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In studies of patients with focal brain lesions, it is
often useful to coregister an image of the patient’s
brain to that of another subject or a standard tem-
plate. We refer to this process as spatial normal-
ization. Spatial normalization can improve the pre-
sentation and analysis of lesion location in
neuropsychological studies; it can also allow other
data, for example from functional imaging, to be com-
pared to data from other patients or normal controls.
In functional imaging, the standard procedure for spa-
tial normalization is to use an automated algorithm,
which minimizes a measure of difference between im-
age and template, based on image intensity values.
These algorithms usually optimize both linear (trans-
lations, rotations, zooms, and shears) and nonlinear
transforms. In the presence of a focal lesion, auto-
mated algorithms attempt to reduce image mismatch
between template and image at the site of the lesion.
This can lead to significant inappropriate image dis-
tortion, especially when nonlinear transforms are
used. One solution is to use cost-function masking—
masking the areas used in the calculation of image
difference—to exclude the area of the lesion, so that
the lesion does not bias the transformations. We intro-
duce and evaluate this technique using normaliza-
tions of a selection of brains with focal lesions and
normal brains with simulated lesions. Our results sug-
gest that cost-function masking is superior to the stan-
dard approach to this problem, which is affine-only
normalization; we propose that cost-function masking
should be used routinely for normalizations of brains
with focal lesions. © 2001 Academic Press

INTRODUCTION

Studies on patients with neurological disease often
involve the analysis and display of brain images. These
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images may need to be spatially matched to a standard
template, a process we will refer to as spatial normal-
ization. In this paper we describe and evaluate a tech-
nique for spatial normalization of brains with focal
lesions.

Spatial normalization can be useful to answer ana-
tomical and physiological questions. For example, in
studies of patients with focal brain lesions, it is com-
mon to represent the position and extent of the lesions
in terms of a standard brain template. This allows the
reader to more readily appreciate the site of the lesion
in relation to those of other patients from the same or
other series. If there is other information that has been
registered to the same template, such as functional
imaging data or estimated cytoarchitecture, then this
can be related to the patient’s lesion. Group studies in
neuropsychology may be interested in the overlap of
lesions for patients with a particular pattern of deficit,
on the basis that, if the common deficit is due to dam-
age of one brain area, this area will be contained within
the overlap of the lesions. The overlap analysis re-
quires that the location of the patients’ lesions be
transformed from the definition on the patient’s own
scan to an equivalent position on a template. Normal-
ization to a template is also advantageous when there
are neurophysiological data from a patient’s brain that
can be located spatially—for example, PET blood flow
data or FMRI. The transformation may allow direct
comparison with data from normal subjects, or with
data from other patients.

Spatial normalization can be manual or automated.
Early approaches used manual normalization, which
involved painstaking estimation of lesion location from
the patient’s image (source image) on a set of standard
brain slices (Mazzocchi and Vignolo, 1978; Damasio
and Damasio, 1989). This required considerable input
from a skilled operator. Talairach and Tournoux (1988)
later suggested a transformation algorithm to a stan-
dard atlas involving the identification of various brain
landmarks and piecemeal scaling of brain quadrants.
As imaging software developed, programs became

available that allowed the user to adjust spatial trans-
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formations interactively to match two brain volumes
(e.g., Evans et al., 1991; Frank et al., 1997). These and
similar techniques suffer from being slow, operator
dependent, and allowing only a restricted range of
transforms to the image. However, they have the ad-
vantage that the transforms are robust to a wide vari-
ety of pathologies.

An alternative approach has been to use automated
brain registration algorithms, such as AIR (Woods et
al., 1992), MNI_AutoReg/ANIMAL (Collins et al.,
994), or SPM (Friston et al., 1995). These algorithms
se the differences in intensity values of the source

mage and the template to derive a mathematical mea-
ure of mismatch between the images—a “cost func-
ion.” In SPM this cost function is the sum of the
quared differences (x2) between the image voxel in-

tensities. The automated algorithms use optimization
methods to minimize image mismatch, by varying pa-
rameters for a given set of spatial transforms. The
source and template image are usually smoothed be-
fore normalization, so that the algorithm matches the
overall brain shape, rather than fine detail. The images
are then aligned using linear (affine) transformations,
which may be some or all of translations, rotations,
zooms and shears. In a final step, the image to be
matched is further transformed using nonlinear func-
tions, such as discrete cosine transforms (SPM) or poly-
nomials (AIR). The nonlinear transformations allow
close matching of image detail, and would be difficult to
determine manually, because they are complex for a
human user to visualize. Thus one can calculate a
match between the images with little or no operator
intervention and which is reproducible between labo-
ratories.

The template used for such normalizations is usually
an image derived from an average of a number of MRI
scans from neurologically healthy adults. For example,
the default template for the most recent version of
SPM (SPM99—http://www.fil.ion.ucl.ac.uk/spm) is an
average of coregistered MRI brain scans from 152
healthy individuals; this template is a standard image
provided by the Montreal Neurological Institute
(MNI).

However, a problem arises if the brain to be normal-
ized has an area of damage, or abnormal areas of large
signal change, such as an aneurysm clip artefact. A
lesion or artefact in the image will usually be of very
different intensity from the equivalent area in the tem-
plate. For this reason, even when the rest of the brain
is well matched to the template, the cost function will
be high in the area of the lesion. This is illustrated in
Fig. 1.

Figure 1A shows an MRI scan from a patient with an
area of low density in the left anterior frontal lobe
caused by a stroke. For the sake of illustration, the
image has already been roughly matched to the tem-

plate, shown in Fig. 1B, using affine only normaliza-
tion. The cost function in SPM is the squared difference
between the (smoothed) images; Fig. 1C shows the
image of this cost function. Voxels with high squared
difference are shown as bright on the image. The area
of lesion still contributes strongly to the cost function,
even though the images are reasonably well matched.
In such a case, the algorithm may estimate that fur-
ther transformations are necessary in order to mini-
mize the difference between the source and the tem-
plate in the area of the lesion, at the expense of
matching elsewhere in the image.

