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The goal of regional spatial normalization is to re-
ove anatomical differences between individual three-

imensional (3-D) brain images by warping them to
atch features of a standard brain atlas. Full-resolu-

ion volumetric spatial normalization methods use a
igh-degree-of-freedom coordinate transform, called a
eformation field, for this task. Processing to fit fea-
ures at the limiting resolution of a 3-D MR image
olume is computationally intensive, limiting broad
se of full-resolution regional spatial normalization. A
ighly efficient method, designed using an octree de-
omposition and analysis scheme, is presented to re-
olve the speed problem while targeting accuracy
omparable to current volumetric methods. Transla-
ion and scaling capabilities of octree spatial normal-
zation (OSN) were tested using computer models of
olid objects (cubes and spheres). Boundary mismatch
etween transformed and target objects was zero for
ubes and less than 1% for spheres. Regional indepen-
ence of warping was tested using brain models consist-

ng of a homogenous brain volume with one internal
omogenous region (lateral ventricle). Boundary mis-
atch improved with successively smaller octant-level

rocessing and approached levels of less than 1% for
he brain and 5% for the lateral ventricle. Five 3-D MR
rain images were transformed to a target 3-D brain
mage to assess boundary matching. Residual bound-
ry mismatch was approximately 4% for the brain and
% for the lateral ventricle, not as good as with homoge-
eous brain models, but similar to other results. Total
rocessing time for OSN with a 2563 brain image (1-mm
oxel spacing) was less than 10 min. r 1999 Academic Press

Key Words: octree; spatial normalization; homology;
arping; Jacobian.

INTRODUCTION

Spatial normalization refers to a class of image
rocessing algorithms that reduces interindividual ana-
omical variance by matching homologous spatial fea-
ures of a ‘‘source’’ brain to those of a ‘‘target’’ brain. In
any human brain mapping analyses, an anatomical
eature template is used instead of a target brain to r

724053-8119/99 $30.00
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patially transform anatomical and functional 3-D data
nto a common brain (Fox et al., 1985; Collins et al.,
994; Fox, 1995; Friston et al., 1995; Lancaster et al.,
995; Woods, 1996; Toga et al., 1998). The most common
arget brain space is that developed by Talairach and
olleagues (Talairach et al., 1988).

Spatial normalization can be broadly classified as
lobal or regional. Global normalization uses a paramet-
ic description of the whole brain (position, orientation,
nd dimensions) to perform affine transformations,
ith up to twelve parameters in a 4 3 4 homogeneous

oordinate transform matrix (Foley et al., 1990). In
ost instances of global normalization, only nine param-

ters are used (three each for rotation, translation, and
caling), and these must be carefully selected (Fox,
995; Woods, 1996). Manual global spatial normaliza-
ion methods require identification of key landmarks,
uch as the anterior and posterior commissures (AC,
C), to perform appropriate translation, rotation, and
caling (Fox et al., 1985; Minoshima et al., 1993;
ancaster et al., 1995). Automated global spatial nor-
alization methods, matching features such as the

rain’s convex hull surface, have also been reported
Lancaster et al., 1999; Collins et al., 1994; Roland et
l., 1994). While global spatial normalization methods
emove global anatomical differences, they cannot cor-
ect for smaller regionalized differences. Regional spa-
ial normalization algorithms try to match homologous
patial features at varying scales, some down to the
imiting resolution of 3-D MR brain images (Chris-
ensen et al., 1994; Collins et al., 1995).

Previously reported methods (Christensen et al.,
994; Collins et al., 1995; Kostelec et al., 1998) require
any hours of processing to produce a full-scale defor-
ation field. The primary goal of the OSN design was

o reduce the processing time to minutes while main-
aining the accuracy of the previous methods. This
mprovement for OSN was sought by increasing effi-
iency in the several areas (Table 1).
This report describes the OSN algorithm and tests

everal key properties of OSN. Tested properties in-
lude: continuity correction, global translation and
caling, management of nonhomologous features, and

egional warping performance. Most of these properties
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725OCTREE SPATIAL NORMALIZATION
re evaluated using computer modeled source and
arget 3-D images to insure absolute measurement of
erformance quality. In addition, promising applica-
ions of high-degree-of-freedom spatial normalization
re discussed.

MATERIALS AND METHODS

OSN algorithm overview. The 3-D OSN algorithm
volved from earlier modeling in one and two dimen-
ions (Lancaster et al., 1998). As with prior, high-
esolution regional normalization methods (Chris-
ensen et al., 1994; Collins et al., 1995; Kostelec et al.,
998), OSN computes a deformation field. It does this in
hierarchical, multiscale manner, by subdividing the

olume into successive octants. At each stage, local
imilarity measurements are made and compared be-
ween source and target. The similarity measurements
re adaptive, thresholded centers of the mass. Prior to
dvancing to the next octree subdivision: a deformation
eld that matches all centers of mass, is computed;
ontinuity correction is performed; and deformation
eld is applied. The octree design, coupled with new
rocessing strategies, provides a significant improve-
ent in processing efficiency over existing methods.
cale control, achieved using 3-D Gaussian filtering
nd resampling by Collins et al. (1995), is much simpler
n OSN being a natural feature of the progressive
ubdivision of the 3-D volume into identical octants.
dditionally, void octants outside the brain volume are
equentially removed from the processing list, reducing
he processing load by approximately 75%.

