if TR is comparable to T1 which is

certainly the case for many fMRI studies).  In general movement within the plane of the slice will

not change the set of spins excited and should not contribute to this effect.

   In summary changes in the observed signal from a small volume of brain are functions of both

position and past positions.  This is a problem because even with perfect spatial realignment

movement-related changes could still be present.  We have already reported a method for estimating

the position of an image, relative to a reference image, using a simple least squares analysis.  This

analysis obtains after linearising the problem with first order Taylor expansions.  In this paper we
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use these estimates to first realign the scans and then remove time-dependent components of the

signal that are considered movement-related.  This second step uses a least squares adjustment

   The paper is presented in three parts.  The first part introduces the theory and operational

equations and includes a summary of our previous work pertaining to realignment.   The

realignment problem represents that simplest case of a more general problem of finding the spatial

and intensity transformations that best match one image process with another [see ref 1 for

discussion of a general nonlinear framework].  The first part concludes with a method for removing

movement-related effects  The second part uses variance partitioning and eigenimage analysis of

real fMRI data to demonstrate that the effects above are seen empirically, and can account for

substantial amounts of the observed variance.  The final part demonstrates the efficacy of the

proposed method in terms of simple image subtraction.

Theory

  In this section we deal with estimating movement parameters, autoregression-moving average

models for the effects of movement on signal and how to remove movement-related components

from the time-series.  In brief movement parameters are estimated, that are then used to (i) realign

the images and (ii) mathematically adjust the voxel values to discount movement-related

components

Estimating movement parameters

   Consider the problem of realigning one image so that it matches another.  If the object image

Ω(x) and the reference image τ(x) are similar then they are related by a rigid body, six-parameter,
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affine spatial transformation q(x,γ).   q(x,γ) is a vector function of position in space x, defined by

the six parameters of a rigid body transformation  γ = [γ1 .....γ6], where:

ß.τ(x) ≈ Ω(q(x,γ)) (1)

and ß is a scaling constant.  The images are assumed to be good lattice representations of

continuously differentiable deterministic scalar functions Ω(x) and τ(x).  The problem of

realignment reduces to finding the spatial transformation q(x,γ) or, equivalently, the six parameters

constituting the elements of γ.   At first glance Eq. (1) may appear so ill posed as to make any

explicit solution impossible.  However, if we assume that the images are smooth (or that they can

be rendered smooth) then a first order approximation of Eq. (1) can be constructed in which γ has a

least squares solution.   Let q(x,γ) be expanded in terms of six vector functions ∂q(x,γ)/∂γk of x ,

approximating the k (= 6) components of a rigid body transformation.  These are usually taken to

be translations in x, y and z and rotations about x (pitch), y (roll) and z (yaw) (2).

q(x,γ) ≈ x + ∑ γk∂q(x,γ)/∂γk (2)
           k

By Eq. (1) ß.τ(x) ≈ Ω(x + ∑ γk∂q(x,γ)/∂γk ) (3)
           k

   If Ω(x) is smooth the effects of the small transformations γk∂q(x,γ)/∂γk will not interact to a

significant degree and we can expand the right hand side of Eq. (3) using Taylor's theorem where,

ignoring high order terms:

ß.τ(x) ≈ Ω(x)    +    ∑ γk∇ xΩ(x) . ∂q(x,γ)/∂γk
           k
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≈ Ω(x)    +    ∑ γk∂Ω(q(x,γ))/∂γk (4)
           k

   Eq. (4) is asymptotically true for small γk and reasonably true for larger γk if Ω(x) is smooth.