When estimating parameters for the linear trans-
forms, any changes to the parameters that can mini-
mize the differences between the lesion and the tem-
plate are likely to cause widespread mismatches
elsewhere. Thus, automated estimates of affine trans-
forms are relatively robust to the effects of lesions; Fig.
1A shows the result of normalizing using affine param-
eters only, using SPM99. However, the lesion may
have a strong influence on the parameters of the non-
linear transforms, which can have effects that are rel-
atively local. The result is usually that the nonlinear
warping reduces the size of the lesion. Figure 1D shows
the image after performing affine normalization and
nonlinear warping in SPM99. The nonlinear warping
has crushed the lesion, causing marked distortion
nearby.

Despite these pitfalls, it is common for authors using
normalization of damaged brains not to specify their
normalization method. Two exceptions are Fiez et al.
(2000) and Weiller et al. (1995). Fiez et al. looked at
normalizations of a set of 10 brain images with left
frontal damage. They compared the normalization per-
formance of their own manual warping technique to
that of a modified version of the standard AIR algo-
rithm. Using various measures of agreement on lesion
volume and shape, they showed that the AIR normal-
izations, which used affine and nonlinear parameters,
gave comparable results to those for manual warping
by two observers. However, for two of the 10 images
normalized, the results of the AIR technique differed
markedly from those of the manual warping. It is also
not clear to what extent the lesions may in fact have
been excluded from the calculation of the normaliza-
tion. AIR implicitly excludes voxels with low signal
from the match; this is a type of lesion masking, which
is the technique we evaluate in this paper. The images
used by Fiez et al. are all likely to have had lesions of
low signal intensity.

The other paper to describe their normalizations of
damaged brains is Weiller et al. (1995). These authors
normalized images from patients with left parietotem-
poral lesions, using an image for the normalization
that was computed from the average of the original
scan and its mirror image. This will reduce the abnor-
mal signal due to the lesion on one side, at the expense

of extending the potential distortions to both hemi-
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spheres, and adding error to parts of the brain that are
not symmetrical, such as the planum temporale. A
series of recent papers have used spatial normalization
in studies of aphasia with activation PET (Price et al.,
1998; Mummery et al., 1999; Warburton et al., 1999).
Although these papers do not describe the normaliza-
tion procedure, they did in fact use affine-only trans-
formation (Richard Wise, personal communication). In
other studies it is not clear what method has been used
(Musso et al., 1999; Specht et al., 1999).

The affine-only approach is less sensitive to bias
caused by lesions, but it is not ideal. While more robust
than nonlinear normalization, it can still be influenced
by the lesion. This can be seen by comparing Fig. 1A to
the template in Fig. 1B. In the affine only normaliza-
tion (Fig. 1A) the lesion has caused the normalization
to stretch the front of the brain, and the lesion, so that
it overlies low signal from the CSF and skull. The
linear functions also provide a less accurate match of
local brain detail than the affine and nonlinear combi-
nation (Ashburner and Friston, 1999).

A simple solution to this problem of template/lesion
mismatch is to restrict the cost function to areas of
brain outside the abnormality. In this way the calcu-

FIG. 1. Normalizations, cost functions, and masks for an examp
sing affine only normalization; (B) template; (C) image of squared d
or skull and scalp has been removed with a brain masking image (s
ote marked image distortion; (E) lesion definition image; (F) res
ormalization using affine and nonlinear functions with cost function
imulated lesion in normal MRI.
lated transforms are no longer biased by the effect of
the lesion. This technique has been used previously for
realignment and coregistration of images within indi-
vidual subjects. The AIR program (Woods et al., 1992)
implicitly excludes voxels from the optimization that
have signal below a given intensity threshold, on the
basis that the voxels are likely to be outside the brain.
This thresholding technique has been used more ex-
plicitly with AIR for removing less important voxels
from calculation of realignment parameters in FMRI
time series collected with surface coils (Hajnal et al.,
1994), and to remove lesioned areas from the calcula-
tion of matches between images of different modality
from the same subjects (see section 12 in the methods
of (West et al., 1997)).

In this study, we have implemented cost function
masking using a mask image, which has values of 1
outside the lesion and 0 within the lesion. The user
first defines the area of the lesion (see Fig. 1E). The
lesion definition is inverted and expanded, to take ac-
count of the effect of the smoothing of the source image
before normalization (see Methods). Figure 1F shows
such a masking image, and Fig. 1G shows the variance
image (cost function) after the mask has been applied.
Figure 1H shows the result of using this mask during

age. (A) Rough normalization of an image with frontal lobe lesion,
rence between smoothed source image A and template B—mismatch
heory); (D) standard normalization of A with nonlinear functions—

ng masking image; (G) cost function C with mask F applied; (H)
asking; (I) affine only normalization with cost function masking; (J)
le im
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489NORMALIZATION WITH COST FUNCTION MASKING
well matched to the template, without obvious distor-
tion of the lesion. The goal of this paper is to investi-
gate whether it is useful to use such a masking image
to improve normalization of brains with areas of ab-
normality.

