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Abstract: Commonly used frameworks for spatial normalization of brain imaging data (e.g., Talairach-
space) are based on one or more adult brains. As pediatric brains are different in size and shape from adult
brains and continue to develop through childhood, we aimed to assess the influence of age on various
spatial normalization parameters. One hundred forty-eight healthy children aged 5–18 years were
included in this study. The linear scaling parameters and the deformations from the non-linear spatial
normalization to both a standard adult and a custom pediatric template were analyzed within SPM99. The
effect of using a brain mask on the linear and of using different levels of constraint on the non-linear
spatial normalization was assessed. Of the linear scaling factors, only the X-dimension (left–right) showed
a significant age-correlation when based on brain tissue, whereas the overall scaling was not correlated
with age. When based on the whole head, a very strong age-effect can be found in all dimensions.
Non-linear deformations also show localized correlations with age, most pronounced in parietal and
frontal areas. The total amount of volume change is significantly lower when using a pediatric template.
It is also substantially influenced by the degree of regularization that is exerted on the spatial normal-
ization parameters. Our results suggest that in the cortical areas showing a strong correlation of defor-
mation with age, caution should be used in assigning imaging results in children to a specific morpho-
logical structure. Also, to minimize the amount of deformation during non-linear spatial normalization,
a pediatric template should be used. Further implications of our findings on developmental neuroimaging
studies are discussed. Hum. Brain Mapping 17:48–60, 2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Due to the individual variability in brain morphol-
ogy, imaging data has to be spatially normalized to
allow for inter-individual comparison. This is
achieved by transforming the individual image into a
standardized stereotaxic space [Toga and Thompson,
2001]. This procedure provides a common spatial
framework for describing functional activation or
morphological changes. It makes group comparisons
possible, which not only increases signal to noise ratio
and statistical power, but also allows for the extrapo-
lation of findings to the population as a whole
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[Grachev et al., 1999; Woods et al., 1998]. There have
been several different approaches to spatial frame-
works, the most widely used being the one described
by Talairach and Tournoux [1988], based on data from
one 60-year-old female. Later approaches used larger
collections of normal brains and suggested other spa-
tial dimensions [Collins et al., 1998; Mazziotta et al.,
1995].

Normalization procedures can be divided into two
main categories. Linear approaches do a purely affine
transformation by finding the best combination of
global translation, rotation, and scaling factors to
transform a brain into a standardized stereotaxic space
(global spatial normalization). In addition, higher-or-
der, non-linear approaches may be used to match the
source image to a template (or target) image on a
regional level (regional spatial normalization), using
different mathematical approaches [Thompson et al.,
2000b]. Their common goal is to apply algorithms that
minimize the differences between the source and the
target image(s). Although spatial normalization was
initially achieved by only a global transformation, re-
cent approaches suggested additional regional non-
linear transformations to achieve a better fit of image
and template [Ashburner and Friston, 1999; Kochunov
et al., 2000; Thompson et al., 2000b].

There is some controversy about the applicability of
a common framework in general and the most widely
used framework, Talairach-space [Talairach and Tour-
noux, 1988], in particular [Ashburner and Friston,
1999; Brett et al., 2001]. Despite the increasingly wide-
spread use of spatial normalization, however, surpris-
ingly few attempts have been made to assess the ac-
curacy of this procedure. These include studies in
which the authors manually defined landmarks and
compared the “normalized” locations after applying
spatial normalization procedures [Arndt et al., 1996;
Dzemidzic et al., 1999]. Grachev et al. [1999] manually
defined 256 landmarks and compared two different
spatial normalization algorithms. Due to the lack of a
gold standard in spatial transformation, however, the
assessment of the actual registration accuracy is highly
difficult [Woods et al., 1998]. This is especially true as
the observed differences are “a combination of inter-
subject variations in identification of the landmark by
the neuroradiologist and those from spatial registra-
tion error.” [Dzemidzic et al., 1999].