The similarity measurement scheme for OSN is
fficient and simple, yet powerful. For each octant, the
patial centroid is the feature of interest. It is calcu-
ated from the set of voxels with values above or below
n adaptive threshold. The adaptive threshold value is
he mean value of data within each octant. The x-y-z
ranslation needed to match centroids of transformed-
ource and target octants is then used to refine the

TABLE 1

Description of the OSN’s Algorithm Efficiency

Improvement area Description

eature extraction Centroid matching rather than MSE
approach by Collins et al. (1995)

ontinuity correction Adaptive Gaussian smoothing (see Mate-
rial and Methods) as opposed to Navier–
Stokes or spline interpolations (Kostelec
et al., 1998)

cale control Octree volume decomposition with rejec-
tion of empty processing nodes

oding features Exploiting the parallel nature of the
OSN’s design with multithreaded code
eformation field. Several strategies for calculating the p
entroid were previously tested, and the thresholded
eometrical (unweighted) centroid provided the best
erformance (Lancaster et al., 1998).
Regional spatial normalization is usually preceded

y global spatial normalization, to provide a source
mage with standard position, orientation, and scaling.
he globally normalized starting image establishes a
patial reference frame for reporting results in OSN
processing step 0). The Convex Hull global fitting
ethod was used for global normalization. This algo-

ithm has been validated relative to the 1988 Talairach
tlas space (Lancaster et al., 1999), the space most
ommonly used for reporting coordinate based findings
n brain mapping experiments.

The OSN method requires that 3-D images and
eformation arrays be cubic, i.e., same number of
oxels for x, y, and z dimensions, and that each dimen-
ion (D) be defined as 2N where N is a positive integer. N
s also the number of OSN processing steps. Therefore
or a 2563 array there are eight processing steps (0–7).
s processing progresses from step 0 to step 7, its
egional/scale nature changes from a single region of
ize 2563 to 2,097,152 regions of size 23. This hierarchi-
al multiscale processing scheme follows from the
atural octree subdivision of space and results in an
xtremely efficient algorithm for synthesis of a high
egree of freedom deformation field.
Continuity correction. The octree algorithm re-

uires independent shifting of image data within oc-
ants. This leads to discontinuous regions in the trans-
ormed image due of motion perpendicular to
overlapping or tearing) and/or parallel to (shearing)
nterfaces between neighboring octants (Fig. 1). To
void discontinuities where the deformation gradient
xceeds a limiting value, the deformation field was
moothed using a spatial-domain Gaussian filter (see
ppendix 1). The FWHM of the filter was selected to
eep the magnitude of the derivative of each compo-
ent of the deformation gradient (DDx /Dx, DDy /Dy,
Dz /Dz) # 0.3, insuring both continuity and 1-to-1
apping between source and target volumes

Appendix 1). The continuity filtering takes the largest
ortion of the algorithm run-time. To improve perfor-
ance, 3-D smoothing was done as three 1-D convolu-

ions along the x, y, and z directions. Further reduction
n execution time was achieved by independently adjust-
ng the filter FWHM for each octant boundary, since

any boundaries required little or no correction.
To test the continuity correction method, deforma-

ions with known levels of discontinuity were applied to
3-D solid cube. Continuity-corrected deformations

ere calculated and compared with known values. 3-D
urface renderings of the raw and continuity-corrected
ransformed cubes were made to qualitatively assess

erformance over the entire surface.
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726 KOCHUNOV, LANCASTER, AND FOX
Global translation and scaling. Global translation
nd scaling are two important steps in global spatial
ormalization. Computer models of solid cubes and
pheres were created in 2563 arrays to study transla-
ion and scaling with 3-D solid objects. Target and
ource cubes and spheres of different sizes and loca-
ions were modeled. Fit quality was evaluated by
omparing OSN transformed source models with target
odels. Differences between transformed and target

bjects are only measurable at mismatched boundaries
ince interior values are identical. To quantify 3-D
verlapping, the boundary mismatch (volume of mis-
atched boundary voxels) was reported as a percent-

ge of the total volume of the target. The boundary
ismatch volume was calculated by binary mode sub-

raction between target and step n-transformed images
nd saved as a separate image. This method of error
eporting provides a quantitative measure of fit quality
or any boundary that can be readily identified in target
nd transformed images. It also provides a means to
isualize fit quality for surfaces throughout the image
olume. The percentage boundary mismatch as a mea-

FIG. 1. Computer-rendered views of a solid cube deformed with
xamples of shearing (2–4), tearing (4–8), and overlapping (1–2) ar

lipped at the step-1 octant boundaries to help identify them. Octants
ure of fit quality is similar to values reported by others w
Collins et al., 1995) to evaluate automated segmenta-
ion.

To correct for global spatial differences, the center of
ass was used for alignment of both cubes and spheres

t processing step 0. This removes translation differ-
nces therefore translation is not a factor with identical
hape geometrical objects; however, the position of the
arget relative to octant boundaries may have an affect.
he roles of source and target images were reversed to
valuate a possible position effect. Nearest-neighbor
N-N) interpolation was used in all tests to ensure
ccurate boundary definition in transformed images
sing a single threshold value.
Testing was done to determine if geometric scaling
as linear throughout the image volume. The ratio of

ource-to-target dimensions was used to predict the
istance from model centroids to various internal well-
efined surfaces, planes for cubes, and shells for spheres.
he deformation field was used to calculate a set of
oints along a source image surface from points along a
orresponding target image surface. The mean and
tandard deviation of the distance from the centroid

ntinuity correction (right) and without continuity correction (left).
een in the uncorrected data. Octant regions of deformed cube were
8 are behind octants 1–4, with 5 behind 1 and so forth.
co
e s
5–
as calculated for each surface. Seven such surfaces
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727OCTREE SPATIAL NORMALIZATION
ith distances ranging from 2 to 64 mm were evaluated
or the solid model. Overall linearity of global scaling
ithin the solid models was assessed from the slope of a

east squares linear regression fit of mean measured vs
redicted distances. Differential linearity of global scal-
ng was estimated from the standard deviation of

easured distances for each surface.
Matching of nonhomologous regions. OSN can be

sed to transform a cube to a sphere and vise versa, but
ince these objects are grossly nonhomologous they give
ittle insight to the nature of this problem in the brain.
o test nonhomology in a human brain, a 3-D brain
mage was modified to introduce several grossly nonho-

ologous regions. This was accomplished by clipping
he brain image posteriorly and inferiorly (Fig. 2,
iddle). The unmodified brain image was used as the

ource and the clipped brain image as the target for
SN regional spatial normalization. Since there is no
etric to directly assess nonhomology, results were

valuated qualitatively.
Regional performance. Independence of regional
arping was tested using two 3-D brain models, each

onsisting of a homogenous brain region with one
nternal homogeneous region (lateral ventricle). Source
nd target brain model images were created from 2563

