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Cerebral currents responsible for the extra-cranially recorded

magnetoencephalography (MEG) data can be estimated by applying

a suitable source model. A popular choice is the distributed

minimum-norm estimate (MNE) which minimizes the :2-norm of the

estimated current. Under the :2-norm constraint, the current estimate

is related to the measurements by a linear inverse operator. However,

the MNE has a bias towards superficial sources, which can be

reduced by applying depth weighting. We studied the effect of depth

weighting in MNE using a shift metric. We assessed the localization

performance of the depth-weighted MNE as well as depth-weighted

noise-normalized MNE solutions under different cortical orientation

constraints, source space densities, and signal-to-noise ratios (SNRs)

in multiple subjects. We found that MNE with depth weighting

parameter between 0.6 and 0.8 showed improved localization

accuracy, reducing the mean displacement error from 12 mm to 7

mm. The noise-normalized MNE was insensitive to depth weighting.

A similar investigation of EEG data indicated that depth weighting

parameter between 2.0 and 5.0 resulted in an improved localization

accuracy. The application of depth weighting to auditory and

somatosensory experimental data illustrated the beneficial effect of

depth weighting on the accuracy of spatiotemporal mapping of

neuronal sources.
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Introduction

Magnetoencephalography (MEG) records the extra-cranial

magnetic field using super-conducting quantum interferences device

(SQUID), allowing electrical neural activity to be studied complete-

ly non-invasively (Hamalainen et al., 1993). Localization of the
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sources of MEG signals is complicated by the non-uniqueness of the

electromagnetic inverse problem (Helmholtz, 1853). In order to

render the solution unique, several source modeling techniques with

different constraints have been proposed. In the equivalent current

dipole (ECD) approach, the activation is assumed relatively focal,

and it can be thus well accounted for by a small number of current

dipoles. However, the assumption of limited extent of the activity

cannot always be justified. Furthermore, reliable estimation of the

non-linear dipole location parameters becomes prohibitively diffi-

cult when the number of sources increases. Some of the limitations

of the ECD model can be overcome by using a distributed source

model. In this approach, the locations of a large number of dipoles

are kept fixed, and their amplitudes are determined on the basis of

the measured data. This problem is under-determined; therefore,

additional a priori constraints are required. In the :2 minimum-norm

estimate (MNE) approach (Hamalainen and Ilmoniemi, 1984), one

selects the current distribution with minimum power (:2-norm) while

maintaining the requirement that the measured data match those

predicted by the model. This MNE solution was subsequently

extended to incorporate cortical location and orientation constraints

(Dale and Sereno, 1993). Furthermore, noise normalization has been

employed to establish the statistical significance of current estimates

(Dale et al., 2000). In accordance with similar approaches used in

other functional imaging modalities (fMRI and PET), the resulting

spatiotemporal estimates are often referred to as dynamic statistical

parametric maps, dSPM. Subsequently, a variation of this approach

(sLORETA) has been introduced (Pascual-Marqui, 2002).

For the calculation of source estimates, the solution of the

forward problem, i.e., the calculation of the signals generated by

the dipole sources in the extra-cranial MEG sensor measurements,

is a prerequisite. Realistic anatomical information can be incorpo-

rated in the forward model by using the Boundary Element Method

(BEM) (Hamalainen and Sarvas, 1989; Oostendorp and van

Oosterom, 1989). Because MEG signals originate mainly in the

cortex, the source locations and orientations can be constrained

with help of high-resolution cortical surface reconstructions (Dale

et al., 1999; Fischl et al., 1999).
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The sensitivity pattern of a given MEG sensor to intracranial

sources is called the lead field, which can be computed in a

straightforward manner once an accurate forward model is

available. However, the sensitivity of MEG sensors is not uniform

to sources across different cortical locations (Hillebrand and

Barnes, 2002). In fact, it follows generally from Maxwell’s

equations that the lead fields of both MEG sensors and EEG

electrodes have a maximum at the border of the source space,

closest to the sensors (Heller and van Hulsteyn, 1992). The MNE

solution is biased to those locations to which the sensors are most

sensitive, thus the preference of superficial source locations. In

fact, both :2 minimum-norm (MNE) and :1 minimum-norm

(minimum-current estimate, MCE) (Uutela et al., 1999) solutions

are biased toward superficial source locations (Uutela et al., 1999).

These biases can potentially be alleviated by adjusting assumptions

about the a priori source covariance. A norm of the lead field has

been employed earlier in depth weighting (Fuchs et al., 1999;

Ioannides et al., 1990). However, there are no systematic studies on

the effect of depth weighting and selection of optimal weighting for

accurate localization of sources.