Spatial normalization in children poses special
problems [Muzik et al., 2000; Toga and Thompson,
2001] as pediatric brains differ in size, composition
and shape from adult brains [Casey et al., 2000;
Courchesne et al., 2000]. This is especially relevant
because the most widely used spatial normalization

schemes incorporate information based on adult brain
data. The question of the applicability of adult brain
templates for the spatial normalization of pediatric
brain image data is of great importance to those doing
neuroimaging studies in children. One recent study
already tried to address this question within SPM96 in
a group of 13 children with epilepsy. Muzik et al.
[2000] determined the deviation of children’s outer
brain contours compared to adult’s brains after spatial
normalization to a standard adult template. The au-
thors found more variable outer contours in children
than in adults; this effect was age-dependent. They
concluded that spatial normalization to an adult tem-
plate is feasible in children 6 years or older [Muzik et
al., 2000]. Apart from using a small group of patients
with a neurological disorder, however, only a global
measure of “deviation from adult contours” is given,
and thus no inference about the location of changes
can be made. Also, the spatial normalization algo-
rithms and templates underwent major revisions and
improvements for the current version of SPM (SPM99)
used here and elsewhere [Ashburner and Friston,
1999, 2000; Gaser et al., 1999, 2001], making compari-
sons with recent and future publications difficult.
Only one spatial normalization procedure was applied
in all patients, precluding inferences on the possible
influence of different spatial normalization proce-
dures or on the contributions of linear and non-linear
components.

We address the question of a possible age-depen-
dence of different spatial normalization strategies in
normal children. Due to the variability in determining
landmarks and the ensuing uncertainties in ascribing
the results, we chose to apply an almost completely
automated image analysis procedure using SPM99.
We aimed to assess a possible influence of age on both
the affine and the non-linear spatial normalization.
The effect of the respective main regulatory influences
(using a brain mask for the affine transformation and
constraining the energy cost function of the non-linear
deformation) and the effect of using a custom-made
pediatric vs. a standard adult template should also be
evaluated.

MATERIALS AND METHODS

Subject selection

Healthy children were recruited as part of an ongo-
ing study on normal language development [Holland
et al., 2001]. Institutional review board approval and
informed consent were obtained for all subjects. Sub-
jects were recruited from the community via television
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broadcasts and information flyers. Exclusion criteria
were: history of previous neurological illness, head
trauma with loss of consciousness, current or past
psychostimulant medication, learning disability, IQ
less than 80 (measured by the Wechsler Intelligence
Scale for Children, Third Edition), birth at 37 weeks or
less of gestational age, pregnancy, abnormal findings
on clinical neurological examination, and clinical or
technical contraindications to an MRI-examination (in-
cluding orthodontic braces). A qualified pediatric neu-
roradiologist read all MRI scans for structural abnor-
malities.

Image acquisition

Children were imaged with a Bruker Biospec 30/60
3T MRI scanner equipped with a head gradient insert
(Bruker SK330). A whole-brain, T1-weighted modified
driven-equilibrium Fourier transform (MDEFT)
[Ugurbil et al., 1993] image was acquired (TR � 15
msec, TE � 4.3 msec, �-time � 550 msec, flip angle
� 20°, matrix � 128 � 256 � 96, FOV � 19.2 � 25.6
� 14.4 cm, resolution � 1.5 � 1 � 1.5 mm).

Data pre-processing

All of the automated image processing was done
using statistical parametrical mapping software
(SPM99, Wellcome Department of Cognitive Neurol-
ogy, University College London, UK) [Friston et al.,
1995] running in MATLAB (MathWorks, Natick, MA)
unless otherwise stated. Further calculations were
done using stand-alone MATLAB-scripts and custom-
ized IDL-programs (Research Systems International,
Boulder, CO).

As the single manual step in image preparation and
analysis, determination of the anterior commissure
was performed by a single investigator for all images.
During this procedure, images were also carefully
aligned along the main axes to correct for grossly
different head positions in the scanner, providing op-
timal starting estimates for the subsequent spatial nor-
malization procedures. In addition to the manual
alignment, the effect of differing head positions (pose)
was subsequently further minimized in the original
deformation using a Procrustes procedure [Bookstein,
1997] as described in Ashburner [2000]. The procedure
yields a transformation matrix, which was processed
as described below. The scans were rated (regarding
the presence of arterial blood flow-artifacts and mo-
tion artifacts) on a scale from 0 (no flow or motion
artifact) to 4 (strong flow or motion artifact). Images
with a rating of 3 or 4 were excluded from further

analysis. The remaining high-quality images (n � 148)
were reoriented in the axial plane and resliced to 1 � 1
� 1 mm isotropic voxels to reduce partial volume
effects in further processing and to achieve a better fit
with the axially oriented templates. As in all of the
other processing steps within SPM99, a sinc-interpo-
lation algorithm was used when possible. Images
were in neurological orientation, thus avoiding flip-
ping during spatial normalization.