THEORY

The objective of spatial normalization is to estimate
the most probable spatial transformation that matches
a source image to a template image. The procedure
described here is for the algorithms used in SPM99,
although similar principles apply for other automated
normalization methods. The goal of the affine and the
nonlinear stages of the normalization is to find the
optimum set of transforms that will minimize the cost
function, which is the sum of the squared differences
(x2), between the source and template voxel intensities.
If we sample the template image at N voxels, and
sample the source image at the equivalent voxel loca-
tions, we can obtain the difference in voxel intensity di

for voxel i, where i indexes the voxel 1 . . . N. We wish
to optimize a set of parameters for our spatial trans-
forms; let us term the vector of these parameters p. In
the case of the affine transformations, p could be a
vector of length 12, where the first three values are the
transformations in mm in x, y, and z, values four to six
are rotations around the x, y, and z axes, and so on. At
each voxel there will be a function di(p), of unknown
shape, which is the difference between the source and
template images at that voxel as a function of the
parameters p. In order to minimize this function, we
can use an iterative algorithm (Press et al., 1992). This
proceeds by first calculating di(p) for a starting esti-
mate of p. Then for each of the parameters, we calcu-
late the rate of change of di for small changes of the
parameter, i.e., we calculate di(p)/p1, di(p)/p2 . . . .
This information can be used to estimate the value of di

for a given change in parameters t, using the first order
approximation of Taylor’s theorem:

di~p 1 t! 5 di~p! 1 t1

di~p!

p1
1 t2

di~p!

p2
· · ·

Across voxels, this can be formulated as:

3
d1~p 1 t!

d2~p 1 t!
···

4 5 3
d1~p!

d2~p!
···

4 1 3
d1~p!

p1

d1~p!

p2

· · ·

d2~p!

p1

d2~p!

p2

· · ·

···
···

· · ·
43 t1

t2

···
4 ,
t

which is minimized when:

At . b, (1)

where

A 5 3
2

d1~p!

p1
2

d1~p!

p2

· · ·

2
d2~p!

p1
2

d2~p!

p2

· · ·

···
···

· · ·
4 ,

t 5 3
t1

t2

···
4 and b 5 3

d1~p!

d2~p!
···

4 .

We can solve the equations above to give the param-
eter changes t that minimize the sum of the squared
mage differences across voxels:

t 5 ~ATA!21A Tb. (2)

This estimate of t allows an iterative scheme; for any
iteration n, the parameters p are updated so that
p(n11) 5 p(n) 1 t. The iterations proceed until the sum of
squared difference is minimized. In the case of the
affine step, the parameters p to be optimized are the
ranslations, rotations, zooms, and shears of the source
mage relative to the template. For the nonlinear step,
he parameters are coefficients for a series of discrete
osine transform basis functions (Ashburner and Fris-
on, 1999).

There are several important additions to the algo-
ithm above, which are used by default in SPM99.
irst, before normalization, the source and template

mages are smoothed with an 8-mm isotropic Gaussian
lter to decrease the chance that the optimization will
e caught in a local minimum. Second, SPM99 weights
he optimization for both affine and nonlinear steps
sing a Bayesian approach. In the case of the affine
ransforms, Bayesian priors for the distributions of
ooms and shears are derived from the results of 51
uccessful normalizations using the standard least
quares algorithm described above (Ashburner et al.,
997). For the nonlinear step, the algorithm simulta-
eously minimizes both the sum of squared difference
etween the images and the membrane energy of the
eformation field (Ashburner and Friston, 1999). The
embrane energy is a measure of the smoothness of
he deformation, where low values for membrane en-
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ergy represent smoother deformations. By attempting
to minimize the membrane energy, the algorithm bi-
ases the deformations to be smooth. Last, SPM99 uses
a masking image in the same space as the template
that sets the cost function to zero in areas outside the
template brain, so that the algorithm does not attempt
to optimize transformation parameters that will re-
duce mismatches of scalp and skull between the source
and template. We will describe the use of this template
cost-function masking image in more detail below.

The bias we see when normalizing brains with le-
sions is due to the tendency of template/lesion mis-
match to drive the optimization to produce inappropri-
ate transformations. To remove this bias, we can mask
the cost function so that the mismatch in the area of
the lesion no longer contributes to the parameter opti-
mization. The masking is implemented using an im-
age, in the same space as the source image, which
contains voxel values from 0 to 1, expressing the
weight to be given to the cost function in that voxel in
the optimization. Thus, if wi is the voxel value from the
masking image at voxel i, then the design matrix A in
he optimization from Eq. (2) becomes:

A 5 3
2

d1~p!

p1
w1 2

d1~p!

p2
w1 · · ·

2
d2~p!

p1
w2 2

d2~p!

p2
w2 · · ·

···
···

· · ·
4 . (3)

In the simplest case, the masking image will be
binary, containing 1 in voxels corresponding to normal
brain and 0 in the voxels corresponding to the lesion.
One can see from Eqs. (1) and (3) that changes in image
gradients di(p)/p1, di(p)/p2 . . . , and the cost func-
tion di, for voxels where wi 5 0 will have no influence
on the parameters t. The mask therefore has the effect
of setting to zero the cost function in the lesioned area,
so that the lesion no longer influences the optimization.
Figures 1F and 1H show a mask image and the result-
ing normalization.

In fact, SPM assumes the use of a binary cost func-
tion mask for the source image; this is because, for a
continuous source masking image, the equations above
would also require a term for the gradient of the source
masking image. In practice, including such a term us-
ing discrete (voxel by voxel) gradient estimation leads
to unstable solutions to the optimization. By using a
binary mask we can assume that the source masking
image has zero gradient at each sample point, and
therefore remove the gradient term.

We mentioned above that SPM99 is also able to use
cost function masking for the template image, to re-

strict the optimization to voxels within the brain (Ash-
burner et al., 1998). Here the values of wi are from an
image in same voxel space as the template, and wi 5 0
for voxels outside the brain—e.g., corresponding to
scalp or skull. Unlike the source weighting image, this
image can be continuous, containing values between 0
and 1. In fact this is the case for the default template
masking image, which is the brainmask.img in the
SPM apriori directory. This image is based on an
image that contained ones and zeros, where ones rep-
resent voxels that are within the brain in the MNI
average brain template. To create brainmask.img,
the original image has been smoothed using an 8-mm
FWHM Gaussian. Thus the voxel values reflect the
proportion of the signal in the matching voxel of the
smoothed template that has been derived from struc-
tures within the brain. When the source and the tem-
plate weighting images are used, the value for wi used
in A [Eq. (3)] is given by the harmonic mean of wi

s and
wi

t, where wi
s is the weight for voxel i from the source

asking image, and wi
t is the weight from the template

masking image.