1-weighted MR images by manual segmentation of
he brain and lateral ventricle. Manual segmentation
ollowed the brain surface along gyral and shallow
ulcal boundaries to isolate the brain from surrounding
onbrain regions. Filling the brain region with a value
f 512 and ventricle region with 256 completed the
rain model images. Model source and target images
ere selected from a group of 150 studies as those with

he largest subjective difference in brain shape and
entricle size. Source and target brain models were
lobally spatially normalized using the ‘‘convex hull’’
utomated global spatial normalization method (Lan-
aster et al., 1999). OSN was then used for regional

FIG. 2. Matching capability of OSN with grossly nonhomologous
right) shows how the source brain image is compressed into the tar

isual means to evaluate warping.
patial normalization. Boundary mismatch images were
alculated at each processing step, and the mismatch
or brain and ventricle surfaces was tabulated.

Human brain evaluation. Due to inherent anatomi-
al variability, some degree of nonhomology exists
etween any two human brains (Talairach et al., 1988;
no et al., 1990). Failed homology confounds feature
atching for regional spatial normalization algorithms

nd interferes with the selection of landmarks neces-
ary to evaluate fit quality. In fact, fit quality has little
eaning when matchable landmarks are not present. A

otentially useful goal is to measure fit quality using
ome subset of matchable landmarks. Regardless, it is
mportant to study the nature of warping of images
ith varying degrees of nonhomologous features, and

his requires a measure of fit quality. Our solution was
o measure fit quality by comparing the two well-
efined boundaries of major structures, the brain and
he lateral ventricle, as was done for regional testing
ith the brain model data.
Six 3-D, 2563, T1-weighted MR images of healthy

dults were randomly selected from a pool of 150
ubjects (18–40 years) for processing. Each image was
dited to remove the scalp, skull, and other nonbrain
issues. Surfaces of the brain and the lateral ventricle
ere carefully defined by removing tissues outside the
rain and fluids and tissues inside the ventricle, while
eaving the remainder of brain image data intact. The
rain stem was removed below the level of cerebellum
o better define the inferior margin of the brain. The
ateral ventricle was manually segmented and filled
ith a constant value equal to its mean value. One 3-D
rain image was randomly selected as the target. All
mages were globally spatially normalized using the
‘convex hull’’ method to standardize position, dimen-
ion, and orientation. Each image was then regionally
patially normalized using OSN. Boundary mismatch
mages were calculated at each processing step, and the

rce (left) and target (middle) brain images. The transformed image
brain region. The head (solid) and brain (broken) outlines provide a
sou
get
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728 KOCHUNOV, LANCASTER, AND FOX
ismatch for brain and ventricle surfaces was tabu-
ated.

RESULTS

Continuity correction. Figure 1 (left) shows the re-
ult of applying the uncorrected 3-D deformation field
o a computer modeled cube. Overlapping regions of the
ransformed cube were clipped at the step-1 octant
oundaries. Object rotation was introduced to provide a
etter view of the deformed cube. Testing with solid
ubes demonstrated that a gradient magnitude #0.3
or each component of the deformation field provided a
ontinuous deformation.
Profile curves through octant 1 and octant 2 (Fig. 3)

llustrate the effects of continuity correction (solid)
ollowing planned disruption of the deformation field
broken). The profile curves were drawn along the 1x
irection so the x deformation represents overlapping
region 1 moved 10 mm in the 1x direction, while
egion 2 was not moved) and the y and z deformations
epresent shearing. In this example the original cube
not shown) was centered in a 2563 array and the
umbered regions correspond to the octant they occu-
ied at step 0. Only step 1 processing is illustrated. The
lanned differences in deformation were 10 mm for x,
0 mm for y, and 5 mm for z, and the measured profile
urve values showed that these were exactly reproduced.

The continuity-corrected deformation values from

FIG. 3. Profiles curves for x-, y-, and z deformations between regio

eformations (broken lines) and continuity corrected deformations (solid
he profiles in Fig. 3 were compared with predicted
alues. The maximum gradients were measured at 0.29
or all three profiles and the target value was 0.3. A 1-D
erivative was taken along each profile curve to pro-
uce a curve that represented the line spread functions
LSF) of the Gaussian filter (Hasegawa, 1991). The
WHM of the LSF was estimated using nearest neigh-
or interpolation. For the measured x and y deforma-
ions the theoretical FWHM (Appendix 1) was 31.3 mm
nd the measured value was 35 mm. For the z deforma-
ion the theoretical FWHM was 15.7 mm and the
easured was 18 mm. By design the extent of the
aussian filters was clipped at the tails where sum of

he filter weights was 95% of the full area. This resulted
n an extent of 56 mm for the x and y filters and 28 mm
or the z filter. The extent measurements indicate that
ltering will alter the interior of deformation octants
pproximately 5.6 mm from interfaces for each 1 mm of
iscontinuity.
Global translation and scaling. The boundary mis-
atch was measured before and after applying OSN to