Intuitively Eq. (4) states that the difference between a scaled reference and an object image can be

expressed as the sum of the changes in the object image, expected with each component of the

displacement, times the amount of that component [see also reference (2)].   Given the 'good

lattice' assumption Eq. (4) can be expressed in matrix notation 

Ω ≈ G.[b  γ]T

where G ≈ [τ   -∂Ω/∂γ] (5)

τ and Ω are column vectors with one element per voxel.  The element of ∂Ω/∂γ in the jth row of

the kth column = ∂Ω(q(xj,γ))/∂γk where xj corresponds of the position of jth voxel.  In practice it is

easy to compute the six columns of ∂Ω/∂γ by simply applying small translations and rotations to

Ω(x) and measuring the changes in voxel values.  b is an estimate of ß. The six elements of the row

vector γ correspond to the estimated translations and rotations that constitute the estimated

movement.  The vector γ is estimated in a least squares sense by:

[b  γ]T  =  (GT.G)-1 .GT. Ω (6)

   These movement parameters can be estimated for each volume image and used to 'realign' the

time-series.  We have addressed the validity and efficiency of these estimates (1) and have found

them to be sensitive to movements in the order of 100µm.  It should be noted that the above

expressions only hold when the movements involved are small relative to the smoothness of the
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images.  This is not a problem because the images are usually smoothed prior to the estimation (see

below and discussion).

    Usually, after realignment we would proceed to the analysis proper.  However as noted in the

introduction there are likely to be signal components that are a function of the positions of the

current and previous scans.  Let γi represent the movement or position parameter estimates for scan

i (relative to the first scan).   The model we adopt here partitions the signal Xi from a given voxel

into two orthogonal components.  The first component is the one that we are interested in X*i and

the second is designated a movement-related artefact that is some function of γi for the present and

previous scans, say ƒ(γi, γi-1, ...)

Xi = X*i   +   ƒ(γi, γi-1, ...)

By signal we mean the observed voxel value in scan i, such that the time-series from a single voxel

can be denoted by the column vector X = [X1.......XI]T, for I scans.  By the time-series with

elements X*i we imply a variance component of X that is orthogonal to those components that can

be construed as movement-related effects.  

The form of position-dependent effects -  ƒ(γi, γi-1, ...)

   In the following we concentrate on the form of ƒ(γi, γi-1, ...),  i.e. the form of the signal

dependency on positions relative to some initial reference scan.  The nature of this dependency is

complicated:   In slice-selective techniques the proportion of spins excited will vary as a function of

position (and time).  The signal will therefore be a reasonably strong function of the position at the

time of scan i.  However the saturation of spin magnetization will also affect the signal.  This

saturation will be a function of the number of spins excited in the previous scan i - 1 and therefore a
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function of position at the time of the previous scan.  By induction, the signal is a function of the

history of position at the time of all previous scans.  This suggests an autoregression model for the

dependence of signal Xi on position;  however this autoregression is not simple.  Consider the

following model:

   Let the z component of bulk magnetization be denoted by Mz(t), where Mz(i.TR - 0) and Mz(i.TR

+ 0) are the longitudinal magnetizations just before and after the ith excitation respectively.  TR is

the repeat time.  Let µi represent the proportional reduction in Mz(t) following excitation, where this

reduction is a measure of the relative degree of excitation elicited by the r.f. pulse.  Assuming first

order longitudinal relaxation (3) and that the excitation time is very short compared to T1:

Mz(i.TR + 0) = (1 - µi).Mz(i.TR - 0) if t = i.TR

and dMz(t)/dt = ( M0 - Mz(t) )/T1 otherwise (7)

M0 is the equilibrium magnetization.  The degree of excitation µ i can change from scan to scan and

we model this as µ i = µ + ∆i.   ∆i represents the small scan to scan changes in excitation and is a

function of position relative to the first scan i.e  ∆i = g(γi).  The observed signal will reflect the

transverse magnetization that ensues after excitation (i.e. the number of spins flipped into the xy

plane) and will be a function of the relative excitation and the longitudinal magnetization just before

excitation.   We model this signal as Si = h(µi).Mz(i.TR - 0), where, taking a first order Taylor

expansion Si ≈ [h(µ) + ∆i.∂h/∂µ].Mz(i.TR - 0).  Both h(µ) and ∂h/∂µ are positive.  Clearly one

could a assume specific form for h(µ), however this is not necessary for what follows.