Here, we report a parametric study in different subjects, dipole

orientation constraints, source space densities, and SNR in the

measurements to evaluate the biases toward superficial sources in

the MEG MNE. We attempt to alleviate this bias with depth

weighting and to quantify the amount of bias by introducing source

location shift metrics. Subsequently, we look for an optimal depth

weighting parameter to minimize the shift metrics. Using realistic

brain anatomy from multiple subjects, our analysis shows the

impact of depth weighting parameter on the localization accuracy

of MNE (including noise-normalized MNE) with different cortical

orientation constraints. An optimal depth weighting parameter is

suggested, and realistic auditory and somatosensory MEG exper-

iment results are shown to demonstrate the benefits of depth

weighting.
Method

Minimum-norm estimate

The measured MEG/EEG signals and underlying current source

strengths are related by a linear transformation:

Y ¼ AXþ N; ð1Þ

where Y is an m-by-t matrix containing measurements from m

sensors over t distinct time instants, X is a 3n-by-t matrix denoting

the unknown time-dependent amplitudes of the three directionally

orthogonal components of n current sources, A is the gain matrix

(forward solution). The rows of A are called lead fields; they

represent the mapping from the current elements to the MEG

sensors. N is an m-by-t matrix denoting noise in the measured data.

Assuming that X and N are stationary, Gaussian distributed with

zero mean and a spatial covariance matrix R and C, respectively,

the regularized :2 minimum-norm estimate of X is (Tarantola,

1987):

XMNE ¼ RAT ARAT þ k2C
� ��1

Y ¼WMNEY; ð2Þ

where k2 is a regularization parameter to avoid magnification of

errors in data in the current solution, and the superscript T indicates

the matrix transpose.
Instead of applying Eq. (2) directly, it is convenient to use an

equivalent formulation

XMNE ¼ RÃAT ÃARÃAT þ k2I
� ��1

ỸY ¼ W̃WMNEỸY; ð3Þ

where

ỸY ¼ C�1=2Y

ÃA ¼ C�1=2A ð4Þ

are the spatially whitened data and spatially whitened gain matrix,

respectively. The noise-covariance matrix of the whitened data is

an identity matrix, as indicated by the comparison between Eqs. (2)

and (3). The whitening procedure also allows one to use the scaling

k2 = d2tr (ÃRÃT)/m, where d2 denotes the inverse of the power

SNR of the whitened data to bring the regularization parameter to a

reasonable scale even in cases where the measurements have

different units of measure, which is the case when planar

gradiometer and magnetometer data or MEG and EEG data are

combined in a single estimate.

Anatomical constraints and Cortical Patch Statistics (CPS)

Anatomical information can be taken into account in the model

by selecting the source elements to be located on the cortical

surface. Furthermore, a priori orientation information can be

incorporated (Dale and Sereno, 1993; Fuchs et al., 1999; Phillips

et al., 2002; Wang et al., 1992) by replacing Eq. (1) with

Y ¼ AfixedXfixed þ N;

where the new gain matrix is

Afixed ¼ AH; ð5Þ

H is a 3n-by-n matrix containing the unit vectors pointing to the

directions of the currents. If the direction cosines of the kth dipole

are ckx, cky, and ckz, the kth column of H reads

Hk ¼
�
0 N 0|{z}
3 k�1ð Þ

ckxckyckz 0 N 0|{z}
n�3k

�T

: ð6Þ

In MEG/EEG source modeling, the dense anatomical model

tessellation with approximately 1-mm triangle size is typically

decimated to a grid spacing of 5–10 mm. This is motivated by the

limited spatial resolution intrinsic to the source localization using

MEG/EEG and computational efficiency concerns. However, this

sparse source spacing may yield inaccurate dipole orientations,

which do not take into account the orientation variation over the

cortical patch associated with each selected current source location.

Furthermore, the actual areas of the patches have to be taken into

account in the calculations to correctly estimate the current density

on the cortex. Recently, we introduced the use flexible anatomical

constraint based on the calculation of Cortical Patch Statistics

(CPS) (Lin et al., 2003). This method uses the geometry of the

cortical surface segmented from high-resolution 3D MRI. We

employ the FreeSurfer software (Dale et al., 1999; Fischl et al.,

1999, 2001), which builds the triangular cortical surface mesh from

T1-weighted anatomical MRI data with a 1-mm isotropic spatial

resolution. The principal surfaces generated by FreeSurfer are the

pial surface and the gray–white matter boundary; we use the latter



Fig. 1. The definition of metrics for quantifying mis-localization in the

distributed MEG inverse solution. The red arrow indicates the site of the

actual source. Blue arrows indicate the locations and magnitudes of the

source estimates, and the solid blue arrow indicates the location of their

center of mass. Sdepth and Sdisplace represent the errors in depth and overall

location, respectively, of the estimated source distribution. (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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to generate the cortically constrained source space. After decimat-

ing the cortical surface tessellation to the desired source space grid

spacing, the cortical patches associated with each source space

points are defined. For each patch, we compute the following

characteristics: the average normal direction within a patch, the

dispersion of normal directions, and the size of the patch. This

information is incorporated into the source covariance matrix R to

improve the anatomical description in MNE.