aired cubes and spheres (Table 2). After transforma-
ion there were no mismatched voxels observed for the
ubes and minimal mismatch for the spheres. The
urface of the sphere was harder to fit, and while some
urface points transform to exact voxel coordinates,
ost do not. This leads to larger N-N interpolation

rrors, but the final boundary mismatch remained

and 2 of the deformed cube described in the legend of Fig. 1. The raw
ns 1

lines) show the importance of continuity correction.
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729OCTREE SPATIAL NORMALIZATION
mall (0.1%). The position of the target object had little
ffect on fit quality since the final mismatch figures
ere nearly identical to those in Table 2, when the

ource and target objects were swapped. The small
esidual mismatch shows that centroid matching by
SN can effectively scale simple (cube) and more

omplex (sphere) geometrical objects.
The stepwise progress of the OSN processing in

ransforming a sphere from a diameter of 168 to 128
m was seen to be a successive scaling of the size of the

phere. Minor shape distortions were visible during
arly processing steps, and a nearly perfect spherical
hape was formed by the final step (Fig. 4). This was
ndicated by the small RMS error in the radial distance
rom points along the surface of the transformed source
phere to those of the target sphere (0.6 mm). This error
s similar to that observed when fitting brain surfaces
rom the same individual but different image modali-
ies (Lancaster et al., 1999). The mean RMS error was

TABLE 2

Percent Boundary Mismatch for OSN

Objects
Source

size
Target

size
Initial

mismatch
Final

mismatch

ubes 128 161 100% 0.0%
pheres 168 128 120% 0.1%
FIG. 4. Source and target spheres with resul
alculated using the XSurfaceFit software (Pelizzari,
991).
The graph of mean measured vs predicted distance

Fig. 5) within the cube and spherical models demon-
trated excellent global linearity of scaling. The linear
egression line had a slope within 1% of unity and
ntercept within 0.4 mm of zero for both models. This
as strong evidence that the global scaling properties
f the OSN method are correct throughout the solid
odels. Regional linearity of scaling was also very

ood, with the mean standard deviation of distance for
he seven surfaces tested in the sphere of 0.035 mm.
he maximum errors for each surface were generally

ess than the voxel spacing (1 mm). The average of
orst-case errors across all surfaces was 0.79 mm
bove or 0.68 mm below the predicted distance. These
ata indicate that OSN can provide accurate and linear
caling across homogeneous areas, even those far from
boundary.
These results support the idea that multiscale cen-

roid shifting with continuity correction is capable of
erforming a transformation equivalent to a linear
lobal scaling. This is a major achievement since there
s little regional information throughout the volume of
he homogeneous cubes and spheres.

Matching of nonhomologous regions. The sagittal
ection images in Fig. 2 illustrate the performance of
SN under conditions of grossly mismatched homology
ts of steps 1, 3, 5, and 7 of OSN processing.
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730 KOCHUNOV, LANCASTER, AND FOX
etween source and target brain-like images. The small
oxes near the periphery of each image delimit the
tep-1 octant subdivision of these images. The solid
hite outline is the target head boundary, and the
roken line is the approximate target brain boundary,
oth traced from the target image (Fig. 2, middle). The
ismatch along the inferior and posterior boundaries

etween source and target images is large (Fig. 2, left).
here was no mismatch along the major extent of the
uperior and anterior boundaries. Inferior and poste-
ior boundary mismatches were greatly reduced follow-
ng the OSN transformation (Fig. 2, right). OSN trans-
ormation resulted in compression of the image volume
rom the inferior and posterior regions into the target
olume. Head and brain boundaries in the upper right
uadrant were less affected, but were more affected in
he S-I direction than the A-P direction. This was
ttributed to the fact that a much larger volume of
issue was compressed into the target volume from
egions inferior to the target volume than from poste-
ior regions.
While OSN did not perform perfectly in any of the

ctants, it did perform according to the algorithm’s
esign goals. In particular there are no obvious discon-
inuities and regions further from the gross feature
ismatched regions had a better match. The full

olume of the source image was transformed into the
pproximate volume of the target (distorted) brain. The
nitial volume difference was 20%, and OSN processing
educed this to less than 5%. This example shows that

FIG. 5. Measured vs predicted distance inside cube (diamond)
nd sphere (square) following OSN transformation to match a
wifferent size cube and sphere.
he OSN algorithm provides a predictable, stable spa-
ial transformation even when significant feature mis-
atches are present.
Regional performance. The midsagittal view of mis-
atched boundaries for the 3D brain model shows

ignificant regional improvement following OSN pro-
essing for both the brain and ventricle surfaces (Fig. 6).
n fact, most of the mismatched regions for the OSN
rain image were of the order of the voxel dimension.
Percentage mismatch of the brain boundary for OSN

t each processing step decreased monotonically (Fig. 7).
he initial percentage mismatch (step 0) is that follow-

ng global spatial normalization and the final (step 7) is
hat for full regional spatial normalization. The final
ismatch is similar to that achieved by OSN for the

omputer modeled solid spheres (,1%). The ventricle
ismatch increased initially, followed by a decreasing

rend (Fig. 7). The rise in ventricle mismatch during
he first two processing steps is believed to be due to its
elatively small size. OSN multiscale processing deals

FIG. 6. Sagittal view of boundary mismatches for computer
odeled brain with lateral ventricle following Convex Hull global

patial normalization (top) and OSN regional spatial normalization
bottom).
ith large-scale features during the early steps of
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731OCTREE SPATIAL NORMALIZATION
egional processing. The boundary mismatch for small-
cale features can therefore rise during these out-of-scale
rocessing steps. This rise is compensated later as the
egional processing scale decreases. In fact, the slope of
he percentage mismatch curve is steeper for the
entricle than for the brain for steps 3–7 (Fig. 8B). The
entricle percentage mismatch following global spatial
ormalization (5%) is a six-fold reduction from the 30%
ismatch following regional spatial normalization, but

oes not achieve the 1% level seen for the brain surface.