     A simulated example of the evolution of Mz(t) is presented in Figure 1 (upper panel) using a TR

of 3 seconds, a T1 of 5.77 seconds and modeling µ i as a process of random Gaussian variables,
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with an mean of 0.6 and standard deviation of 0.1.  This figure tries to make the point that after a

large proportion of the magnetization Mz(t) has been removed by slice-selective excitation, the

ensuing scan encounters a greater degree of saturation and is likely to have a smaller signal.   In

general this means that a high signal in scan i will be associated with a lower signal in the ensuing

scan (i + 1).  This illustrated by the recursion plot (over 1024 scans) in the lower panel of Figure 1.

For simplicity we assumed h(µ) = µ and ∂h/∂µ = 1, giving Si = µ i.Mz(i.TR - 0).   It can be seen

that, although the effect is small, there is a negative correlation between the signal in the current

scan and in the subsequent scan.  

   A precise relationship between Si and µ i obtains on considering simple longitudinal relaxation

[Eq. (7)].  Let Mzi = Mz(i.TR - 0).

Mzi = M0    -    k.[M0  -  Mzi-1 (1  -   µi-1)] (8)

 where k = exp(-TR/T1) and can be thought of as the proportion of spins that have recovered.  The

importance of this complicated [geometric] autoregression equation is that Mzi is a function of Mzi-1

and µ i-1.  After repeated substitution to eliminate the Mzi-1 terms, Mzi can be expressed in terms of

µ i, µi-1, µi-2,.....:

∞ m

Mzi =     M0 (1 - k) Σ km Π  (1 - µi - v)
m=0 v=1

where the empty product at m = 0 is replaced by 1 (the usual convention).  This equation can, with

some considerable arithmetic, be expanded in terms of ∆i, the small changes about µ.  Ignoring
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high order terms (involving ∆i), a moving average representation for the signal can be derived, with

the form:

Si ≈ c0  +  c1.∆i +  c2.∆i-1 +  c3.∆i-2 +  .........

where c0 = h(µ) M0 (1 - k) /{1 - k(1 - µ))} > 0

c1 = ∂h/∂µ c0 / h(µ) > 0

and c1+i = - c0 ki(1 - µ)i-1 < 0 (9)

   It is seen that the series of coefficients converge rapidly.  The coefficient for the current scan in

positive and large, whereas the coefficient for previous scans are negative and decrease rapidly.  c0

represents the signal that would be obtained if the small changes were all zero [this can be verified

by substitution into Eq. (8), noting that when ∆i = 0,  Si = h(µ).Mzi ].   c1 becomes smaller as the

degree of spin excitation increases.   For example spins in the centre of the excited volume, where

µ is likely to be very high, will be less sensitive to small changes in excitation (or position).

Conversely spins on the edge of an excited volume may have a small µ, and will be very sensitive

to these effects.  The c1+i show a similar dependency in the sense that when µ is small, the values of

these coefficients 'tail off' more slowly.  The negativity of c2 is intuitively sensible given that the

signal in scan i is negatively correlated with the signal in scan i - 1  (Figure 1 lower panel).

   Figure 2 shows an example of this model using a simulation.  We simulated Mz(t) over 128 scans

with a repeat time of 3 seconds and a T1 of 5.77 seconds (upper panel in Figure 2).  The scan to

scan differences in excitation ∆i were modelled as a process of random Gaussian variables with

standard deviation 0.1 and a mean of zero.  The mean excitation µ was 0.6.  The line in the second

panel corresponds to  µ i = µ + ∆i.   The coefficients c1,c2 .... were computed using Eq. (9) and are

displayed as a function of scan number.  The signal Si (solid line in the right lower panel) was
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computed by assuming h(µ) = µ and ∂h/∂µ = 1 and is predicted very well by the moving average

approximation of Eq. (9) (dotted line).  In the example shown only the first three terms were used

suggesting only the current change in excitation and that of the previous scan are sufficient to

predict movement-related changes in signal.