METHOD

The evaluations that follow are designed to address
three main issues. First, cost-function masking re-
quires that the user define the position and extent of
the abnormal signal within the source image. We want
to know the extent to which the normalization is af-
fected by the differences in the masks defined by dif-
ferent observers. Second, the source image will be
smoothed before normalization, so that the abnormal
signal will affect a larger volume in the image. We
define how far the cost function mask must be extended
to allow for this smoothing. Finally, we compare the
cost function masking technique to the de facto stan-
dard, which is affine-only normalization.

A problem for all these evaluations is that there is no
accepted standard measure for the success of a normal-
ization. We have approached this problem in two ways.
In the latter part of this section, we have used some
simple summary images of the normalizations to give a
qualitative impression of the performance of the differ-
ent methods. In the first part of this section, we looked
at normalizations of normal brain scans with simu-
lated lesions. In this way, we can compare a normal-
ization of a scan with a simulated lesion, to a useful
standard, which is the default normalization of the
same brain without a lesion.

All the evaluations make use of 10 TI MRI images of
brains with a variety of lesions. Figure 2 shows repre-
sentative axial slices from the 10 images. We selected
the images from those available to us to provide a wide
range of pathology, including images or artefacts with
high and low signal intensity. An image was accepted if
the scan was of reasonable quality and the lesion was

relatively confined and unilateral.
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492 BRETT ET AL.
For the cost function masking, we created four sets of
lesion definition images. Four observers independently
defined the areas of abnormality on the 10 source im-
ages, to give four sets of lesion definitions, 1 . . . 4. The
observers were instructed to draw as exactly as pos-
sible round the areas of abnormal signal within the
brain. Enlarged ventricles were omitted from the
lesion definition, but artefacts with abnormal signal
such as aneurysm clip artefacts were included. Three
observers had neurology training to residency level,
and one was a psychologist experienced in the anal-
ysis of brain lesions. Lesion definition set 1 was
defined using the image edit facility in Analyze AVW
software (Mayo Biomedical Imaging Resource, Mayo
Clinic, MN). The remaining sets were defined using
MRIcro, a brain image display utility (http://www.
psychology.nottingham.ac.uk/staff/cr1/mricro.html).
The lesion definitions resulted in images that had
the value of 1 for voxels inside the abnormal areas
and 0 elsewhere. An example slice from such an
image is shown in Fig. 1E.

For all of the normalizations in the following section
we have used the default settings for SPM99 unless
otherwise stated. With these settings the program uses
a template mask to exclude areas outside the brain
from the cost function (see above). For the nonlinear
normalizations we used medium regularization (the
weight given to the term biasing the nonlinear trans-
formations to be smooth—see Theory). We used 7 3

3 7 discrete cosine transform basis functions and 12
terations of nonlinear optimization. The template we
sed was the default T1.img, in the SPM templates
irectory, which is the MNI 152 average brain, pre-
moothed to 8 mm for use in normalization (see http://
ww.mrc-cbu.cam.ac.uk/Imaging/templates.html). Be-

ore all normalizations we used the SPM display
tility to set the orientation of the source to a rough
atch with the template, in terms of translations

nd rotations. All image resampling used trilinear
nterpolation. Resampled binary images were rebi-
arized by rounding to voxel values of 0 or 1. For
everal steps in the processing, we needed to define
hich voxels were within the brain; for this we used
thresholded template brain mask (TTBM). This

as simply the brainmask.img described above,
hresholded so that values above 0.5 were set to 1
nd elsewhere to 0. As expected, this image corre-
ponded closely to the brain outline of the template.
The simulated lesion images were created by reslic-

ng the lesions from the damaged brains into normal
rain images. We first took 10 T1-weighted MRI scans
f brains with no neurological abnormality, and arbi-
rarily paired each image with one of the lesioned
rains, to create 10 normal–abnormal pairs. For each
air, we used the SPM affine only normalization to
alculate the parameters needed to match the normal

nd the lesioned image to the MNI template. The affine
ormalizations of the abnormal brains gave acceptable
esults for all 10 brains; the least satisfactory is shown
n Fig. 1A. Using the combined parameters of the two
ormalizations, we resliced the abnormal image into
he voxel space of the untransformed normal brain.
he same parameters were used to reslice the match-

ng lesion definition image from mask set 1 into the
oxel space of the normal brain. Using the normaliza-
ion of the normal brain, we also resliced the TTBM
nto the same voxel space. In order to match the inten-
ity of the resliced abnormal image to the normal im-
ge, we derived a scale factor s, for the resliced abnor-
al image. The scale factor makes use of a masked
ean value for the normal and resliced abnormal im-

ges.
The masked mean is simply the mean intensity

alue of an image, for voxels inside the brain, but
utside the area of a lesion. Let us say that we have an
mage, x, a lesion definition, ld, and a brain mask bm,

all in the same voxel space. ld has ones in voxels
corresponding to the lesion in x, and zeros elsewhere;
bm has ones in voxels corresponding to the brain vol-
ume in x, and zeros elsewhere. The masked mean for x
is the mean of all voxels in x, for which both of the
following are true: (1) the corresponding voxel in ld
contains zero (voxel is outside the lesion), and (2) the
corresponding voxel in bm contains a one (voxel is
within the brain).