Construction of a pediatric template

To address the possible difference pertaining to the
use of a standard adult template during non-linear
transformation, a custom pediatric template was con-
structed first from all high-quality images. These were
automatically transformed into stereotaxic space
within SPM99 by a 12-parameter affine-only, linear
transformation to avoid regional distortion of the im-
ages ([1] in Fig. 1). All images were then averaged and
written out as one template image. A corresponding,
pediatric brain mask was also created. By modeling
smoothly varying intensity changes, residual image
inhomogeneities were removed [Ashburner and Fris-
ton, 2000]. This procedure involves the estimation of
an intensity nonuniformity field, which is then ap-
plied to the image to remove these nonuniformities,
yielding an image corrected for these nonuniformities.
The function modulating the nonuniformity is forced
to be smooth to avoid fitting higher-frequency varia-
tions caused by tissue type differences rather than
field nonuniformities. The image was (according to
SPM-template specifications) smoothed with an 8 mm
Gaussian kernel to facilitate fitting [Ashburner et al.,
1997]. This template will be referred to as the
CCHMC-template (Cincinnati Children’s Hospital
Medical Center; ([2] in Fig. 1).

The affine transformation into a standard stereo-
taxic space [Mazziotta et al., 1995] was done twice,
once with and once without using a brain mask that
weighs the spatial normalization parameters on brain
tissue as opposed to simply scaling the whole head.
Because it was found that omitting brain masking
introduced a strong age effect (see Results), a brain
mask was used in the template construction and all
following spatial normalization procedures.

Data processing

Images were also spatially normalized using the
full-scale automated spatial normalization procedure
integrated in SPM99. In two separate procedures, ei-
ther the standard T1-weighted SPM99-template ([3]
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in Fig. 1) or the custom CCHMC-template ([2] in Fig.
1) was used as the target for non-linear transforma-
tions. Here, the initial 12-parameter affine transforma-
tion was followed by 16 non-linear iterations using 8
� 8 � 8 discrete cosine transform basis functions.
These aim at minimizing both the sum of squared
differences between image and template and the en-
ergy cost function of this transformation [Ashburner
and Friston, 1999, 2000]. To further describe the char-
acteristics of these deformations, the parameter re-
sponsible for the constraint of this energy cost func-
tion was set to two values (“high” or “low
regularization”). The parameters of these four trans-
formations (SPMLOW, SPMHIGH, CCHMCLOW and
CCHMCHIGH) were automatically saved and used in
further analyses ([4] in Fig. 1). See Figure 1 for all the
steps in data processing and analyses.

Determination of affine parameters

The linear scaling factors of the affine transforma-
tion were determined from the 12-parameter affine
transformation matrix. The three parameters in the
transformation resulting from simple translation were
discarded, leaving a 3 � 3 matrix whose eigenvalues

are equal to the linear scaling factors. A combined
scaling factor was obtained from the product of the
three scaling factors. This factor is equivalent to the
overall volume change attributable to linear scaling.

Determination of non-linear deformations

The processed deformation was then presented as
one image volume by computing and displaying the
Jacobian determinants for each voxel. Images were
written out in 2 � 2 � 2 mm resolution. In these
images, the pixel intensity corresponds to the volume
change this pixel underwent during spatial normaliza-
tion (�1 � volume enlargement or �1 � volume
reduction, with values closer to 1 indicating a smaller
volume change) [Gaser et al., 1999]. Consequently, the
volume of a region is decreased during spatial nor-
malization for determinants greater than one, which
means that the region is larger than the corresponding
region in the template. This deformation maps from
the spatially normalized to the un-normalized image,
it therefore represents the effect of both linear scaling
and nonlinear deformations. The Jacobian determi-
nant of an affine transformation will be a constant
value over the whole volume as all voxels are scaled

Figure 1.
Steps in data processing and analysis.

� Normalization in Children �

� 51 �



by the same factor, however, and thus undergo the
same volume change. This fact was taken advantage
of when removing the effect of the affine transforma-
tion from the original deformation, which was
achieved by modulating the deformation with the in-
dividual (combined) linear scaling factor (including
the [very small] scaling that occurred during the Pro-
crustes procedure). This procedure yields images that
represent the effect of non-linear deformations only
([4] in Fig. 1).