FIG. 7. Percentage boundary mismatch at each step of OSN
right). The outline of the target brain and ventricle (solid line) indicates
Human brain evaluation. The midsagittal view of
ne transformed human brain illustrates typical im-
rovement of OSN over global spatial normalization
Fig. 8), for the ventricle and brain boundary, the
erebellum, and the superior temporal lobe. The mean
ercentage mismatch curves for OSN processing of the
ve human brain images shows a continual improve-
ent in fit for each successive step for both brain and

entricle (Fig. 9). The rise in percentage mismatch for
he ventricle, seen with the homogeneous brain model,

cessing for brain and lateral ventricle for fitting brain models.
pro
FIG. 8. Sagittal views of human brain following Convex Hull global spatial normalization (left) and OSN regional spatial normalization

how well each method performed.
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732 KOCHUNOV, LANCASTER, AND FOX
as not seen with human brain images. This is prob-
bly the result of numerous other structures within the
uman brain image that moderate the out-of-scale
ffect. The percentage mismatch at step 0 (following
lobal spatial normalization) is similar to that mea-
ured using the homogeneous brain model (Fig. 7).
owever, the final mismatch for the human brain

mages is approximately 3% higher for brain and
entricle boundaries. These differences are probably
ue to the more complex (nonhomogeneous) nature of
eature content for the human brain image, and interac-
ions with feature matching that can occur.

The general trend in boundary mismatch was decreas-
ng standard deviation for successive processing steps.
his trend suggests a reduction in anatomical differ-
nces at boundaries of brain images from the different
ubjects. For the ventricle the lowest standard devia-
ion was seen at step 4 (octant dimension 5 16 mm).
his may be due to small features near the ventricle
order that confound the final fit. However, the mean
ercentage mismatch continued to improve down to
tep 7 (octant dimension 5 2 mm) for both brain and
entricle surfaces. An important result of this test was
hat the boundary of the lateral ventricle was trans-
ormed independently of the brain boundary.

Processing time. Total image processing time for
he OSN application, including loading source and

FIG. 9. Percentage boundary mismatch at each step of OSN proc
arget volumes, performing regional spatial normaliza- b
ion and saving the transformed image, is less than 10
in for a 2563 3-D volume image (SUN Ultra 30–248
hz, SpecFP-95 11.4, Sun Microsystems, Mountain
iew, CA). A more detailed breakdown of processing
peed for computer modeled cubes gave a total process-
ng time of 8 min, with 31

2 min related to OSN fitting
nd 41

2 min for loading source/target images and saving
he transformed image.

DISCUSSION

A fast method for 3-D spatial normalization of the
uman brain, called octree spatial normalization or
SN, was introduced. Its ability to generate continuous

egional deformation was tested and demonstrated in
everal models. Global translation and scaling were
arefully evaluated in solid models of cubes and spheres.
smooth, continuous transformation was seen even in

he presence of gross nonhomology between source and
arget brain volumes. Regional independence was dem-
nstrated for the surfaces of the brain and the lateral
entricle in a brain model. Preliminary results in
uman brain images yielded fit quality similar to that

n the brain model.
Continuity correction. In current experiments the

llowed maximum gradient magnitude was #0.3 to
aintain the positivity of the determinant of the Jaco-

ing for brain and lateral ventricle for fitting human brain images.
ess
ian matrix (Appendix 1). This was done for processing
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teps 1 to 5, but continuity correction was not used in
teps 6 and 7 since the octant dimensions were too
mall (4 and 2 mm). Also, large deformation field
iscontinuities, such as those used to demonstrate
ontinuity problems in Figs. 1 and 3 (10 mm), were not
resent in human brain images, since global spatial
ormalization was performed prior to regional spatial
ormalization, and it corrects for most of the large-
cale differences.
Global translation and scaling. Two-dimensional

lobal translation, rotation, and scaling features of a
-D version of the OSN method were previously re-
orted (Lancaster et al., 1998). Tests with simple
longated rectangles showed that global spatial normal-
zation could be performed with a quadtree method.
ests indicated that while this was possible, it is more
fficient to perform global spatial normalization with
roven simpler transform methods, and this was done
ith 3-D processing of human data.
Scaling of the outer dimensions of the solid cube
odel was exact. For objects with outer boundaries

efinable as planes, the OSN processing appeared to
erform perfectly. The scaling linearity within the
ubes was also very good (Fig. 5). The ideal nature of
he OSN boundary fit for cubes is believed to be related
o the similarity of shape between octants used for
rocessing and the cube shape. For example, in step 0
he source and target centroids are matched. At step 1,
ach octant contains a cubic region different only by
ize between source and target but with identical
eature homology, i.e., cubic shape. For subsequent
teps, this trend continues for octants near boundaries.
nternal octants have identical centroids and no longer
ontribute to the deformation. No mismatched feature
airing was seen (source and target octants not full or
artial cubes). This led to the near-perfect global linear
caling for each component of the deformation field,
nd when used with N-N interpolation the small differ-
nces fell near to the correct faces, resulting in a perfect
t at the boundary.
The solid sphere model presented a greater challenge

ince it did not subdivide into cubic suboctant features.
owever, the stepwise progress of processing (Fig. 4)

hows that OSN algorithm performed well. The ability
f the OSN algorithm to produce a smooth transforma-
ion, even when large discontinuities are present, is
eemphasized here. By design, the step-1 local disconti-
uities were as high as 20 mm/voxel since global spatial
ormalization was not used in step 0. However, the
urface appears relatively smooth and the shape is
inimally distorted in early stages of processing. After

tep 3, volume differences are minimal, but small
ariations from the spherical shape remain. After step
the spheres are almost identical. Residual differences

ere partly attributed to the N-N interpolation. v
Matching of nonhomologous regions. The goal of
SN for regions with nonhomologous features was to
ave a predictable, well-behaved transform with mini-
al effect on fit quality in regions where homologous

eatures are present. Well behaved means no spatial
iscontinuities in transformed images, ensuring that
he full source volume will be present in the trans-
ormed image.