Here, the scale factor s for the resliced abnormal
image is given by the masked mean of the normal
image, divided by the masked mean for the resliced
abnormal image, where the lesion definition for both is
the resliced lesion definition, and the brain mask is the
resliced TTBM.

We then created a new image sl, with a simulated
lesion, by inserting the lesion of the resliced abnormal
image into the original normal image, prior to normal-
ization. If sli is the value of image sl at voxel i, rld is
the resliced lesion definition image, and ni, rldi, and rai

are the values of the matching voxel in n, rld, and ra,
respectively, then

sli 5 Hrai z s if rldi 5 1

ni otherwise.

We repeated this process for each normal/abnormal
image pair. An example of an image with a simulated
lesion is shown in Fig. 1J. For display, the image in the
figure has been resliced to the space of the template
using the affine normalization parameters for the
paired normal image, before the lesion was inserted.

For each normal/abnormal pair, we then resliced the
lesion definitions from sets 2 to 4, to the voxel space of
the new simulated lesion image, using the original
affine normalizations for the normal and abnormal

scans.
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493NORMALIZATION WITH COST FUNCTION MASKING
We can now compare normalizations of the brains
with simulated lesions to the standard normalization
of the same brain without the lesion. Normalizations
can be compared using deformation fields. These are
images, for each normalization, of the same voxel di-
mensions of the template image. The images contain,
for each voxel, the displacement that the normalization
has estimated in order to reach the position of the
matching voxel in the source image. The displacements
are translations, in millimeters, in the X, Y, and Z
direction, which can be simply calculated from the
normalization parameters. When two normalizations
are similar, then the voxel displacements will be sim-
ilar, reflecting that fact that the voxel values for the
normalized image will have been obtained from similar
points in the source image, across normalizations. The
distance di

a,b between the displacements at a single
oxel i, for two normalizations a and b, is given by:

d i
a,b 5 Î~x i

a 2 x i
b! 2 1 ~y i

a 2 y i
b! 2 1 ~z i

a 2 z i
b! 2,

where xi
a is the translation in X for voxel i in the

eformation field for normalization a. A measure of the
overall similarity between two normalizations a and b
is the root mean square (RMS) displacement of one
deformation field relative to the other:

RMSa,b 5 ÎO
i51

N

~d i
a,b! 2/N,

where i indexes the voxels within the brain 1 . . . N.
Voxels were deemed to be within the brain when the
matching voxel in the TTBM had a value of 1.

We were interested to determine the optimum dis-
tance to expand the area defined by the lesion defini-
tions to allow for the smoothing of the source image
during normalization. We therefore took each of the
lesion definitions from sets 2 . . . 4, and smoothed them
using a Gaussian filter of FWHM of 8 mm. We then
inverted and thresholded the resulting images at a
variety of thresholds, to create processed normalization
masks. If pnmi is the value of the new processed lesion
mask at voxel i, sldi is the equivalent value for the
moothed lesion definition image, and t is the thresh-
ld, then:

pnmi 5 H1 if sldi , 5 t

0 otherwise
. (4)

The voxel values in the smoothed lesion definition
an be thought of as the proportion of the signal at that
oxel, after smoothing, that has been derived from
oxels within the lesion. t is therefore the maximum

roportion of signal from within the lesion that will a
llow that voxel to be retained in the normalization. t
an be expressed as a percentage, so that a t of 0.25
orresponds to a threshold of 25%.
Each of the 10 resliced lesion definitions from sets
. . . 4 were processed in this way, using thresholds of
5, 10, 5, 1, 0.1, 0.001, and 0.0001%. These thresholds
esult in an expansion of the masked area beyond the
rea of the lesion definition; the thresholds above cor-
espond to expansions of 2.3, 4.3, 5.5, 7.7, 9.6, 10.1, and
0.2 mm, respectively. The expansion for the 0.1%
hreshold is shown by comparing the lesion definition
n Fig. 1E to the resulting processed mask in Fig. 1F.

We normalized the 10 images with simulated le-
ions, using affine plus nonlinear parameters and cost
unction masking. The masks were the processed nor-

alization masks from the three resliced lesion defini-
ion sets 2 . . . 4, at the thresholds above, giving 3 3 7
ets of normalizations for each of the 10 images. We did
ot use lesion definition set 1 because it had been used
o create the lesions. For comparison, we also normal-
zed the same images without cost function masking,
nce using affine parameters only, and once using af-
ne plus nonlinear parameters. Each individual nor-
alization can be compared to the standard of the

ormalization of the same image, without the lesion,
ith both affine and nonlinear parameters. This gives
n RMS value, in mm, for each candidate normaliza-
ion of the images with simulated lesions. These values
re displayed in Fig. 3.
The second part of our evaluation was to provide a

ualitative assessment of normalizations of the origi-
al 10 images of damaged brains. Again, we want to
ompare the performance of affine only normalization
o that of affine plus nonlinear normalization with cost
unction masking. We first normalized the 10 damaged
rains, using masks based on lesion definition sets
. . . 4. To create processed normalization masks from

he lesion definition image, we used the procedure
bove, which was smoothing of 8-mm FWHM, followed
y thresholding, according to Eq. (4). For reasons dis-
ussed in the results section, we used a threshold of
.1% to create the masks. We then normalized the 10
mages with cost function masking, using each of the
rocessed normalization images from lesion definitions
. . . 4, giving four normalizations for each image. We
lso normalized the 10 images using affine parameters
nly with no cost function masking. For each normal-
zation, we resliced the abnormal image and the corre-
ponding lesion definition image, using the normaliza-
ion parameters, to give spatially normalized versions
f both images. For the affine only normalization,
hich had no corresponding lesion definition, we

esliced the images from lesion definition set 1.
To the extent that the normalizations have been

uccessful, we would expect the normalized images to
e similar to each other, and to the template image. To

ssess the similarity of the normalized images to each
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other, we calculated a mean of the normalized images,
for each of the five sets of normalizations. The mean
image contained at every voxel the mean voxel inten-
sity of the 10 images at that voxel. In order to calculate
the mean, we divided the voxel values of each normal-
ized image by a scale factor, to allow for differences in
global intensity across images. If j indexes the normal-
zed images 1 . . . 10, then the scale factor for image j,

sj, was the masked mean (see the Methods section) of
naj, the normalized lesioned image. The lesion defini-
tion for the masked mean was the normalized lesion
definition, for the matching lesion and lesion definition
set, and the brain mask was simply the TTBM image.