In our simulations with depth weighting, we employed three

orientation constraints: free source orientations (FO), strict

orientation constraint (SOC), and loose orientation constraint

(LOC) were used separately in the depth weighting calculations.

In FO, the amplitudes of the 3 orthogonal directional components

for each dipole source are estimated. In SOC, the orientation of the

dipole is strictly constrained to be perpendicular to the cortical

surface and only one amplitude is estimated at each dipole source.

In LOC, we estimate all three orthogonal dipole components with

smaller a priori variance for the tangential components compared

to the perpendicular one (Lin et al., 2006).

Noise-normalized estimates

Analogously to the statistical parametric maps (SPMs) calculated in

other functional imaging modalities, Dale et al. (2000) proposed the

conversion of the current values into dynamic SPMs by a normaliza-

tion with the estimated noise at each source. To this end, we need to

consider the variance of the estimated current at location k:

w2
k ¼ WCWT

��
kk
¼ W̃WW̃WT

��
kk
: ð7Þ

For fixed-orientation sources, we now obtain the noise-normal-

ized activity estimate for the kth dipole and tth time point as

zdSPMkt ¼
XMNE
k; t

wk

ð8Þ

which is t-distributed under the null hypothesis of no activity at the

current location k. Since the number of time samples used to

calculate the noise-covariance matrix C is quite large, more than

100, the t distribution approaches a unit normal distribution (i.e., a z

score).

If the orientation is not constrained, the noise-normalized

solution is calculated as

FdSPM
kt ¼

P3
q¼1

XMNE
3 k�1ð Þþq; t

�� 2

~
3

q¼1
w2
3 k�1ð Þþq

: ð9Þ

Under the null hypothesis, Fkp
dSPM is F-distributed, with three

degrees of freedom for the numerator. The degree of freedom for

the denominator is typically large, again depending on the number

of time samples used to calculate the noise-covariance matrix.

Another variation of the noise-normalized MNE is the

sLORETA (Pascual-Marqui, 2002):

w̆2
k ¼ W Cþ ARAT

� �
WT
��
kk
¼ W̃W Iþ ÃARÃAT

� �
W̃WT

��
kk
: ð10Þ

Depth weighting

The MNE is known to have a bias towards superficial currents,

associated with the attenuation of theMEG and EEG lead fields with
increasing source depth. To compensate for this bias, modification of

the source-covariance matrix has been previously employed. In this

approach, the variances are taken to be proportional to a scaling a

function, denoted here by fk for the kth dipole:

fk ¼ aT3k�2a3k�2 þ aT3k�1a3k�1 þ aT3ka3k
� ��p ð11Þ

where ai is the ith column of A and p is a tunable depth weighting

parameter. With this choice, the a priori variances of deeper sources

will be larger than those of superficial ones. If Eq. (2) is interpreted to

be a minimizer of a cost function composed of a weighted least-

squares error and a penalty term which is a weighted norm of the

currents (Liu et al., 2002), depth weighting amounts to assigning

more penalty to the superficial currents. The larger the p, the more

weighting there is; p = 0 corresponds to no depth weighting.

Previous studies suggest that use of p = 0.5 is suitable to improve

the localization precision of MNE (Fuchs et al., 1999). However, this

claim has not been validated in realistic brain models. We

hypothesize that the optimal depth weighting depends on several

factors, including local anatomy features, inter-subject variability, the

inverse operator (i.e., with/without noise normalization), regulariza-

tion parameter, and the decimation of source space. In the following

section, we describe the process for performing parametric and

quantitative analysis on a shift metric based on different values of the

depth weighting parameter in order to provide the optimal depth

weighting for accurate MEG localization using MNE.

Localization error metrics

We employ two metrics to quantify spatial mis-localization. The

depth shift (Sdepth) is the projected distance between the source

dipole and the center of mass of the estimated source distribution in

the direction from the source dipole to the closest point on the inner



Fig. 2. The magnitude of the MEG (blue) and EEG (red) lead field as a

function of distance to the skull. The values have been normalized by the

maximum magnitude of the lead field within the source space. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 3. The scatter plots of Sdepth versus the distance to the inner skull for p = 0.0, 0

found that MNE with p = 0.7 gave the smallest average Sdepth and Sdisplace. Bo

weightings.
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skull surface. The displacement shift (Sdisplace) denotes the distance

between the source dipole and the center of mass of the estimated

source distribution. Fig. 1 is a schematic diagram illustrating the

definition of these two metrics.