Prior to continuity correction, it is important to
inimize fluctuations in the uncorrected deformation

eld that might arise from mismatched features. Fluc-
uations were moderated by OSN’s octant feature
atching algorithm (Materials and Methods). The first

tep in this algorithm is to determine whether the set of
oxels in the value min- to mid-range is larger than the
et in the mid- to max-range, where mid 5 (max 2 min)/
. The geometric centroid of the larger set is calculated
s the feature to match for each octant. Using a subset
f the octant’s voxels better concentrates feature analy-
is on the data within the octant, deemphasizing the
oundary. It is also an attempt to isolate a large data
egion within the octant, similar to step 0 where the
rain is fully contained within a single 2563 region.
hen the step n source and target octants indicated

ifferent thresholding sense, feature mismatch was
ssumed, and the thresholding sense of the target used
n both. This algorithm works well when features
lways match (i.e., 3-D solid cubes) and moderates the
eformation in cases of nonhomologous features.
A modification of the OSN feature matching algo-

ithm accounts for the case when either the source or
arget octant, but not both, are void of data. When this
ccurs, octants are enlarged by 50% until data are
resent in both. This mismatch can happen, even with
omogeneous geometric models and is affected by the
osition of target and size differences between source
nd target. This feature was invoked during the fitting
f the spherical computer models and worked very well
Figs. 4 and 5). When no data is present in a step n
ource and target octant no processing is done.
Regional performance. While several high-degree-of-

reedom deformation methods have been developed,
one has been able to resolve all regional differences.
he good match for brain and ventricle in the brain
odel images indicates that OSN’s regional deforma-

ion works well in this high-contrast model (Fig. 6). The
lope of the percentage brain surface mismatch curve
Fig. 7) was steepest between step 0 and step 1,
radually decreased, but continued to be significant
nd negative through the last step. Interestingly, the
ractional improvement increased with each step, with
he largest percentage improvement between step 6
nd step 7.
As mentioned in the results section, the positive

lope in the percent surface mismatch for the modeled

entricle was probably due to an out-of-scale phenom-



e
s
t
(
w
a
p
m
f
d
t
f
i
v
v
f

m
n
b
b
a
z
t
v
s
f
i
v
u
a
a
s

f
s
v
b
r
e
a
c
t
o
t
t
M
a
s
b

a
m
d
b
a

c
i
i
t
t
m
i
t
b
m

d
m
i
w
m
w
s
i
t
i
p
S
t
i
i
s
i
t
t
s
c
t

f
d
r
l
a
f
t
s
l
p
1
i
m
r
i
c
t
i
e

a

734 KOCHUNOV, LANCASTER, AND FOX
non. In fact, the slope did not become negative until
tep 3. The fit improvement at step 3 is assumed to be
he result of a better match between octant dimension
32 mm) and the size of the lateral ventricle. The slope
as more negative for each subsequent processing step,
nd this appears to compensate in part for the early
rocessing. The desired fit quality was a percent mis-
atch below 1%, but only 5% mismatch was achieved

or the ventricle. The final mismatch is, of course,
ependent on structural homology between source and
arget ventricles, and this is the ultimate limiting
actor. The final percentage boundary mismatch data
ndicate that brain surfaces are more homologous than
entricle surfaces, but this was expected since highly
ariable sulcal regions (Ono et al., 1990) were excluded
rom the brain surface in this study.

Human brain evaluation. In the computer brain
odel the brain and ventricle were noiseless homoge-
eous regions surrounded by zero values. The human
rain images differed from the brain model in that
rain data were present in the space between ventricle
nd brain surfaces (Fig. 8). Outside the brain was set to
ero and inside the ventricle was a single value equal to
he average ventricle value. While the homogeneous
entricle did not mimic the ultimate use of OSN, it
upports accurate measurement of percent mismatch
or both the brain and ventricle in the human brain
mage. It also insures that internal differences between
entricles do not affect fit quality measurements. By
sing N-N interpolation the boundary for homogeneous
reas around the brain and within the ventricle can be
utomatically tracked at each step of processing using
imple thresholding.
The OSN feature-matching algorithm was developed

or use with binary images (models) as well as gray-
cale images. The algorithm uses the gray-scale image
alues to select the largest subset of voxels above or
elow the mid value for an octant. This serves to
emove the influence of high or low values from the
stimation of the feature centroid and render the data
s binary (low value or high value set). Centroids
alculated in this manner appear to better represent
he size and position for the feature of interest within
ctants (Lancaster et al., 1998). This helps to minimize
he effect of differences in contrast between source and
arget images that are common in high-resolution 3-D
R images. By adapting to local values OSN is less

ffected by MR shading artifacts, and corrections for
uch are probably not necessary, though this has not
een carefully tested.
Applications of the OSN algorithm. Two immediate

pplications of OSN are obvious. The first is to supple-
ent the work of ANIMAL (Collins et al., 1995) in the

evelopment of probability structures for the human
rain (Mazziotta et al., 1995). While ANIMAL provides

good method to create structure probability anatomi- f
al maps (SP_AMs), its processing time is long, delay-
ng processing of large quantities of high-resolution
mages (approximately 33 h per image at full resolu-
ion). The processing time using OSN software is less
han 10 min per brain volume, and it can be used on
any different computer platforms since it was coded