In creating the mean, we are not expecting that
areas of abnormality will be similar from one image to
another. Therefore, voxel values were not used in the
mean calculation if they fell within the abnormal area,
as defined by the presence of a one in the normalized
lesion definition image for that scan. If there were less
than 6 scans for which there was a usable voxel value,
then that voxel was set to zero in the mean image. Note
that, after normalization, all the images are in the
same voxel space, so that voxel i in one normalized
image corresponds to voxel i in any other normalized
mage. Thus, let yij be the value from voxel i and

normalized lesioned image j, and nldij be the value
from the normalized lesion definition image from the
same voxel. Then let

y ij
m 5 Hyi j /sj if nldij 5 0

0 otherwise
,

nd ni
m be the number of scans for voxel i, where nldij 5

. Then the value for the mean image at voxel i is given
y

mni 5 5Oj51

10

y i j
m /n i

m if ni
m . 5

0 otherwise

.

To assess the similarity of the images to the tem-
late, we have calculated template variance images.
e first rescaled the intensity of the normalized im-

ges using the scalefactors described above. We also
escaled the template with a scalefactor, st, which was

the mean of all voxels in the template within the brain,
as indicated by a value of one in the matching voxel of
the TTBM. We then subtracted the rescaled template
image from each of the rescaled normalized images,
and combined these difference images to create the
template variance image. This image contained, at ev-
ery voxel, the mean squared difference of intensity of
the 10 normalized images from the template image.
Again, we excluded voxels within the area of abnormal-

ity and set to zero voxels with fewer than 6 valid
observations. Thus, if ti is the value of voxel i in the
emplate image, then the template/normalized image
ifference for scan j at voxel i is given by:

d ij
m 5 Hyi j /sj 2 ti/st if nldij 5 0

0 otherwise
,

and the value for the variance image v, for voxel i, is
given by:

vi 5 5Oj51

10

~d i j
m! 2/~n i

m 2 1! if ni
m . 5

0 otherwise

.

The resulting image is a map of the variance of the
0 images from the template. Each of the lesion defi-
ition sets 1 . . . 4 gave a mean and variance image, as

did the affine only normalization, giving a total of five
mean/variance pairs.

RESULTS

Figure 3 shows results of the root mean squared
(RMS) values for the normalizations of the simulated
lesions.

Each RMS value compares the given normalization
to the affine and nonlinear default normalization for
the same brain, without the simulated lesion. Each of
the 10 brains with simulated lesions is shown with a
different symbol; thus all the points marked with an
“x” refer to the simulated lesion image shown in Fig.
1J. The first two columns show the RMS values for the
affine only and affine plus nonlinear normalizations,
without any cost function masking. The values are
relatively high, compared to the masked normalization
values, shown in the rest of the plot. There is also
considerable spread of the values across images, re-
flecting a high variability of normalization perfor-
mance across images/lesions. The elevated RMS values
for the unmasked affine matches reflects a combination
of bias caused by the lesion, and the inability of the
affine parameters to reproduce the distortions calcu-
lated for the nonlinear step in the normalizations of the
unlesioned images. The unmasked nonlinear normal-
izations can reproduce some of the nonlinear distor-
tions of the original normalizations and hence have
reduced RMS values compared to the affine, but this is
at the expense of allowing strong distortions in and
around the lesions, reflected in the wide variation in
the values across the 10 images.

The remaining columns in Fig. 3 give RMS values for
masked normalizations using different mask thresh-
olds [see Eq. (4)], and therefore mask expansions. For
each threshold, there are three columns of RMS values,

which are for normalizations using mask definitions
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from lesion definition sets 2 . . . 4. The figure therefore
shows variability in normalization performance across
images, and across observers defining the lesion. The
ideal normalization method would provide low overall
RMS values, with a narrow spread of values across
images and with minimum variation between masks
from different observers. On these three criteria, the
mask threshold of 0.1% performs well, with a tight
distribution of values across images, and very consis-
tent performance across the three observers. With
more liberal mask thresholds, more normal brain will
be included in the normalization, as well as more sig-
nal from the edge of the lesion. This causes a marked
increase in variability of normalization performance
across images and observers. Conversely, with mask
thresholds giving more expansion, the mask is exclud-
ing more normal brain, and thus the match becomes
less constrained, and less similar to that for a normal
brain, for which the whole brain is included. Therefore,
to minimize variability across observers and images, as
well as normalization bias caused by the lesion, we
have adopted the conservative mask threshold of 0.1%
for all subsequent processing.