The final images were smoothed with a Gaussian
kernel (full width at half maximum [FWHM] � 8 mm)
to create a local weighted average of the surrounding
pixels. Due to the matched filter theorem, the width of
the smoothing kernel determines the scale at which
changes are most sensitively detected [White et al.,
2001]. This step also renders the data more normally
distributed, which increases the validity of the follow-
ing statistical tests [Ashburner and Friston, 2000].

Image analysis and statistics

The processed images from all four datasets (SPMLOW,
SPMHIGH, CCHMCLOW, and CCHMCHIGH) were ana-
lyzed within SPM99, employing the framework of the
general linear model [Friston et al., 1995]. A model
was designed in which age (in months at date of
examination) was used as the covariate of interest,
whereas gender (due to its significant influence on
brain structure) [Giedd et al., 1996] was used as a
covariate of no interest. Two contrasts were calcu-
lated, testing for a positive or negative correlation of
the value of the Jacobean determinant with the param-
eter of interest (age). Significance was set at a P-value
of P � 0.05, corrected for multiple comparisons, and
an additional extent threshold of 25 voxels. Although
the strictness of the P-value-correction has been ques-
tioned and less rigid corrections were recently pro-
posed [Genovese et al., 2001], this level of significance
was chosen to ensure the display of only very strong,
age-related differences. Significance was not based on
spatial extent as this (at least in the analysis of struc-
tural data) has been shown to increase the rate of false
positives [Ashburner and Friston, 2000].

Data visualization

The linear scaling factors were plotted versus age to
show their correlation with age. Significant results
from the analysis of the non-linear deformations were
rendered on the standard SPM-surface or on the
CCHMC-brain surface, excluding data from �10 mm
outside of the brain. This pediatric brain surface was
derived from segmentation data from the dataset used
in making the CCHMC-template.

To further characterize and visualize the total
amount of volume change during non-linear spatial
normalization, the image intensity attributable to vol-
ume increases and volume decreases was determined
separately for all pixels in the brain. This number
represents the overall amount of (negative or positive)
volume change in the brain during non-linear spatial
normalization.

To assess the distortions three-dimensionally, the
transformation of one child (the one with the median
age, a boy of 131.38 months) was visualized for a
single slice of 10 mm thickness (Z: �5/5). This was
intended as a visualization tool to demonstrate the
different effects of the non-linear transformations in a
specific example. Also, one cluster that was found to
be present in all of the SPM/CCHMC-datasets (pari-
etal; * in Fig. 3) was analyzed in all datasets to exem-
plify its spatial extent.

RESULTS

Subjects and scans

Overall, 200 children were examined. Data from 52
children was rejected due to insufficient quality, tech-
nical failure, or pathological findings, leaving data
from 148 children (79 girls, 53.4%; 69 boys, 46.6%).
Average age was 135.87 � 41.9 months (11.32 � 3.49
years), median � 131 months (10.92 years), range 60–
226.5 months (5–18.87 years) at the date of the MR-
exam. The age and gender breakdown of this sample
is given in Table I. Ethnic origin: Caucasian, 132; Af-
rican-American, 6; Asian, 5; Multi-Ethnic, 2; Hispanic,

TABLE I. Subject age and gender breakdown

Age

5–6 7–8 9–10 11–12 13–14 15–16 16–17

Female 5 15 19 11 13 8 8
Male 8 16 13 14 9 3 6
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2; and Native American, 1. All but 15 children were
right-handed.

Affine scaling parameters

When using a brain mask, only the scaling in the
X-dimension (left–right) showed a correlation with
age (P � 0.03), whereas the other scaling factors
showed no correlation with age (P � 0.12 [Y], P � 0.70
[Z]; solid symbols, solid trendlines in Fig. 2). No cor-
relation could be found between the combined scaling
factor and age (P � 0.25 [X * Y * Z]). In contrast to this,
basing the affine transformation on the whole head
introduced a severe age-correlation into all scaling
factors, which were higher in younger children and
showed a strong decline with age (P � 0.0001 [X], P
� 0.0004 [Y], P � 0.01 [Z]; open symbols, dashed
trendline in Fig. 2). The combined scaling factor’s cor-

relation with age consequentially is very strong (P ��
0.0001 [X * Y * Z]).