   On the basis of the theoretical analysis presented here we propose the following form for the

signal components due to movement ƒ(γi, γi-1, ...):

ƒ(γi, γi-1, ...) = p.(Si - c0) ≈ p.c1.∆i +  p.c2.∆i-1

≈ p1.g(γi) +  p2.g(γi-1) (10)

where p is a constant of proportionality and (Si - c0)  represents the changes in signal about c0, the

signal in the absence of movement.

Adjusting for movement-related effects

   The relationship between changes in excitation and position i.e. g(γi) will clearly vary from point

to point and will be a function of the local magnetic field and the frequency structure of the r.f.

pulse.  The former will change with position relative to the scanner (the latter will not). We model

g(.) with a sum of second order polynomials, where the sum is over the components of the

displacement.

g(γi) = Σ {  uk.γki +  vk.γki2  }

giving, from Eq.(10)

ƒ(γi, γi-1) = Σ {  p1uk.γki +  p1vk.γki2  +  p2uk.γki-1 +  p2vk.γki-12 }
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or in matrix notation 

ƒ(γi, γi-1)  = Q.p (11)

where: Q = [γ1;....γI;   γ12;....γI2;   γ0;....γI-1;  γ02;....γI-12]

p = [p1u1,...p1u6,  p1v1,...p1v6,  p2u1,...p2u6,  p2v1,...p2v6]T

p is a vector of the coefficients of the polynomial expansion.    γi [γi2] are the vectors of position

parameters [squared] relative to the reference scan, arranged so that each column of Q contains one

parameter at time or scan i or i - 1 ( ';' means stack matrices or vectors on top of each other).  γ0 =

[0 0 0 0 0 0].

   Recall that we are modeling the signal of interest and movement-related confounds as independent

components. This orthogonality constraint requires that QT.X* = 0 and so, from Eq. (11):

X = X* + Q.p

QT.X = QT.Q.p

giving X* = X - Q.(QT.Q)-1.QT.X (12)

   As noted above X is a column vector of voxel values for each of the I scans.  Similarly for X*.

X* is a column vector of adjusted fMRI values for the voxel in question, that is completely

orthogonal to the movement artifacts modelled in terms of the movement estimates Q.  Clearly the

form of these equations means that, in practice, they can be solved for all voxels simultaneously.

   In the remaining sections we assess the validity of the assumptions used above by showing

movement-related effects can be very prominent and are substantially attenuated by the adjustment

procedure described. 
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An application to real data

    There are many ways of testing for the effect of position, and past changes in position, that

persist after realignment.  We have chosen to use variance partitioning and an eigenimage analysis

to provide anecdotal but compelling evidence for these effects.  The first set of data were chosen

because they contained marked movement artefacts and the second set because they are more

representative of standard fMRI activations studies.

The fMRI data - patient study

   100 T2* weighted volume images (128x64x7 voxels) were obtained from a single male subject

using a GE/ANMR 1.5T system equipped with Advanced NMR EPI capabilities.  The volumes

consisted of 7 sequential transverse sections and were acquired every three seconds.  Voxel size

was 3x3x7 mm voxels, with 0.5mm slice separation.  The subject was scanned under two

conditions.  The baseline (darkness) and activation (photic stimulation)  conditions were presented

in blocks of 10, with 10 baseline, 10 activation, 10 baseline and so on.  The subject was a 64 year

old patient with a parieto-occipital infarct and a paranoid psychosis.  He found it difficult to remain

very still during the scanning session.