n C11 with no graphical interface. While it is believed
hat OSN can perform this task well, a comparison
etween OSN and ANIMAL for generating SP_AMs
ust be performed before using it for this purpose.
The second intended use of OSN is to apply its

eformations to functional images in an attempt to
inimize regional anatomical variability. Functional

mages, coregistered to high-resolution MR images,
ill be transformed using the deformation field deter-
ined from the MR image. This testing will be done
ith PET images rather than fMRI since regional

patial distortions are minimal in PET. The goal is to
mprove multisubject functional studies by reducing
he anatomical differences to a minimum before combin-
ng images from different subjects to create statistical
robability images (SPIs) contrasting various tasks.
uch processing could provide a basis to study correla-
ion between spatial and functional variability. A key
ssue is whether regional spatial normalization will
mprove alignment of functional sites across subjects. If
o, an increase in the signal-to-noise ratio in functional
mages beyond that seen for global spatial normaliza-
ion would be expected, and the sensitivity of popula-
ion studies improved. If the outcome is positive, and
ince OSN is ideally suited for cross-platform use, it
ould become a standard processing strategy for func-
ional studies.

Other new applications. One potential application
or OSN is to reregister images of body regions that
eform plastically. This could be used, for example, in
adiation treatment planning for organs such as the
iver. OSN could be used to register CT or MRI images
cquired with different body configurations and there-
ore deformed differently. These would be registered to
he reference treatment volume defined using a 3-D CT
imulator image. Another application would be to ana-
yze the deformation fields to study regional growth
atterns (i.e., plastic deformations) in 3-D (Toga et al.,
998). For example, this would be useful to character-
ze regional tumor growth or shrinkage following treat-

ent. Another potential application is the analysis of
egional growth patterns in fossilized bones using CT
mages of 14C-dated bone specimens. Deformation fields
reated using sequentially dated specimens can be used
o describe spatial changes, and this should be helpful
n the study of regional bone development on an
volutionary time scale.
Processing speed. A unique feature of the OSN

lgorithm is that it takes approximately the same time

or each processing step, approximately 30 s. This is a
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735OCTREE SPATIAL NORMALIZATION
ignificant improvement over other hierarchical mul-
iresolution methods where processing time increases
ignificantly with each additional step (Collins et al.,
995). Though the processing overhead increases
lightly with each step for OSN, the number of void
ctants (no processing required) also increases, with
he net effect of a slight drop in time/step toward later
teps. The processing time is proportional to the num-
er of voxels and for 1283 images is approximately 1

8
hat for 2563 images.

The preprocessing time for MRI brain images is
onger than the OSN processing time. It takes 10–20

in to prepare a brain-only image. This is currently
one using the MEDx (Sensor Systems, VA) interactive
egmentation tools with touch up (if needed) using the
lice (Parexel Inc.) shrinkwrap and ROI nudging tools.
dditionally, the brain image must be globally spatially
ormalized. This is done using the Convex Hull soft-
are (Lancaster et al., 1999) and can be completed in
pproximately 5 min.
Algorithm problems. The OSN algorithm requires

hat all images have the same dimensions with 2n size.
n fact, it has only been tested for cubic voxels with 1
m spacing in a 1283 or 2563 arrays. This is not

onsidered to be a significant problem with the large
mount of memory available for most computer sys-
ems.

In order to guarantee fit quality OSN processing
ust go through all steps. This is easily seen with the

omputer modeled sphere (Fig. 4). It is also indicated by
he significant and continuous drop in mismatch error
hrough the final step of processing (Figs. 7 and 9). This
s not considered to be a significant problem since each
rocessing step takes only 30 s.
Future developments. It is expected that the OSN

lgorithm will work well throughout the brain, but that
as not been yet evaluated. Before proceeding with a
ore comprehensive evaluation throughout the brain,

he low contrast capabilities of OSN will be enhanced
nd tested. The current feature matching strategy in
SN worked well with the high-contrast borders of

olid models, a brain model, and several human brains.
he matching of low-contrast structures presents a
ore difficult task; however, it is felt that with minimal
odification of the feature matching algorithm this

ifficulty will be resolved. High speed cross-correlation
etween target and source octants is currently under
eview as a potential enhancement of the feature
atching strategy.
Continuity correction will be extended to the final

wo processing steps (6 and 7) in the smaller octants
4 3 4 3 4 mm and 2 3 2 3 2 mm). One proposal is to
pply a small extent global filter throughout the entire
olume with filter FWHM fixed for each size. Prelimi-
ary testing is underway, but it was not used in this

valuation of basic features of OSN. d
Trilinear interpolation was incorporated into OSN
ith slight increase in processing time (3.5 to 5 min). It
ill be used in subsequent testing of the gray level
atching ability of OSN throughout the brain. More

ccurate interpolation schemes, such as sinc interpola-
ion (Hajnal et al., 1995; Castleman, 1996) may eventu-
lly be used for the final reconstruction of transformed
mages. Multiple passes of the OSN algorithm over the
ource data, interpolated with higher order interpola-
ion, is expected to improve mismatch of finer details.
lthough this may lead to the increase in the process-

ng time, this has not yet been tested.
The use of OSN with other imaging modalities will

ely on coregistration of those images with high-
esolution MR images. The deformation will then be
pplied to the coregistered image. The overall perfor-
ance of such multi-stage processing will need to be

ested for the various methods in current use for
egistration (Pelizzari et al., 1989; Woods et al., 1992,
993; Studholme et al., 1995).