Non-linear deformations

The analyses of the non-linear deformations showed
similar areas with a strong age-correlation in all data-
sets, especially in parietal and frontal areas. Both sig-
nificant–positive (Fig 3, red) and significant–negative
correlations with age (Fig. 3, green) were found.
Changes were slightly less widespread in the
CCHMC-dataset when compared to the SPM-dataset,
especially in frontal areas. The correlations became
more prominent when the degree of regularization
was lowered.

Analysis of the total amount of volume change
showed a substantial difference both between the
datasets and within the datasets as a function of the

Figure 2.
Linear scaling in the (a) X-, (b) Y-, and (c) Z-dimension during the
affine transformation with (solid symbols, solid trendline) and
without (open symbols, dashed trendline) using a brain mask;

absolute value (y-axis) vs. age (x-axis, in months) during spatial
normalization to the SPM-template in all 148 subjects. d: Distri-
bution of scaling parameters.
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energy constraint. The SPM-datasets show a stronger
deformation even at the high level of constraint; this
difference becomes even more evident with a low
constraint. This data (in arbitrary units) is plotted vs.
age in Figure 4. Volume increase and volume decrease
refer to the volume changes occurring during spatial
normalization (from the image to the template).

The distortion a single slice undergoes in all four
procedures is shown in Figure 5. The data from the
parietal clusters (Fig. 3) is summarized in Table II.

DISCUSSION

We investigated three approaches to spatial normal-
ization in a normal pediatric population, all of which
are in widespread use. Linear spatial normalizations
follow the recommendations of Talairach and Tour-
noux [1988] and achieves spatial normalization by
finding the best combination of global rotation and
scaling parameters. The SPM-dataset was spatially
normalized using a standard combination of built-in

Figure 3.
Correlation of volume change during non-linear spatial normaliza-
tion with age: significant positive (red, indicating an increase of the
Jacobean Determinant in older children) and negative correlation
(green, indicating a decrease of the Jacobean Determinant in older

children) in the SPM- and CCHMC-datasets. Results are rendered
on the corresponding brain surfaces. P � 0.05, corrected for
multiple comparisons. Extent threshold � 25 voxels. *Cluster
summarized in Table II.
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features of SPM99, a widespread software solution for
the analysis of brain imaging data [Friston et al., 1995].
The CCHMC-dataset was spatially normalized taking
the additional step of creating a custom template. Such
a template will represent the anatomical features of a
specific population better than templates based on a
single brain or on different populations [Thompson et
al., 2000a]. By investigating further the effect of weigh-
ing the spatial normalization parameters on brain tis-
sue only and by looking at the deformation–energy
cost function relation, we hope to provide valuable
data for most neuroimaging studies involving chil-
dren.

It must be borne in mind that the detected changes
in the deformation analyses are not necessarily indic-
ative of the greatest difference with age: they only
show the strongest correlation of the volume changes

with age. Higher volume differences might exhibit a
weaker correlation with the parameter of interest (age)
and could therefore go undetected. Also, due to the
mathematical nature of the Jacobean determinant,
positive or negative correlation with age does not
necessarily transform into more or less deformation.
For example, a decrease of the absolute value with age
may indicate both a decrease (e.g., from 2.0 vs. 1.5: less
volume decrease [from the template to the image]) or
an increase in deformation (e.g., 1.0 to 0.5: more vol-
ume increase [from the template to the image]).

Affine scaling parameters

When based on the whole head, all linear scaling
parameters showed a decline strongly correlated with
age (Fig. 2), as does the overall scaling factor. In con-

Figure 4.
Overall volume change of brain pixels (y-axis, logarithmic scaling)
vs. age (x-axis, in months) during non-linear spatial normalization
in all 148 subjects; volume decreases (top: a: high energy con-
straint, c: low energy constraint) and volume increases (bottom: b:

high energy constraint, d: low energy constraint); SPM-datasets
(blue diamonds) and CCHMC-datasets (pink squares). Note the
much stronger effect of lowering the energy constraint on the
SPM-dataset.
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trast to this, a (much weaker) correlation with age
could only be found in the X-dimension (left–right)
when a brain mask was used, which weighs the spatial
normalization parameters on brain tissue (Fig. 2). In
line with previous studies that found no significant
increase in overall brain volume in children after age 5