   6 movement parameters (qi) were estimated for each of the 100 volumes using Eq. (6) with the

first scan as the reference volume image (τ).  For this estimation step the images were smoothed

with an isotropic Gaussian kernel of 8mm FWHM.  The results of this analysis are shown in

Figure 3.  The subject did very well up until the 72nd scan, when there was a pronounced roll, yaw

and lateral shift (y translation) of the head.  At the greatest excursion the head was some 10mm and

6 degrees away from its starting position.  After this marked movement the subject returned slowly

towards his initial position.  Because the head conforms roughly to a sphere, it is possible to rotate

the head in the scanner without much evidence of translational movement.  This is seen in the
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current parameter estimates where for the first 70 scans or so there is a progressive roll and yaw

(up to about two degrees) with very little translation of the head's centre.  The parameters shown in

Figure 3 were used to realign the images for subsequent analysis and processing.

  Each volume image was thresholded at 0.8 of the whole volume mean.  Only voxels surviving

this threshold for all the volume images were retained for further analysis.  Following realignment

the data were mean corrected to give a data matrix X with 100 rows (one for each scan) and 12577

columns (one for each voxel).

Variance partitioning

   Because of the orthogonality between adjusted signal and the estimate of movement related

effects, the total sum of squares (for one voxel) of the signal can be partitioned into non-movement

X*TX* and movement effects p.QT.Q.p, where:

XTX = X*TX*    +    p.QT.Q.p (13)

Similarly by splitting Q into two orthogonal matrices we can separate the effects of position in the

current scan from the historical effects (position in the previous scan).  i.e.

XTX = X*TX*    +    pc.QcT.Qc.pc    +    ph.QhT.Qh.ph

where pc = (QcT.Qc)-1.QcT.X

ph = (QhT.Qh)-1.QhT.X

and Qc = [q1;....qI;  q12;....qI2]

Qh = Q - Qc.(QcT.Qc)-1.QcT.Q (14)
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X TX is the total sum of squares.  X*TX* is the sum of squares of the adjusted data.

pc.QcT.Qc.pc represents the sum of squares due to estimated movement effects attributable to the

current scan and ph.QhT.Qh.ph is the corresponding term for the previous scan.

   These sums of squares were calculated for every voxel and summed over voxels.  The values

obtained were remarkable.  The estimated movement effects attributable to the current scan

accounted for 89.04% of the total sum of squares.  The effects due to position in previous scans

accounted for a third of the remaining variances (3.98% of the total).  Only 6.98% of the variance

remained to constitute the adjusted signal.  These are extreme values (we deliberately chose a 'bad'

data set) but demonstrate the potentially confounding effects of movement that can persist after

realignment.

 

Eigenimage analysis

   Eigenimage analysis of functional imaging time-series was developed for PET activation studies

(4).  It has subsequently proved fruitful in the analysis of fMRI time series [see Friston et al (5) for

a description of how to compute eigenimages using singular value decomposition or SVD].

Eigenimage analysis simply partitions a spatially extended time-series into a set of orthogonal

spatial modes or eigenimages that show independent temporal activity.  The first eigenimage

accounts for the greatest amount of variance and the second for the greatest amount that is left (and

so on).

   In the current data the effects of movement were very pronounced.  The first eigenimage is

shown in Figure 4 (upper panel).  The lower panel in Figure 4 shows the time course of this

eigenimage.  The time-dependent expression of this mode Xε suggests that it can be largely

explained by roll (compare the solid line in the lower panel of Figure 4 and the estimate of roll in

Figure 3).   Note that this eigenimage accounts for more than half the variance (57.2%) observed in
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this study.  The dotted line in the lower panel of Figure 4 was the predicted time-course of

movement-related signal based on the movement parameters i.e.

ƒ(γi, γi-1) = Q.pε

where   pε = (QT.Q)-1.QT.Xε

   To demonstrate that there are real biological components that are not correlated with movement-

related effect, the sixth eigenimage and its associated expression are presented in Figure 5.  This

component is clearly due to some (aliased) biorhythm and appeared to be most prominent in the

venous sinuses.  In this instance the best fitting movement-related prediction fails to account for the

observed changes until after the 72nd scan (the broken line in the lower panel of Figure 5).