The rationale for using the center of mass in distributed current

estimates is the spatially blurred nature of source localization. To

avoid influence from the weak insignificant dipole estimates, we

used only dipoles with amplitudes Ax(k)A exceeding 50% of the

maximum amplitude. The center of mass was calculated as

flrcm ¼

P
k

flr kð Þjx kð Þj

~
k

jx kð Þj ; ka X50%f g; ð12Þ

where {X50%} indicates the collections of all dipoles with

amplitudes exceeded 50% of the maximum amplitude, flrðkÞ is the
source location indexed by k, and flrcm is the center of the mass.

We evaluated the effect of depth weighting by examining the

MNE at each source location at different SNRs. The definition of

SNR here is the ratio between the instantaneous power of the ideal

MEG sensor measurements over that of the MEG sensor noises. In

our experience, this SNR ranges from 4 to 100 in typical evoked-

response MEG studies with 50–200 averages. We chose SNR = 25
.7 and 1.0 for MNE, dSPM, and sLORETA. With free dipole orientation, we

th dSPM and sLORETA show little variation of Sdepth at different depth
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in the first simulation, and subsequently we varied SNR between 1

and 100.

We varied p parametrically from 0.0 to 1.0 in steps of 0.05 for

both EEG and MEG data. At each value of p, we evaluated the

MNE (Eqs. (2) and (3)) and the noise-normalized MNE (dSPM

and sLORETA, Eqs. (8) and (9)). For each source dipole on the

cortical surface, we computed the forward solution and the

corresponding inverse estimate, which is commonly called the

point-spread function (PSF). For each inverse estimate, we

computed the center of mass of the distribution and the error

metrics described above.

Additionally, we use receiver operating characteristic (ROC)

analysis to quantify the sensitivity and specificity of source

localization with various depth weightings. The true-positive rate

(TPR) of the detection was either 0 or 1 since we used single ECD

in the simulation. The false-positive rate (FPR) at a given threshold

was calculated as the fraction of the active cortical dipole sources,

excluding the actual simulated active dipole source, over all

cortical dipole sources. By varying the threshold, an ROC curve

was obtained for each source dipole. We used the area under the

ROC curve to quantify the detection power. The averaged ROC

areas across all source dipoles thus provided the average detection

assessment for a specific depth weighting.

Anatomical information from high-resolution MRI

Anatomical MRI data were obtained from three subjects with a

high-resolution T1-weighted 3D sequence (TR/TE/flip = 2530 ms/

3.49 ms/7-, partition thickness = 1.33 mm, matrix = 256 � 256,

128 partitions, field of view = 21 cm � 21 cm) in a 1.5-T MRI

scanner (SIEMENS Medical Solutions, Erlangen, Germany). The

geometry of the gray–white matter surface was derived with an
Fig. 4. The distribution of Sdepth and Sdisplace in MNE, dSPM, and sLORETA inver

lateral and the medial views. In the figure, the light and dark gray indicate conve
automatic segmentation algorithm to yield a triangulated model

with approximately 340,000 vertices (Dale et al., 1999; Fischl et

al., 1999, 2001). The source space was obtained by decimating the

original triangulation to a subset of vertices with an average of 5-

mm, 7-mm or 10-mm distance between nearest dipoles. Cortical

Patch Statistics (Lin et al., 2006) were calculated as described

above to obtain average normal directions, their standard devia-

tions, and approximate patch areas for each source point. The MEG

and EEG forward models were calculated using a single-layer/3-

layer boundary element model (BEM) (Hamalainen and Sarvas,

1989; Oostendorp and van Oosterom, 1989). For this, we used

segmentation algorithms to extract the inner surface of the skull

and created the corresponding triangulation with approximately

1400 triangles.

Auditory and somatosensory MEG experiments

We also used data from an auditory and a somatosensory MEG

experiment to test our methods in realistic situations. The experi-

ments were conducted with healthy subjects with the approval of

the institutional IRB. Prior to the experiments, an informed consent

was obtained from the subjects. In the auditory experiment, the

stimuli were 60-ms wide-band noise bursts (2 kHz central

frequency with 4 kHz bandwidth, 70 ms duration) presented

binaurally. A 306-channel MEG system with 70-channel EEG

(VectorView, Elekta-Neuromag, Helsinki, Finland) was used to

record the neuromagnetic responses and EEG. The EEG electrodes

were arranged to approximate the standard 20–20 layout. The

measurement bandwidth was 0.1 to 172 Hz, and the data were

digitized at 600 Hz; about 200 responses were averaged. In the

somatosensory study, the right median nerve was stimulated at the

wrist with 0.2 ms constant-current pulses whose amplitude was
se using different depth weighting parameters p on the inflated cortex at the

x and concave parts of the cortex, respectively.
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clearly above the motor threshold. The inter-stimuli interval

between the pulses was 3 s. The measurement bandwidth was

0.03 to 250 Hz, and the data were digitized at 1004 Hz; about 100

responses were averaged.
Results

MEG and EEG lead field magnitudes

Fig. 2 illustrates the magnitude of EEG and MEG lead field as a

function of the distance to the skull. The MEG lead field magnitude

diminishes very fast as the distance from a dipole source to the skull

increases. The observation motivates the use of depth weighting in

MEG source localization. As seen from Fig. 2, the fall off of the EEG

lead field is not as steep. These data imply that (1) both MEG and

EEG may benefit from depth weighting and (2) the optimal depth

weighting for MEG and EEG should be different.