[Casey et al., 2000; Giedd et al., 1996], the overall
scaling does not correlate with age. Skull and non-
brain tissue still changes substantially after this age,
however, as demonstrated by the ongoing increase in
head circumference in late childhood and adolescence
[Giedd et al., 1996], very likely explaining the striking

Figure 5.
Visualization of deformations in a single slice (10 mm thickness, Z: �5/5): SPM, high (a) and low (b)
energy constraint, and CCHMC, high (c) and low (d) energy constraint. Note slight bulging of the
center in (d) as the effect of non-linear deformation vs. the severe deformations in (b).

TABLE II. Central Talairach coordinates and anatomical location of the selected parietal clusters†

Coordinates Location

SPMHIGH �12, �80, 34 Cuneus and precuneus (L and R), middle temporal gyrus (L), superior occipital
gyrus (L), angular gyrus (L)

SPMLOW 12, �64, 52 Precuneus (L and R), superior parietal lobule (L and R)
CCHMCHIGH �8, �88, 44 Cuneus and precuneus (L and R), superior parietal lobule (L), inferior parietal

lobule (R), supramarginal gyrus (R)
CCHMCLOW �14, �88, 40 Cuneus and precuneus (L and R), superior parietal lobule (L and R), supramarginal

gyrus (R)

† Deformation analyses (*in Figure 3).
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age effect when not using a brain mask (Fig. 2). Alter-
natively to brain masking, a skull stripping procedure
could be applied, followed by normalization to a
skull-stripped template. Therefore, a simple affine
transformation already introduces a significant age-
effect when applied to children of different ages if the
procedure is not heavily weighed toward brain tissue.
If this weighting is done, a much weaker correlation
with age can be seen only in one dimension.

Our analysis of the distribution of the scaling pa-
rameters showed that they nicely follow a normally
distributed pattern (Fig. 2d) as shown before for adult
data [Ashburner et al., 1997]. The underlying assump-
tion of normality incorporated into the Bayesian max-
imum a posteriori-approach within SPM99’s spatial
normalization routines [Ashburner et al., 1997] also
holds valid for pediatric data. If and to what extent the
scaling parameters correlate with each other and if this
is comparable to what has been shown for adult data,
however, has not been investigated here.

Analyses of non-linear deformations

The analysis of the Jacobean determinant constitutes
a simple case of tensor-based morphometry, making
use of the displacement information stored in the de-
formation [Ashburner et al., 2000] that is translated
into volumetric information to analyze shape differ-
ences. By removing the effect of pose and linear scal-
ing, our images represent the effect of non-linear spa-
tial normalization only and allow investigating the
influence of both varying the constraint on the energy
cost-function and of using a custom pediatric vs. a
standard adult template.

Our analyses show that 1) there are several areas in
the brain in which the volume change during non-
linear spatial normalization is strongly correlated with
age (Fig. 3); 2) the absolute amount of volume change
occurring during non-linear spatial normalization is
considerably higher when using a standard adult
brain template compared to a custom pediatric tem-
plate (Fig. 4); and 3) lowering the energy cost-con-
straint on the non-linear spatial normalization sub-
stantially increases the amount of local deformation in
the SPM-dataset, while it has a significantly smaller
influence on the CCHMC-dataset (Figs. 4, 5).

The much weaker volume changes during non-lin-
ear spatial normalization reflect the greater similarity
between the source images and the template in the
CCHMC-dataset, as the CCHMC-template is based on
all pediatric source images. Because the non-linear
algorithm within SPM99 tries to simultaneously match
similar features between the images and minimize the

energy cost function of this displacement [Ashburner
and Friston, 1999], this energy cost minimization con-
straint imposes a limitation on the non-linear defor-
mation routines. The energy cost function benefits
from a greater overall similarity between images,
which is influenced in our sample by three main ef-
fects: 1) spatially normalizing a population to an av-
erage of themselves will in and of itself lead to an
overall better match between template and source im-
age [Meyer et al., 1999; Thompson et al., 2000a]; 2) in
contrast to the standard SPM-template, our CCHMC-
template is based entirely on pediatric brains, again
providing a closer match with the (pediatric) source
images; and 3) T1-contrast in our images and thus our
template is different than the contrast in the standard
SPM-template because our data was acquired on a
3T-scanner [Duewell et al., 1996]. Which one of these
factors is decisive in determining the degree of simi-
larity between the CCHMC-template and the source
data is at present unclear.