The estimated   ƒ(γi, γi-1)

   The coefficients pε in the previous section represent an estimate of ƒ(γi, γi-1) according to Eq.

(11).  This empirical estimate should show certain features based upon theoretical predictions.  The

key feature is that any effect of displacement in the present scan should have a smaller and opposite

effect when expressed in the previous scan.  An example of this is seen in Figure 6 which depicts

ƒ(γi, γi-1) as a function of z displacement in scan i and scan i - 1.  This estimate was based on  pε.

It can be seen that changes in signal are a strong function of z position in the current scan and a

weaker function of position in the previous scan.  Furthermore the effect of position in the present

and previous scans are opposite in nature, giving a saddle-like form for ƒ(γ3i, γ3i-1).  One might

interpret this function as follows:  There is a signal component in the first eigenimage that arises

from spins that are 'between' slices.  Movement in either direction, into regions that are subject to
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more excitation, increases the signal from these spins.  However if the spins have been in regions

with more excitation in the previous scan (i -1), the signal will be reduced.  This reduction being

mediated by an incomplete recovery from saturation.

   Because these movement-related effects depend on movement in and out of the (transverse) slices

one might expect estimated signal changes to be strong functions of z translation, pitch and roll and

weak functions of translations in z and y and yaw.  This is exactly what we observed.  Figure 7

shows the estimate of ƒ(γi, γi-1)  as functions of translation and rotation in scan i.  The solid lines (z

translation - upper panel, pitch and roll - lower panel) are strong nonlinear functions of position

whereas the dotted lines (x and y translation - upper panel,  yaw - lower panel) are weaker

functions of position (relative to the reference scan).

An analysis of normal subjects participating in fMRI activation studies

   The data presented above represent an extreme case with pronounced movement artifacts.  To

demonstrate that these effects can be prevalent in normal cooperative subjects, we analyzed three

further data sets from fMRI activation studies [Study 1 - a verbal fluency study (100 scans), study

2 - a motor sequencing study (120 scans) and study 3 - a paced finger movement study (120

scans)].  The data were acquired as described above and subject to the same analyzes.   In general

all three subjects remained remarkably still, with less than a millimetre and less than a degree

excursion from the reference scan.  Positional drifts were not correlated with changes in task or

conditions and there were no systematic features from subject to subject (see Figure 8).   The sum

of squares (pooled over voxels) attributable to movement in the current or past scans were

calculated according to Eq. (13).  Despite the fact that the subjects remained very still, a

considerable proportion of the variance could be designated movement artifact, namely 48%, 38%

and 31% for the three studies respectively.  The results are typical of those obtained in our

laboratory where we routinely use these methods for image realignment and adjustment.
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Adjusting the fMRI time-series

   The data from the patient were adjusted according to Eq. (12).  The efficacy of this adjustment

was assessed by comparing two images that showed a marked relative displacement (the 64th and

78th volume images).  The two images were compared by simple subtraction.  The results of this

analysis are presented in Figure 9.  The upper row shows a slice through the original volumes

before realignment.  Marked yaw is immediately apparent.  The bottom row of images show that

same two slices after both have realigned to the first image.  The 78th slice is presented after

realignment and after realignment plus adjustment.  The middle row depicts difference images

comparing the 64th and 78th scans.  The original difference (left) is somewhat attenuated by

conventional realignment (centre).  The key point to note is that the 'adjustment' for movement-

related effects (current) is considerably better than realignment alone.  Note that we did not align the

78th scan to the 64th, but both the 78th and 64th to the first scan.   Using the realignment and

adjustment procedure we were able to demonstrate significant activation in the striate cortex that had

previously eluded us.
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Discussion