Spatial distribution of localization error measures

Scatter plots of Sdepth versus source distance from the inner

surface of the skull for p = 0.0, 0.7, and 1.0 are shown in Fig. 3.
Fig. 5. The point-spread functions for a source (the blue dot) at the superior tem

weighting parameter p. Top panel is the view including whole cortex, and bottom

are linearly scaled between 0 and 1 to illustrate their spatial distributions. The Sdisp
at auditory cortex are indicated in each panel.
Without depth weighting, MNE showed a large Sdepth for deep

sources. Using depth weighting with p = 0.7 in MNE, Sdepth can be

reduced uniformly at all depths, as shown by more horizontal

distribution of the scatter plot. A larger value ( p = 1.0) caused Sdepth
at all source locations to have negative values, indicating over-

correction. Using linear regression, we found that intersects are 7.6

mm, 0.1 mm, and�7.4 mm, and slopes were�1.5, 0.1, and 1.3 with
p = 0.0, 0.7, and 1.0 respectively. The linear regression analysis with

minimal absolute slope and intersect indicated improved Sdepth over

all source locations. In dSPM and sLORETA, we found that p = 0.0,

0.7, and 1.0 did not change the distribution of Sdepth significantly.

The intersects and slopes of the regression in dSPM were�8.1 mm,

�9.0mm,�9.4mm, and�2.0,�1.5,�1.2 with p = 0.0, 0.7, and 1.0
respectively. For sLORETA, the intersects and slopes of the

regression were �8.9 mm, �10.1 mm, �10.6 mm, and �0.2, 0.5,
and 0.8 with p = 0.0, 0.7, and 1.0, respectively.

Fig. 4 shows that, without depth weighting (p = 0.0), MNE

tended to bias the estimation of dipoles at insula and other sulcal

regions as well as the medial surface of each hemisphere toward

superficial locations, as shown by the prominent (>7 mm) Sdepth
over these locations. Using noise normalization, we found that

dipoles located at sulci or insula regions showed smaller Sdepth, but,

for superficial (gyral) regions, both dSPM and sLORETA inverse
poral gyrus (STG) for MNE and dSPM with different values of the depth

panel is the magnified view at the temporal lobe. All point-spread functions

lace between the center of the mass of MNE and dSPM and the dipole source



Fig. 6. Change of the average Sdepth and Sdisplace over the cortex in MNE

and dSPM as a function of the depth weighting parameter p with free

source orientations (FO), loose cortical orientation constraint (LOC), and

strict cortical orientation constraint (SOC).

Fig. 7. Change of the average Sdepth and Sdisplace over the cortex in MNE

and dSPM as a function of the depth weighting parameter p with 5-mm, 7-

mm, and 10-mm source spacing.
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tended to over-bias the inverse toward deep dipole locations, as

shown by the strong negative values of Sdepth in Fig. 3. dSPM and

sLORETA showed similar spatial distribution of Sdepth. Generally,

MNE, dSPM, and sLORETA have substantial localization errors as

assessed by Sdisplace. Nevertheless, dSPM tends to yield more

homogeneous localization error than MNE, as reported in Dale et

al. (2000). With p = 0.7, both Sdepth and Sdisplace became smaller

for the MNE. The improvement in the localization accuracy was

evident in both lateral and medial aspects of the cortex. In contrast

to MNE, dSPM and sLORETA showed little dependence on depth

weighting. With p = 1.0, the MNE over-emphasized the depth of

the superficial dipoles (the negative Sdepth in Fig. 1) and showed

decreased localization accuracy (the positive Sdisplace in Fig. 1).

Again, dSPM and sLORETA showed only minor changes in both

Sdepth and Sdisplace compared to p = 0.0 and p = 0.7.

Point-spread functions

Fig. 5 shows the PSFs of MNE and dSPM inverse with p = 0.0,

0.7, and 1.0 for a dipole located at the superior temporal gyrus

(STG) of the right hemisphere. To compare the spatial distribution

at different depth weightings, all PSFs were linearly scaled

between 0.0 and 1.0 to illustrate their spatial distribution. In

MNE, without depth weighting ( p = 0.0) shows bias of the source

estimates toward the posterior parts of the superior temporal gyrus.

Using p = 0.7, the distribution of the source estimates shifted

anterior to include the STG dipole. Increasing p to 1.0 over-
corrected the depth and showed source estimates not only in STG

but also in insula. dSPM point-spread functions have split

distribution on both the medial part of STG and superior temporal

sulcus (STS) in all cases. Note that depth weighting with p = 0.7

and 1.0 also led to the spurious point-spread function of dSPM

inverse at insula. Inside the figure, we also showed the Sdisplace.