In this context, it seems important to point out that
although the similarity between the source images and
the CCHMC-template would in general facilitate re-
gional volume changes by “allowing” a more energy
cost-efficient displacement, this is not the case. In-
stead, the “more expensive” displacement in the SPM-
dataset remains on the order of magnitudes stronger,
underlining the differences between template and
source images. Further supporting this point is the
substantial effect the lower energy cost constraint has
on the volume changes in the SPM-dataset. In Figure
5, the difference between the CCHMCHIGH and the
CCHMCLOW-dataset is hardly discernible, as opposed
to the very obvious effect in the SPMLOW-dataset.

Our findings show that even when exploring a wide
variety of parameters within SPM99 and choosing the
combination that shows the least age-correlation (en-
abling brain masking, using a pediatric template and
high regularization), several areas in the brain will still
exhibit a correlation with age that will interfere with
the ascription of developmental changes. Care should
be taken when examining developmental processes in
children when non-linear deformations are part of the
spatial normalization protocol.

Of course, a difference in the non-linear spatial nor-
malization result is to be expected. Our imaging data
was compared to an adult template in the SPM-dataset
and to a pediatric template in the CCHMC-dataset.
Therefore, if the spatial normalization procedures
were perfect, the result in the SPM-dataset would
reflect a between-group effect (148 children vs. 152
adults contributing to the template), whereas in the
CCHMC-dataset, a within-group effect (148 children
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vs. their own average) would be modeled. The latter
would be expected to be smaller in most circum-
stances, especially in a population intrinsically differ-
ent from the one contributing to the template. There-
fore the degree of similarity in the distribution of
age-correlated areas between the SPM- and the
CCHMC-dataset is especially interesting (and reassur-
ing). Although the use of the pediatric template dra-
matically reduces the absolute amount of deformation,
deformation will still be correlated with age in overall
very similar areas. This makes studies using a pediat-
ric template comparable to adult studies with regard
to where the changes are occurring, while they will be
far superior in terms of the deformation they impose
on the images during non-linear spatial normalization.

Many of the significant changes are located on the
surface or even slightly outside of the standard brain,
whereas intra-brain findings are less pronounced.
Greater variability in cortical compared to subcortical
landmarks was found before in spatially normalized
images [Dzemidzic et al., 1999], but our findings could
also be due to inappropriate filter size (3–5 mm might
be more adequate to preserve subcortical structures)
[White et al., 2001] or poorer gray-white differentia-
tion due to the T1-contrast at high field strengths
[Duewell et al., 1996]. The age-dependent deviation of
cortical contours from adult brains is in line with
earlier findings [Muzik et al., 2000] and particularly
relevant as the most abundant use of spatial normal-
ization is in functional imaging studies. Here, cortical
activation patterns are interpreted by use of the Ta-
lairach atlas [Talairach and Tournoux, 1988] or the
Talairach daemon [Lancaster et al., 2000] in terms of
Brodmann areas (BA) on the surface of the brain.
Given our findings, significant age-dependent misreg-
istration must be expected in the areas detected in our
analyses. Even in adults, the applicability of BA’s has
been questioned because their determination in the
original Talairach brain was based on macroscopic
features and not on cytoarchitectonic data [Amunts et
al., 2000]. The situation is aggravated in pediatric neu-
roimaging as cortical topography in children is differ-
ent from adults [Blanton et al., 2001], making an “an-
atomically correct” fit even harder (or impossible) to
achieve.

With regard to the underlying mechanism, it is
likely that our findings are due mostly to shape
changes as: 1) head shape is explicitly modeled by the
low-frequency basis functions used in this approach
[Ashburner, 2000; Ashburner and Friston, 1999]; 2)
global differences in size (where existent) were re-
moved during the affine transformation; and 3) the
effect of differing head positions was removed from

the data. Other contributing factors might be changes
in the relative composition of pediatric brains during
development, like gray matter decreases and white
matter increases [Casey et al., 2000; Courchesne et al.,
2000]. The areas we could show to have a strong
age-correlation strongly resemble the areas shown by
Blanton et al. [2001] to exhibit a higher degree of
cortical complexity in older children, and cortical
shape changes and displacements have been seen in
children examined longitudinally [Chung et al., 2001].
Our findings could very well reflect a combination of
the above-mentioned factors.