   We have presented an approach for removing the confounding effects of movement-related

artifacts in fMRI time-series.  This approach is predicated on the conjecture that residual effects

remain even after perfect realignment.  These effects can be divided into those that depend on

absolute position in the image space (relative to the scanner) and a component that is due to the

history of past displacements or changes in position from scan to scan.  This second component

depends on the history of excitation experienced by spins in a small volume and consequent

differences in local saturation.  The spin excitation history will itself be a function of previous

movements.  An autoregression-moving average model for the effects of previous displacements on

the current signal has been proposed.   On the basis of this model we concluded that is was

important to include not just information about the position at the time of scanning but also the

position at the time of the previous scan.  We have described how this information can be used to

adjust for the movement-related components that ensue.  Our empirical analyses suggest that over

30-90% of the fMRI signal can be attributed to movement, and that this artifactual component can

be successfully removed.

   The proposed approach takes the following form:

♣    Estimate the movement parameters by comparing each scan in the time series to a reference

scan.  This is effected by expressing the difference between the scan in question, and the reference

scan, as the sum of all partial derivatives of the image, with respect to each movement component,

times the amount of each component.  Estimates of the latter are obtained using least squares..

♣    Realign the time-series using the parameter estimates above.  
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♣   Adjust the values of each voxel by removing any component that is correlated with a function of

movement estimates, obtained at the time of the current scan and the previous scan.  We have used

the linear sum of a second order polynomial for each parameter estimate.

Limitations

   Some limitations of the technique relate to the 'reasonableness' of the first order approximation in

Eq. (3), which holds only when the spatial displacements are small relative to smoothness.  In a

sense this is not a fundamental limitation because (i) the images can always be made sufficiently

smooth or (ii) the procedure can be applied iteratively as a highly constrained least squares search.

In general the relative displacements between any two images should be less than their smoothness,

or resolution.  We recommend that the data be convolved with a Gaussian filter before the

movement parameters are estimated (clearly the realignment and adjustment procedures can be

applied to the original unsmoothed data).  In the examples above we have used a Gaussian kernel

of 8mm FWHM to ensure that movements of up to several millimetres could be properly estimated

(see ref 1 for a fuller discussion and simulation results).

  Another potential limitation is the length of the time-series used.  It is important to note that if the

number of scans is less than the columns of Q (movement-related effects to be removed) the

resulting adjusted data (X*) will be (nearly) zero.  This is because the dimension of the data would

be less than that of the potential confounds.   This is not typically a problem for fMRI but does

preclude the use of this sort of technique in PET.

  If any component of activation-dependent or task-related changes are correlated with an estimated

movement effect, this component will be removed.  Although this may be seen as 'throwing the

baby out with the bathwater',  we would prefer to think that it provides absolute protection against

false attribution of signal changes in the context of activation-related movement artifacts (6).
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Implication for fMRI activation studies

   The analysis presented in this paper is not intended to undermine the results of previous activation

studies using fMRI.  What we are saying is that true activations (that may be detectable in the

absence of a correction for movement) may be characterized with greatly increased sensitivity if

movement-related effects are first removed.  Artifactual 'activations' will only ensue when the

movement effects are correlated with changes in task or condition.  In our experience this is not the

case.  However movement-related effects can confound the analyses of activation studies in another

way:  Movement-related variance will be modelled (in any statistical model) as error variance when

testing for a particular time-dependent response.  As a consequence the statistical quotients will be

much smaller than if this movement component had been removed.  In short, if activations are

detected before correcting for movement, then they are likely to be real (assuming that they are

orthogonal to movement effects), however a re-analysis using the techniques described in this

paper should increase the significance and extent of these activations, and possibly reveal some that

were not seen before.

Conclusion

    In conclusion we hope to have presented a reasonable solution to a fairly simple problem:  How

to remove movement-related artifacts from fMRI time-series, quickly, automatically and with some

degree of validity.

