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This work proposes an alternative to simulation-
ased receiver operating characteristic (ROC) analy-
is for assessment of fMRI data analysis methodolo-
ies. Specifically, we apply the rapidly developing
onparametric prediction, activation, influence, and
eproducibility resampling (NPAIRS) framework to
btain cross-validation-based model performance esti-
ates of prediction accuracy and global reproducibil-

ty for various degrees of model complexity. We rely on
he concept of an analysis chain meta-model in which
ll parameters of the preprocessing steps along with
he final statistical model are treated as estimated
odel parameters. Our ROC analog, then, consists of

lotting prediction vs. reproducibility results as
urves of model complexity for competing meta-mod-
ls. Two theoretical underpinnings are crucial to uti-
izing this new validation technique. First, we explore
he relationship between global signal-to-noise and
ur reproducibility estimates as derived previously.
econd, we submit our model complexity curves in the
rediction versus reproducibility space as reflecting
lassic bias-variance tradeoffs. Among the particular
nalysis chains considered, we found little impact in
erformance metrics with alignment, some benefit
ith temporal detrending, and greatest improvement
ith spatial smoothing. © 2002 Elsevier Science (USA)

INTRODUCTION

Blood oxygenation level-dependent functional magnetic
esonance imaging (BOLD fMRI) is a noninvasive method for
maging vascular responses to neural activity that was first
eported in the early 1990s (Bandettini et al., 1992; Kwong et
l., 1992; Ogawa et al., 1990a,b; Turner et al., 1991). During
n fMRI experiment, a time series of brain volume images is
cquired while the subject is presented with a stimulus in-
ended to elicit a BOLD response. It is thus possible to assign
lass labels to each scan corresponding to the type of stimu-
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an be formalized as a covariate in an experimental design
atrix in the general linear model (GLM) framework (Fris-

on et al., 1995c). The time the subject is in the MR scanner
s a session, and each repeated fMRI experiment in the same
ession is an experimental run or an fMRI run. After acqui-
ition, the data are preprocessed (which includes any trans-
ormation/filtering steps) and analyzed—most often with the
oal of characterizing regions of the brain that changed their
ctivity as a result of the stimulus paradigm. We define the
erm “analysis chain” as the sequence of preprocessing oper-
tions applied to the data and final statistical modeling step.
he analysis chain ultimately results in an image of param-
ter values called an activation map or statistical parametric
ap (SPM).
The data analysis arena of fMRI research has long focused

n finding alternative statistical methods for extracting func-
ional signals or detecting regions of activation (Aguirre et
l., 1998a,b; Auffermann et al., 2001; Bandettini et al., 1993;
uchel et al., 1998; Bullmore et al., 1996; Constable et al.,
995; Friston et al., 1995c; LaConte et al., 2000; Lange, 1996,
997, 1999; McKeown et al., 1998; Ngan and Hu, 1999; Ngan
t al., 2000; Petersson, 1998; Rabe-Hesketh et al., 1997;
kudlarski et al., 1999; Tegeler et al., 1999; Worsley, 1997;
iong et al., 1996). This task has been complicated by the
nknown temporal and spatial noise structure of the data
nd the inability of any one technique to fully describe all
acets of the data (Skudlarski et al., 1999). As an alternative
o finding one all-encompassing analysis strategy, it has been
roposed that multiple models be considered simultaneously
Hansen et al., 2001; Lange et al., 1999; Tegeler et al., 1999).

hat is sometimes overlooked is the relative impact of the
reprocessing components of the analysis chain. Much of the
eed for preprocessing arises from limitations of the fMRI
ata acquisition, which include (i) hardware effects such as
lectronic noise, finite precision of data collection/storage,
nd sensitivity to physical phenomena of interest (such as
he BOLD effect) and (ii) physiologic effects such as patient
ovement, physiologically derived noise, and the intrinsic

onstationarity and nonlinearity of the brain itself. While
uch work continues to be performed to improve data acqui-
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us present during its acquisition (e.g., stimulus, control). We
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ition, the complex and poorly understood nature of the data
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and data analysis modeling within a theoretical framework
derived from first principles.