Apart from the implications for functional imaging
studies in pediatrics, our findings are of major rele-
vance for all neuroimaging studies of human devel-
opment. This relevance is exemplified by the exem-
plary analysis of the parietal cluster in all datasets
(Fig. 4, Table II). The inclusion of several distinct areas
of eloquent cortex like the supramarginal or the angu-
lar gyrus in these clusters hints at the problems in
ascribing structural or functional changes related to
age in these areas. As the deformations during non-
linear spatial normalization reflect the underlying
shape [Ashburner, 2000; Ashburner and Friston, 1999],
these areas will not likely occupy the same spatial
coordinates in a younger vs. an older child or even an
older child and an adult. Functional activation would
be misascribed depending on the degree of difference.

As age-related differences between the brains of our
subjects are (at least in part) already reflected in the
individual deformations, further effects on a regional
level might not be detectable using a region of inter-
est- or voxel-based approach [Ashburner and Friston,
2000]. The analyses of deformations and voxel-based
morphometry have been suggested to complement
each other [Ashburner, 2000; Ashburner et al., 2000],
and our results suggest that if not used in conjunction,
the true amount or nature of changes might not be
revealed. In fact, recent approaches have tried to com-
bine these methods and take into account local volume
changes during non-linear spatial normalization when
doing volumetric studies [Ashburner and Friston,
2001]. This seems especially relevant for the study of
developmental processes.

Possible limitations of this study

While the aim of this study was to detect, locate, and
describe age-related differences during spatial nor-
malization, no attempt was made to determine the
ensuing “anatomical correctness” of the transforma-
tion or the direct implications for overlaying func-
tional imaging data on pediatric brains. Although the
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presented methodology might help in bringing about
answers to these questions, we felt it was beyond the
scope of this study to address specific points of inter-
est in brain. Such an approach is complicated by the
lack of a gold standard to determine this putative
“anatomical appropriateness” [Woods et al., 1998], the
mere existence of which must be questioned for tech-
nical [Ashburner and Friston, 1999] and developmen-
tal [Thompson et al., 2000b] reasons.

It should be noted that the automated 12-parameter
affine transformation, although not using information
based on a specific template, relies on a priori infor-
mation derived from the spatial transformation pa-
rameters obtained in a large number of (adult) sub-
jects. The parameters in a given individual
transformation are compared to previously obtained
values using a maximum a posteriori Bayesian-ap-
proach [Ashburner et al., 1997]. The introduction of
the Bayesian approach has been shown to be espe-
cially advantageous when poor starting estimates
were given, which particularly strengthens the ap-
proach for the use with “unusual” images [Ashburner
et al., 1997], like pediatric brains. Therefore, we are
confident that our data is both valid and reliable.

Another possible limitation of this study includes
data acquisition, which was done using a T1-weighted
sequence on a 3T-scanner, yielding a rather weak
GM/WM-contrast. With the trend toward (especially
functional) imaging at higher field strengths, our re-
sults are all the more relevant.

CONCLUSIONS

Our data leads us to draw the following conclu-
sions. As the affine scaling parameters show a strong
correlation with age when not primarily based on
brain tissue, a brain masking procedure should be
employed when pediatric imaging data is spatially
normalized. Even with this in place, scaling in the
X-dimension (left–right) must be expected to show a
correlation with age. In all examined spatial normal-
ization procedures, the non-linear deformations show
several areas where the volume change is strongly
correlated with age, hinting at underlying shape
changes. Caution should be used when describing
functional activations in children on the basis on adult
data (e.g., Talairach coordinates or Brodmann areas)
in these areas. The extent of the deformations during
non-linear spatial normalization was much less pro-
nounced when using a custom-made pediatric tem-
plate, indicating that a pediatric template should be
used during non-linear spatial normalization. If an
adult template is used, the constraint on the energy

cost-function should be increased to avoid heavy de-
formations. Further research is necessary to exactly
define the spatial translations occurring at specific
points in the brain that are implicated in functional or
structural brain development to define if and to what
extent spatial normalization procedures interfere with
the detection of these developmental changes in spa-
tially normalized images.
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