Note    Many of the algorithms presented in this paper have been implemented in MATLAB

(MathWorks Inc, Sherborn MA, USA).  These ASCII files (interpreted by MATLAB) are available

from the authors as part of the SPM software.
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Legends for Figures

Figure 1

   Schematic showing the results of a simple simulation of the effects of movement on successive

signal intensities.  Upper panel:  This is the time course of longitudinal magnetization Mz(t),

assuming a repeat time of 3 seconds and a T1 of 5.77 seconds.  Equilibrium magnetization is set to

1.  The decrease in Mz(t) following each scan varies in a random fashion from scan to scan,

emulating differential excitation due to movement.  The overall impact of this variability is a

variance in signal [proportional to the decrements in Mz(t)] that depends on both the current degree

of excitation and the degree of excitation in the previous scan.  Lower panel: Recursion plot of

simulated signal [decrease in Mz(t) at the time of each scan] from scans i and i + 1.  This figure

demonstrates that a high signal in one scan results in a generally lower signal in the ensuing scan.

Figure 2

   Results of a simulation to demonstrate the first-order moving average approximation of changes

in signal intensity.  For simplicity we assume that the spins are excited one every TR.  This moving

average, of a stochastic process of small changes in the relative excitation of spins, closely

approximates the simulated signal changes..  Upper panel:  Simulated Mz(t) as a function of time

over 128 scans with a repeat time of 3 seconds.  M0, the equilibrium magnetization was set at 1 and

the T1 was 5.77 seconds.  Second panel:  The proportional reduction in Mz(t), as a function of

scans.  This proportion µi  =  (µ + ∆i) was modelled as a random Gaussian process ∆i with standard

deviation 0.1 and a mean of 0, plus a constant µ = 0.6.  Lower left panel:  The moving average

coefficients based on Eq. (9) in the main text..  Lower right panel:  The simulated signal Si (solid

line) and that predicted (broken line) by a moving average of the process ∆i 
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Figure 3

   Estimated movement parameters from a real time series of 100 fMRI volume images.  Above: x,

y and z translation. Below: Rotations as estimated by the least squares approach.  Note the

substantial movements after the 72th image.

Figure 4

   Eigenimage analysis of the fMRI time series referred to in the previous figure following

realignment.  Above: positive and negative parts of the first spatial mode or eigenimage following

SVD.  The grayscale is arbitrary and the images have been scaled to their maximum.  The display

format is standard and corresponds to maximum intensity projections of the data providing views

of the brain from the front, than left and from below.  Below:  Time dependent expression of this

spatial mode.   The broken line corresponds to estimated movement effects as described in the main

text.  It can be seen that this mode is, almost entirely, explained by movement effects.

Figure 5

   As for the previous figure (Figure 3) but showing the sixth eigenimage.  In this instance the

eigenimage cannot be explained by movement artefacts and includes an orthogonal biological

component.

Figure 6

   The estimated signal change as a function of z displacement (from the first scan) in the present (i)

and previous scans (i - 1).  Note that the effects of position are opposite in sign although similar in

form.  

Figure 7
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   Estimates of signal changes as functions of movement parameters.  These functions are expressed

in terms of translation (upper panel) and rotations (lower panel) using component movements in,

and only in, the current scan.  The solid lines (z translations, pitch and roll) are string functions of

movement when compared to the dotted lines (x and y translation and yaw).

Figure 8

   Estimated movement parameters for three normal subjects during fMRI activation studies.  The

format is the same as that used in Figure 3. a - study 1, b - study 2 and c - study 3.

Figure 9

   Comparing the efficacy of realignment and realignment with adjustment as described in the main

text.  Upper row:  Two transverse slices through the 64th and 78th volume images before any

processing.  Middle row:  Differences between the the two slices in the upper row before any

processing (left), after realignment (centre) and after realignment with adjustment (right.  Lower

row:  The two slices in the top row following realignment and adjustment.