Considering the difficulties and unknowns inherent in try-
ing to appraise the analysis chain with a theoretical ap-
proach, empirical methods of evaluation are an appealing
alternative. The most accepted tool is the receiver operating
characteristic (ROC) analysis (Constable et al., 1995; Hansen
et al., 2001; Le and Hu, 1997; Metz, 1978; Skudlarski et al.,
1999; Xiong et al., 1996), measuring a method’s accuracy by
comparing the true-positive fraction of activated pixels
against the false-positive fraction varied over some modeling
parameter (e.g., significance level in the case of a t test data
analysis model). Since this approach aims to discriminate
between activated and nonactivated spatial regions, simu-

lated data are required to assess what is “true” and what is
“false.” Unfortunately, this approach suffers from the same
limitations that restrict our ability to start from first princi-
ples; it is currently impossible to simulate a completely com-
prehensive data set since the phenomena contributing to
signal and noise components of the data are ill-characterized.
In this study of preprocessing methodology, we illustrate an
alternative to spatial ROC analysis that avoids simulations
by making use of the nonparametric prediction, activation,
influence, and reproducibility resampling (NPAIRS) frame-
work (Strother et al., 2002). Specifically we use the measures
of SPM reproducibility and model prediction accuracy from
known temporal information to evaluate the impact of pre-
processing within the analysis chain.

FIG. 1. Split-half resampling used to obtain reproducibility and prediction performance metrics. This figure illustrates the use of
split-half resampling to obtain global SPM reproducibility and model prediction accuracy as provided by the NPAIRS framework (see text).
A given data set consisting of fMRI image data and a corresponding design matrix are split symmetrically and termed “training” and “test.”
The training data are used to estimate parameters for a predetermined model. This model is then applied to the test fMRI images to estimate
the design matrix for this split. Comparison of the predicted design matrix and the true design matrix led to an estimate of the training
model’s prediction accuracy. A completely symmetric process occurs by swapping the split designations of training and test, leading to a
second model and a corresponding prediction accuracy estimate. Further, a subset of the model parameters from both training splits comprise
the SPM. Thus a global pattern reproducibility metric is obtained by comparing the two SPMs.
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Reproducibility is the ability to repeat an experiment or
analysis and achieve consistent results. An important theo-
retical result demonstrated herein (and consistent with
Strother et al., 2002) is that the reproducibility of (unthresh-
olded) activation maps as explored in Strother et al. (1997)
and Tegeler et al. (1999) is monotonically related to the global
signal-to-noise ratio (SNR) produced by the analysis chain.
Prediction accuracy in neuroimaging has been described in
Hansen et al. (1999), Kjems et al. (2002), Kustra and Strother
(2001), Mørch et al. (1997), and Strother et al. (2002). The
idea of formally using independent training and test sets to
validate statistical models was introduced by Stone (1974)
and is known as cross-validation. This has greatly influenced
the rapidly evolving area of predictive learning in statistics
(e.g., Cherkassky and Mulier, 1998; Ripley, 1996).

NPAIRS utilizes split-half resampling (a combination of
twofold cross-validation and the delete-half jacknife) to esti-
mate reproducibility and prediction by estimating model pa-
rameters on half of the data at a time and testing these
parameters on the remaining half. To obtain prediction, we
model the known temporal evolution of the experiment. If
this model generates an SPM, then a comparison of model
reproducibility is possible by, for example, correlating the
SPMs across splits. Thus the prediction/reproducibility met-
rics provide an empirical means of methodologic validation
that is specific to the data of interest and avoids dependence
on simulation. Since we are using temporal classification
labels to obtain prediction, it is also possible to perform ROC
analysis temporally and substitute prediction for some de-
tectability metric such as area under the ROC curve. Predic-
tion, however, is a more general metric as it is more easily
extended beyond the binary classification problem. With ei-
ther prediction or another detection measure, reproducibility
is vital to this framework because it allows us to account for
the spatial patterns associated with the temporal model.

It should be stressed that our proposed performance metric
framework is quite flexible. To measure reproducibility, any
statistical model generating an SPM is sufficient. Prediction
accuracy estimates require some assumed truth (e.g., brain-
state class labels) that may be used to define a prediction
error metric. Canonical variates analysis (CVA), the multi-
variate extension of Fisher’s linear discriminant analysis,
satisfies both of these requirements. As has been previously
presented (Bullmore et al., 1996; Fletcher et al., 1996; Friston
et al., 1995a; Kjems et al., 2002; Kustra and Strother, 2001;
Muley et al., 2001; Strother et al., 1996, 2002; Tegeler et al.,
1999; Worsley et al., 1997), we apply CVA to fMRI images
with brain-state class labels to obtain model parameters,
including a SPM. To obtain reproducibility estimates, SPMs
from each data split are compared. Prediction measures are
estimated by classifying the test data based on the model
parameters obtained from independent training data. Our
perspective is that the data-driven performance metrics mea-
sure the interaction of the final statistical modeling step with
all manipulations in the fMRI experiment and the analysis
chain. For the purposes of this study, we define an analysis
meta-model as including all parameters in the analysis chain
defined by all preprocessing parameters and the final statis-
tical model parameters. Note that this approach could also be