Figure 1 shows the results of the different normal-

FIG. 3. Root mean square (RMS) values comparing normaliza
unlesioned brains. Each symbol represents normalizations for one si
for normalizations without cost function masking, for affine only, an
values for affine plus nonlinear normalizations with cost function ma
to the lesion definition [see Eq. (4)]. The three columns for each thr
and 4.
izations on an individual brain. The images in Fig. 1A
and 1I both show the brain after affine only normal-
izations. Figure 1I was a normalization with cost func-
tion masking, and Fig. 1A was a normalization without
cost function masking. For Fig. 1I, the overall shape is
well matched to that of the template; the CSF spaces
are wider in the damaged brain, in particular the left
lateral ventricle next to the lesion. The image in Fig.
1A, affine only without cost function masking, is less
well matched to the template. For this image, the le-
sion has caused a bias in the zoom in Y (anterior–
posterior), so that the brain is longer than the tem-
plate, and the anterior edge of the lesion overlies
matching dark CSF space in the template. This obvious
distortion using unmasked affine matching only oc-
curred in this brain, and not in the other nine brains
thus normalized. This is likely to be due to the width of
the lesion, its very low intensity, and its site at the
frontal pole. Figure 1H shows the image normalized
with affine and nonlinear parameters and cost function
masking. The brain edges are well matched to the
template, and the nonlinear basis functions have
transformed the image to reduce the size of the ventri-
cles to better match those of the template.

Figure 4 shows the image of the mean voxel values

s of images with simulated lesions to matched normalizations of
lated lesion image. The first and second columns show RMS values
fine plus nonlinear normalizations. Subsequent columns show RMS
g using different percentage thresholds for mask expansion relative

old are for normalizations using masks from lesion definitions 2, 3,
tion
mu

d af
skin
esh
across the normalized images of the 10 abnormal
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brains; these are the normalizations of the brains with
real rather than simulated lesions.

The top three pictures are the sections from the
affine only mean, and the bottom images show the
mean of the nonlinear masked normalizations. For Fig.
4, and for Fig. 5, the images representing cost function
masking are for normalizations using masks from le-
sion definition set 1. The mean and variance images for
the other lesion sets were very similar to those for
lesion set 1. This may not be surprising given the close
agreement of the RMS scores for the different lesion
sets using the 0.1% threshold mask. Note that the
concentration of the lesions in our series in the left
hemisphere has caused a degree of overlap of the lesion
sites; the black area on the left of the image contains
voxels where the voxel was outside the lesioned area in

FIG. 4. Images of mean of rescaled normalized images from Fig
lower panel: mean of images normalized using affine and nonlinea
derived from lesion definition set 1.
fewer than 6 of the 10 scans in the series.
The masked nonlinear mean has better contrast,
especially around the borders of the ventricles. This
higher contrast reflects less variability between im-
ages after normalization. On the affine image, there
is a dark ring around the ventricles in the coronal
slice, because white and gray matter near the ven-
tricles is being averaged with CSF signal. This is
because many of the images to normalize have en-
larged ventricles relative to the template (see Fig. 2).
The enlarged ventricles cannot be well matched with
linear parameters whereas the local distortions
available with nonlinear parameters are capable of
such matching (see also Fig. 1). The corpus callosum
is more clearly defined in the masked nonlinear
mean, as is the upper brainstem, and to a lesser
extent the cerebellum and lower occipital lobe (see

Top panel: mean of images normalized using affine functions only;
nctions and cost function masking. The cost function masks were
. 2.
r fu
the sagittal sections).
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Figure 5 shows the image of the variance of the
normalized images from the template.

Brighter voxel values therefore show areas where
the normalized images have a high average difference
in signal intensity from the template. The axial image
(left) again emphasizes that the affine normalization
has not been able to align CSF boundaries to those of
the template. The axial images show that there is a
large region of high variance around the frontal horns
of the lateral ventricles which is less marked in the
masked nonlinear than the affine variance image. In
the coronal slices, there is apparent poor matching of
the corpus callosum and the surrounding CSF, which
again is more marked in the affine image. The left
posterior horn of the lateral ventricle has an area of
high variance surrounding it; this reflects the fact that
most of the lesions in our series were on the left, and

FIG. 5. Images of variance of normalized images from the templa
variance of images normalized using affine and nonlinear functions w
intensity mapping is the same for the upper and lower panel.
the lateral ventricle has become enlarged around the
lesion site. The cost function masks around the lesions,
once expanded for the normalization, have masked the
expanded ventricle from compression during the non-
linear normalization. However, the normalized lesion
definition, which has been used to remove damaged
areas from the mean and variance calculation, is
smaller than the mask used for normalization (see
above and Fig. 1). Therefore, the smaller mask has
exposed an area around the lesion that was not nor-
malized using the nonlinear procedures, which may
explain why the variance here is high for the masked
nonlinear as well as the affine normalizations.

DISCUSSION

The problem that this paper has addressed is the
tendency for automated warping algorithms to produce

Upper panel: variance of affine only normalized images; lower panel:
cost function masking, with masks from lesion set 1. Gray-scale to
te.
ith
inappropriate solutions for brains with focal lesions.
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498 BRETT ET AL.
More generally, these problems occur when matching
brains to a template, where the brains to be matched
have areas of signal, which do not have a correspond-
ing area in the template. The solution we propose is to
remove the area of abnormality from the calculation of
the cost function, so that the optimization does not try
to minimize differences between the source and tem-
plate in the area of the lesion. Note that masking the
abnormal region does not mean that areas under the
mask remain untransformed, rather, a continuation of
the solution for the unmasked portions of the image is
applied to the area under the mask. This continuation
will be constrained to be smooth by the use of the
“nonlinear regularization” term in the normalization.

To evaluate this technique, we have compared the
results of normalizing brains with real and simulated
focal lesions, using affine only and masked nonlinear
matching. Most previous studies that have used auto-
mated normalization for brains with lesions have used
affine-only transformations (Price et al., 1998; Mum-

ery et al., 1999; Warburton et al., 1999). Our results
uggest that normalization using cost function mask-
ng is superior to affine-only normalization for two
elated reasons. First, cost function masking can im-
rove affine normalization in the presence of a lesion.
ecause of the bias caused by the lesion, even affine
ormalization can fail in certain situations, as shown
y Fig. 1A. The influence of the lesion on the normal-
zation parameters is difficult to quantify, depending
n the size, location and signal of the lesion, and the
uality of the match between source and template in
ther brain areas. Cost function masking removes the
ias and should therefore be less susceptible to error
han the affine-only method.