MNE with p = 0.7 gave the minimal distance (3.5 mm).

Orientation constraints

In MNE, increasing p decreased Sdepth for free orientation (FO),

strict cortical orientation constraint (SOC), and loose cortical

orientation constraint (LOC). In particular, p = 0.75 made Sdepth
less than 2 mm using FO or LOC while p > 0.8 lead to negative

Sdepth, which indicates the over-correction of depth weighting. The

SOC MNE showed monotonically decreased Sdepth as p increased

from 0.0 (4.5 mm) to 1.0 (0.4 mm). In dSPM inverse, the averaged

Sdepth varied between �8.0 mm and �10.0 mm with p = 0.0 and

1.0 in all cortical orientation constraints. Assessing localization

accuracy using Sdisplace, we found that in MNE p = 0.75 yielded

minimal Sdisplace of 7–8 mm for LOC and FO. MNE using SOC

has minimal Sdisplace with p = 0.6 (8 mm). Minimal Sdisplace for

LOC and FO MNEs were found with p = 0.75 (7 mm). dSPM

inverse yielded approximately 12 mm Sdisplace as p varying

between 0.0 and 1.0. Fig. 6 shows the plots of Sdepth and Sdisplace
in MNE and dSPM with varying p between 0.0 and 1.0 in all

cortical orientation constraints.
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Source density

Fig. 7 shows Sdepth and Sdisplace for MNE and dSPM inverse

using free orientation (FO) at different values of p and 5-mm, 7-

mm, or 10-mm spacing between sources. In general, both shift

metrics in both MNE and dSPM demonstrate similar property in

three different source densities. Increasing p decreases Sdepth in

MNE inverse with the minimum at p = 0.7 (7-mm and 10-mm

spacing) or 0.75 (5-mm spacing). In MNE, p ¨0.7 yielded minimal

Sdisplace (¨8 mm) at three source space decimations. For dSPM,

Sdepth or Sdisplace do not change when p varies between 0.0 and 1.0.

Sdepth remains approximately �10 mm (over-correction of depth

weighting) and remains approximately 13 mm for 5-mm, 7-mm,

and 10-mm source space decimations.

SNR and regularization parameter

Changes to SNR and thus regularization parameter affect the

optimal choice of p, as shown by Fig. 8. At low SNR (SNR = 1),

p = 0.65 corresponds to the minimal Sdepth in MNE inverse. As

SNR increases to 10 and then 100, the minimal Sdepth appears at p =

0.75. For the dSPM, the dependence of Sdepth on p is, again,

minimal: it remains approximately �9 mm (SNR = 10 or 100) or

�12 mm (SNR = 1) at p = 0.0 and p = 1.0. Assessing localization

precision using Sdisplace, we found that p = 0.65, 0.8, and 0.8 led to

minimal Sdisplace in MNE inverse as SNR = 1, 10, and 100,

respectively. Low SNR (SNR = 1) corresponded to 15 mm Sdisplace.

Higher SNR (SNR = 10 and 100) corresponds to 12 mm Sdisplace as

p varies between 0.0 and 1.0.
Fig. 8. Change of the average Sdepth and Sdisplace over the cortex in MNE

and dSPM as a function of p as SNR varies between 1, 10, and 100.

Fig. 9. Change of the average Sdepth and Sdisplace over the cortex in MNE

and dSPM as a function of the depth weighting parameter p using free

orientation in three different subjects.
Inter-subject variability

The dependency of Sdepth and Sdisplace on p across three

different subjects for both MNE and dSPM with FO is shown

in Fig. 9. Note that in general both shift metrics show similar

patterns. For MNE, minimal Sdepth occurs at p = 0.7 and 0.85.

And, minimal Sdisplace occurs at p = 0.65 and 0.8. Again, dSPM

remained insensitive to p. All subjects showed dSPM with �10
mm Sdepth and 14 mm Sdisplace. Averaged Sdepth and Sdisplace for

different subjects showed approximately 4-mm variability. In the

subjects studied, the range of optimal p is sufficiently small to

justify the use of a fixed value, e.g., p ¨0.75 for all subjects.

However, especially for children with smaller and variable head

sizes, it may be may be useful to establish an optimal p by

rerunning our simulations on individual subjects.

Quantification of detection by true-positive rate (TPR)

Fig. 10 shows the TPR at different depth weightings. For

MNE, we found that TPR varied at different p. Increasing p

from 0 increased TPR for FO, LOC, and SOC MNE inverse.

The maximal TPR was found with p = 0.55–0.75, depending

on the orientation constraint used. This result matched the

shift metrics reported in previous sections. For dSPM, we

found that varying p did not make significant change on TPR.