APPENDIX 1

Unique corrections were made to OSN’s deformation
eld in an attempt to provide a piecewise continuous
-D deformation with 1-to-1 mapping between source
nd target brain volumes. A coordinate transformation
s locally 1-to-1 for 3-D images if the determinant of its
acobian matrix is positive (Christensen et al., 1995;
uck, 1978). OSN’s deformation field is a set of vector
quations like A.1, one for each x-y-z coordinate in the
orking volume.

3
x8

y8

z8
4 5 3

x

y

z
4 1 3

Dx(x, y, z)

Dy(x, y, z)

Dz(x, y, z)
4 (A.1)

he determinant of the Jacobian for Eq. A.1 is calcu-
ated as follows

J 0 5 0
1 1 Gxx Gxy Gxz

Gyx 1 1 Gyy Gyz

Gzx Gzy 1 1 Gzz
0

0J 0 5 1 1 (Gxx 1 Gyy 1 Gzz)

1 (GxxGyy 1 GxxGzz 1 GyyGzz

2 GxyGyx 2 GxzGzx 2 GyzGzy)

1 (GxxGyyGzz 1 GxyGyzGzx 1 GxzGyxGzy

2 GxxGyzGzy 2 GxzGyyGzx 2 GxyGyxGzz)

(A.2)

here the Gij 5 DDi/Dj (i, j 5 x, y, z) are gradients of

eformation field components.
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736 KOCHUNOV, LANCASTER, AND FOX
For 3-D images the determinant of the Jacobian ( 0J 0 )
s a measure of how differential volumes map between
ource and target regions. For global translation and
otation, there is no volume change ( 0J 0 5 1). The value
f 0J 0 can increase or decrease depending on the nature
f global scaling (expansion increases 0J 0 and contrac-
ion decreases 0J 0 ). 0J 0 , 0 indicates a reflection of a
olume through itself. These features are readily veri-
ed for a global affine coordinate transform. 0J 0 5 0

ndicates mapping of one or more points to a single
oint (loss of 1-to-1 nature) and poses a problem with
igher order coordinate transformations, such as defor-
ation fields, where both transform (A.1) and 0J 0 vary

patially. For OSN, spatial variations in 0J 0 are greatest
t octant boundaries, so the continuity correction
cheme was devised to constraint 0J 0 around octant
oundaries. This constraint is applied to differential
eformation fields before updating the full differential
eld.
The positivity of 0J 0 should be tested for each location

n the volume of interest (i.e., the brain) to insure a
ontinuous 1-to-1 transformation. Since this is ex-
remely time consuming, 0J 0 was evaluated for what is
elieved to be the worst-case condition (isometric con-
raction), and a processing method developed to ensure
hat 0J 0 . 0. During OSN processing, isometric contrac-
ion can occur for the eight voxels at the common
oundary (vertex) of eight octants. This contraction
as seen when warping cubes and spheres to smaller
ersions, following centroid matching. For isometric
ontraction 0J 0 reduces to

J 0 5 1 1 (Gxx 1 Gyy1 Gzz)

1 (GxxGyy 1 GxxGzz1 GyyGzz) 1 (GxxGyyGzz),
(A.3)

here all Gii are equal. Cancellation of cross-terms was
erified by manual calculation. Equation A.3 predicts
hat 0J 0 5 0 when Gii 5 21, 0J 0 , 0 for Gii , 21, and 0J 0 .
for Gii . 21. For the 0J 0 5 0 case all eight voxels at the

ommon vertex transform (contract) to the same loca-
ion. When one or more voxels map to the same
ocation, local failure of 1-to-1 mapping occurs. To avoid
his condition we limited the magnitude of all Gij at all
ctant boundaries to less than 0.3, a somewhat conser-
ative restriction. To achieve this limit each differential
eformation field component (Dx, Dy, and Dz) was
moothed using an adaptive 1-D Gaussian filter (See
ig. 3) across all eight octant faces.
The following steps illustrate calculation of the

WHM of the Gaussian filter for the Dx component of
he deformation field along an x-directed line crossing
etween two octants:
1. The maximum value of Gxx before filtering is for

oints at the boundary between octants 1 and 2 (See

otted line in Fig. 3).At the boundary, 0Gxx 0 5 0Dx1 2 Dx2 0,
here Dx1 and Dx2 are the x-directed deformations for
ctants 1 and 2 before filtering. If 0Gxx 0 is , 0.3 no
ltering is done.
2. The postfiltering maximum of Gxx is similarly

alculated as 0G8xx 0 5 0D8x1 2 D8x2 0. The postfiltering
eformations at octant boundaries are

8x1 5 · · · 1S22Dx1 1 S21Dx1 1 S0Dx1

1 S11Dx2 1 S12Dx2 1 · · ·

8x2 5 · · · 1 S22Dx1 1 S21Dx1 1 S0Dx2

1 S11Dx2 1 S12Dx2 1 · · ·

here the Ss are the Gaussian weight factor for
ltering at distances of 0, 61, 62, . . . voxels from the
enter of the filter. During subtraction all but bold
erms cancel revealing a simple functional relationship
mong 0G8xx 0, S0, and 0Gxx 0

0G8xx 0 5 0D8x1 2 D8x2 0 5 S0 0Dx1 2 Dx2 0 5 S0 0Gxx 0 (A.4)

3. For a Gaussian filter S0 is defined as

S0 5
1

Î2ps
5

0.94

FWHM
where FWHM 5 2.35s. (A.5)

4. Combining Eqs. (A.4) and (A.5) and setting the
arget maximum value of 0G8xx 0 to 0.3 leads to a simple
quation for FWHM in terms of the prefiltering gradi-
nt magnitude

FWHM 5 3.13 0Gxx 0 (A.6)

For the example in Fig. 3, where Gxx was 10 at the
oundary prior to filtering the FWHM used for filtering
as 31.3 mm since voxel spacing was 1 mm.
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