The second major advantage of cost function mask-
ng is that, using masking, we are able to use nonlinear
eformations, without causing severe distortions in the
esioned image. Nonlinear deformations can greatly
mprove the quality of the normalization, both for nor-

al brains (Ashburner and Friston, 1999), and for the
rains in our sample. Although the affine transforms
sually provide an acceptable match of the brain out-

ine, they cannot match local brain detail, without dis-
urbing alignment elsewhere. This is particularly ob-
ious in our sample, because the brains of our patients
ave enlarged ventricles and sulci compared to those of
he young normal brains used in the creation of the
NI template. Nonlinear normalization is able to
atch the ventricular outline more accurately to the

emplate than affine only registration. This may ex-
lain why the differences between the masked and
ffine mean images (Fig. 4) are less marked than those
or the image-template variance maps (Fig. 5). Most of
he source images have enlarged ventricles, and these
re not being transformed by the affine procedure;
herefore the difference from one scan to another (as

eflected by the mean image) is less than the difference f
rom the template (as reflected by the template vari-
nce image).
We suggest then that the masked nonlinear ap-

roach is both theoretically and practically superior to
he affine only technique. However, there are two ca-
eats to this conclusion. First, the masking procedure
equires some input from the user—so that the tech-
ique is more time consuming, and less objective. How-
ver, in practice the required time is not great—being
n the order of 30 min per scan. The results from the
imulated lesions show that there is little difference in
erformance for masks defined by different observers,
t least at the chosen threshold. This suggests that
recise delineation of the lesion and/or artefact is not
ritical, as long as the areas of major signal change are
dentified. A second caveat is that the masking tech-
ique does not work well when the size of the lesion is

arge relative to the brain volume. In this situation the
onlinear components have a relatively small area of
rain for which the fit is being optimized. The calcu-
ated transformations may result in an excellent match
ithin the included area, but allow bizarre transfor-
ations in the masked area, where the match is much

ess constrained. In particular, if a lesion is unilateral,
hen the match within the masked region is strongly
nfluenced by the data from the homologous region on
he opposite side. If the lesion is bilateral, and large,
hen the transformations within the masked area may
e poorly constrained by the data remaining. However,
e have found the technique to be robust for unilateral

esions, even for lesions approaching the size of a whole
emisphere (see the second panel from the right in the
op row of Fig. 2). Where lesions are large, and nonlin-
ar transformations are used, it may be necessary to
ncrease the weighting for smooth nonlinear deforma-
ions (the “nonlinear regularization” in SPM99). This
ill also reduce the extent to which the nonlinear

ransformations can match the template and will
herefore more closely resemble an affine-only match.
n cases where a nonlinear match proves difficult to
chieve, an affine-only match may be necessary. In
rder to avoid bias such as that shown in Fig. 1A we
uggest that affine-only normalizations also use a
ource mask to remove the effect of the lesion.
Normalization using cost function masking may go

ome way to reducing the problems of interpretation
hat arise for functional imaging data from patients
hat have been averaged across subjects. Detecting
verage activation across subjects is dependent on suc-
essful spatial registration of homologous brain areas.
f scans from patients have been normalized less suc-
essfully than scans for controls, or for other patient
roups, then average activation may be reduced or
islocated. Cost function masking appears to offer su-

erior registration to the approaches used thus far and
hould reduce this problem. However, even for cost

unction masking, normalizations are likely to be less
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successful than those for a normal brain. For a masked
brain, a proportion of brain is not available to optimize
an accurate match—as shown by the nonzero RMS
values for the brains with simulated lesions. Brains
from patients may have other more subtle abnormali-
ties outside the masked area, such as enlarged ventri-
cles and sulci. For these reasons, it may still be prob-
lematic to compare activation from an averaged group
of normal brains to that from an average of lesioned
brains. One partial solution might be to pair lesioned
and control brains within a study, and use the normal-
ized image of the lesion for the patient to create a
matching masking image to use on the unlesioned
brain for the control. In this way the quality of the
normalizations may be better matched between the
patient and control groups.

Methods for normalization with cost function
masking are implemented in current software. For
example, there are tools for the creation of lesion
definition images in AnalyzeAVW (commercial soft-
ware, Mayo Biomedical Imaging Resource, Mayo
Clinic), and MRIcro (free software— http://www.
psychology.nottingham.ac.uk/staff/cr1/mricro.html).
MRIcro will also create processed source masking
images for the normalization [Eq. (4)], and there is a
Matlab routine with the same function available at
ftp://ftp.mrc-cbu.cam.ac.uk/pub/imaging/Normutils.
The standard distribution of SPM99 supports the use
of source masking images in normalization, when
“object masking” is enabled in the Spatial Normal-
ization section of the program defaults. There is a
step by step tutorial on creating and using cost func-
tion masking images in normalization with SPM at
http://www.psychology.nottingham.ac.uk/staff/cr1/
mritut.html. Normalization masking is also a com-
mand line option in AIR3 (http://bishopw.loni.
ucla.edu/AIR3/).

CONCLUSION

In this paper we have presented and evaluated a
technique for spatial normalization of brains with le-
sions or artefacts. The technique involves masking the
abnormal area to prevent the lesion contributing to the
normalization. This has the significant theoretical ad-
vantage of removing bias in the normalization. Our
results suggest that cost function masking provides
better and more reliable matching to a standard tem-
plate than the most-used alternative, which is affine
only normalization. We propose that cost-function
masking should be used routinely in normalizing
brains with areas of abnormal signal; however, com-
parisons of group activation data for patients with
brain lesions with data from controls must still be

treated with caution.
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