The TPRs remained similar for FO, LOC, and SOC dSPM

respectively. This observation also matched to the quantifica-



Fig. 10. True-positive-rate (TPR) of detection by MNE and dSPM as a

function of the depth weighting parameter p using free orientation.

Fig. 11. Change of the average Sdepth and Sdisplace over the cortex in MNE

and dSPM as a function of the depth weighting parameter p using free

orientation in 70-channel EEG data.
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tion by the shift metrics about dSPM’s insensitivity to depth

weighting.

Depth weighting for EEG data

Fig. 11 shows the dependency of Sdepth and Sdisplace on p for

both MNE and dSPM with FO in EEG source localization. Note

that the range of p is different from MEG source localization: we

varied p in a wider range from 0.0 to 5.0 to reflect smoother power

decay for deeper sources in EEG lead fields. A minimal Sdepth was

found in EEG MNE at p = 5.0, while EEG dSPM showed biases

toward deep source locations with all values of p between 0.0 and

5.0. The minimal Sdisplace occurred with p = 2.0, corresponding to

12.5 mm, while dSPM generated ranging between 24 and 26 mm at

all p between 0.0 and 5.0.

Auditory and somatosensory experiments

Fig. 12 shows the spatial distribution of MNE/dSPM inverse at

90 ms after the auditory stimulus. Without depth weighting, MNE

inverse showed strong activation at both superior temporal gyrus

(STG) and the inferior part of the central sulcus. At p = 0.75, MNE
estimates major activation at STG and minor activation in insula.

The activation pattern also moved anteriorly and medially along

STG. At p = 1.0, strong activation around the insula was seen with

minor activation at medial part of STG.

The MNE localization results on the somatosensory data and

the related anatomical labels. Without depth weighting ( p = 0.0),

dominant activation was estimated at the post-central gyrus. With

p = 0.75, the similar locus at post-central gyrus was estimated as

well, along with additional estimated activation at central sulcus

and pre-central gyrus. In real folded brain, these foci are actually

next to each other. With p = 1.0, the spatial distribution of MNE

is similar to the result with p = 0.75 with more focal estimated

around central sulcus. Thus, this leads to the reduced MNE

strength at other dipole locations as we normalized the inverse

between 0 and 1.
Discussion

This study focuses on compensating for the bias toward

superficial sources in distributed :2 minimum-norm estimates

(MNE). Since the neuromagnetic inverse problem is ill-posed,

MNE is just one approach to estimate the cortical current

distribution among many other alternatives, such as dipole fitting

and distributed source modeling with different priors (Hamalainen

et al., 1993). Optimization of linear inverse operator was

previously investigated by tuning the resolution kernel (Grave de

Peralta Menendez et al., 1998; Grave de Peralta-Menendez and

Gonzalez-Andino, 1998). The bias toward superficial is also

present in :1 minimum-norm estimates (Matsuura and Okabe,



Fig. 12. The anatomical labels and the MNE inverse of the auditory data (top two rows) and somatosensory data (bottom two rows). MEG data as a function of

the depth weighting parameter p. All inverse solutions were scaled linearly between 0 and 1 to illustrate the spatial distributions of the estimates. STG: superior

temporal gyrus, STS: superior temporal sulcus, CS: central sulcus, preCG: pre-central gyrus, postCG: post-central gyrus.
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1995), and the importance of depth weighting in this case has been

shown previously (Uutela et al., 1999). In this study, we

parametrically varied different model parameters in MNE, includ-

ing cortical orientation constraints, SNR, and source space density,

to demonstrate the improved localization accuracy of MNE with

appropriate depth weighting.

Our results show that using p = 0.7–0.8 in general yields most

accurate localization accuracy, as quantified by our shift metrics.

Our value of p is different from the one reported before (Fuchs et

al., 1999), where p = 0.5 was suggested. In the data presented here,

we found that the previously reported p = 0.5 is insufficient to

correct the bias toward superficial sources. Our shift metrics are

closely related to the concept of the point-spread function, which

emerges from the resolution matrix (Pascual-Marqui, 2002). In

fact, the columns of the resolution matrix are the point-spread

functions for each of the sources of interest. In an ideal case, the

resolution matrix should be an identity matrix corresponding to

zero shift metrics.

The optimal depth weighting was calculated by assuming that

sources of the neuromagnetic fields are focal. This assumption is

the basis of the dipole modeling approach (Hamalainen et al.,

1993; Mosher et al., 1992). Such focal sources have been

observed in median nerve stimulation experiments (Hari et al.,

1993) and epileptic spike generation (Ossadtchi et al., 2004).

However, it has been also reported that cortical activation may be

more diffuse, as suggested by fMRI studies showing distributed

activation of brain during complex cognitive tasks (Dale and

Halgren, 2001). In our search for the optimal depth weighting
parameter, we aimed at minimizing location shifts for each

individual source dipole. Thus, the proposed depth weighting

parameter can work well if the recorded MEG data are generated

by focal sources. On the other hand, cautions must be taken if it

is believed that the recorded MEG signals are generated by more

diffuse activity.

Mathematically, the calculation of the depth weighting param-

eter depends on the gain matrix (Eq. (11)). Thus, all factors that

change the gain matrix may affect the optimal choice of the depth

weighting parameter. Such factors include the spatial density of

sources and cortical orientation constraints. For different SNRs, the

balance between the anatomically determined lead field and

functionally determined noise covariance is changed. We observed

the changes of shift metrics in this study as these factors were

varied parametrically. Fortunately, the optimal depth weighting

parameter does not change dramatically as a function of source

density, orientation constraints, or SNR: p = 0.75 in general leads

to improved performance in MNE inverse.

We found that dSPM and sLORETA generated similar shift

metrics, as shown in Figs. 3 and 4. It has been previously shown

that dSPM alleviates the bias toward superficial sources (Dale et

al., 2000). However, our data clearly show that dSPM in general

overestimates the depth. When we increased the depth weighting

parameter, the depth bias in MNE became smaller and the

localization thus more accurate. In contrast, the dSPM and

sLORETA inverses do not change significantly as a function of

the depth weighting parameter. This characteristic is independent

of the orientation constraint employed, source space density, and



Fig. 13. The histogram of the defined ‘‘data covariance angle’’ and ‘‘inverse operator angle’’ at different depth weightings.
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the subject. One explanation to this is that, in Eqs. (8) and (9),

the dSPM can be interpreted as the estimated SNR of the

sources. Since the same MNE inverse operator is employed in

calculating both the signal and noise, any chances in it cancel

out when the ratio of the two is computed. A similar effect was

also reported in our recent study of human cortical oscillations

using MEG data (Lin et al., 2004). In that case, we found that

the fMRI priors do not change the dSPM inverse solution

considerably, obviously due to the cancellation occurring in Eqs.

(8) and (9). The insensitivity of dSPM/sLORETA to depth

weighting is also evident from the expression of the inverse

operator in Eq. (3). Each row of the first term (RÃT) is

proportional to the corresponding element of the source

covariance matrix, whereas the second term involving the

product ÃRÃT is only weakly affected by the changes in the

individual elements of R.

To quantify this argument, we define the data covariance angle

hP
d flr Þð with

dp
�flr Þ ¼ �ÃARpÃA

T þ kIÞ�1b̃bðflr
�

hdp
flr Þ ¼ arccos dT0dp= jd0jjdpj

�� ���

where RP is the source covariance matrix with depth weighting

correction of order p and b̃ flr Þð is the whitened field of a dipole,
oriented normal to the cortical surface, at location flr Þð . Similarly,

we define the inverse operator angle flr Þð with

wp
flr Þ ¼ RpÃA

Tdp
flr Þð

�

hwp
flr Þ ¼ arccos wT

0wp= jw0jjwpj
��
Þ:

��
Fig. 13 shows the histograms of hP

d flr Þð and hP
w flr Þð at

different depth weighting parameters p across the whole source

space. We found that hP
d flr Þð were distributed 0 and 8- at all source

locations with similar histogram width at all depth weightings. In

contrast, the distribution of hP
w flr Þð is wider than that of hP

d flr Þð
and the mean increases to up to 40 degrees as p is increased. This

indicates that the major contribution in depth weighting comes

from the RÃT term in the inverse operator.

Another popular MEG source estimation approach is the

minimum-variance beamformer (Van Veen et al., 1997). Recently,

it has been shown that both the MNE and beamformer can be cast

into an equivalent form (Mosher et al., 2003). In MNE, the data

covariance matrix D = ARAT/k2 + C is postulated by using an

estimate of C and R based on the selected source priors. In the

beamformer approach, D is actually estimated from the data. As

shown by Mosher, the beamformer assumes the form of a MNE

inverse if the source covariance is R = (ATD�1A�1), where D is the

estimated data covariance matrix. Thus, the beamformer implicitly

incorporates depth weighting by calculating the weighted norm of

the columns of A. This explains why beamformer in general shows

less bias toward superficial sources than MNE without depth
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weighting. The obvious caveat of the equivalence between the

MNE and beamformer obviously is that for MNE it is not

guaranteed that the choice of R based on priors would give rise to

the actual observed data covariance matrix nor that for the

beamformer the implicit choice of R = (AT D�1A�1) would be

the true R giving rise to actually observed data covariance matrix.

Our somatosensory and auditory data illustrate the benefit of

depth weighting in MNE. Using p = 0.75, we found that depth

weighting does not overestimate depth of the sulcal sources in the

somatosensory experiment, and it provides better localization of

activities to Heschl’s gyrus in the auditory experiment. These data

as well as our simulations clearly demonstrate that depth weighting

is a robust approach to reduce the source location bias.
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