extended to include all experimental, imaging, and image
reconstruction parameters if desired. As our goal is to dem-
onstrate NPAIRS for evaluating the impact of preprocessing
decisions within our analysis chain, we perform CVA classi-
fication on differently preprocessed versions of the data, ob-
taining many analysis meta-models to evaluate. To explore
and summarize the performance metric results from these
meta-models, we utilize a second CVA discriminant analysis
of the performance metrics themselves to characterize vari-
ations across models.

The targeted preprocessing choices for this study are (1)
spatial smoothing, (2) alignment of whole-brain fMRI scans,
and (3) temporal detrending. Here, spatial smoothing is used
to increase the SNR of the data via spatial averaging, but
other reasons for smoothing include allowing for more reli-
able intersubject averaging and stabilizing results from
Gaussian random field analysis (Friston et al., 1996; Poline et
al., 1997; Worsley et al., 1992, 1996a,b). The disadvantage of
liberal smoothing, of course, is the loss of spatial resolution.
Postacquisition alignment techniques have been proposed to
mitigate the effect of subject motion artifacts (Woods et al.,
1999). Some researchers, however, are concerned that these
procedures introduce artifacts of their own [e.g. increasing
the strength of autocorrelation structure (Lowe et al., 1998)].
Temporal detrending is used to remove low-frequency drifts
and is equivalent to high-pass filtering; however, this also
changes the temporal autocorrelation structure of the data
(Friston et al., 1995b; Skudlarski et al., 1999; Worsley and
Friston, 1995).

Previous studies have examined optimal processing of
fMRI data, relying upon ROC analysis. We must be careful to
point out that in the following analysis (as in an ROC anal-
ysis), we do not claim to have discovered the optimal analysis
chain for the data at hand. Instead, we outline a rational
means of evaluating and comparing analysis methodologies
without reliance upon simulation, and our results suggest
several fruitful directions for future study of analysis meth-
odology in our data.

THEORETICAL BACKGROUND

Our application of the NPAIRS framework for obtaining
reproducibility and prediction performance metrics for a
given meta-model and data set is illustrated in Fig. 1. The
data set consists of the preprocessed fMRI image data as well
as the corresponding design matrix, which accounts for any
known experimental parameters (e.g., the brain-state class
labels of each scan). The cross-validation resampling ap-
proach generates two sets of final statistical model parame-
ters by alternately designating half of the data as “training.”
Two prediction accuracy estimates are obtained by applying
both training models to the corresponding “test” image data,
producing predicted design matrices that are then compared
to the test design matrices. One meta-model reproducibility
estimate is obtained by comparing the similarity of the two
training set SPMs. The final statistical model that we have
chosen to illustrate the NPAIRS framework is CVA. Impor-
tant details of CVA in the context of neuroimaging within the
split-half resampling framework, as well as concepts of pre-
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diction accuracy and SPM reproducibility, are outlined be-
low.

Canonical Variates Analysis with Principal Components
Analysis

Principal component analysis (PCA) for reducing data di-
mensionality and controlling model complexity as well as
CVA for producing linear, multivariate discriminant func-
tions for separating brain-state class labels such as stimulus
or baseline scans have been described in previous functional
imaging contexts (Bullmore et al., 1996; Kjems et al., 1999,
2002; Kustra and Strother, 2001; Lange et al., 1999; Strother
et al., 2002; Sychra et al., 1994; Tegeler et al., 1999). The
following illustrates PCA/CVA in relation to the fMRI data
space using linear algebra concepts [see Strother et al. (2002)
and Kjems et al. (2002) for a probabilistic treatment of CVA
as well as a multivariate statistics text such as Mardia et al.
(1979) for a general development].

We define our data matrix, X, to have each column corre-
spond to a BOLD image volume at a specific time and each
row to the time course of a specific voxel at a specific brain
location. In neuroimaging contexts, the number of voxels (M
rows) is typically much larger than the number of time scans
(N columns), which can be represented by XMxN. Without loss
of generality, we constrain our row time series to be zero
mean by removing the mean image volume across each fMRI
procedure. In addition we normalize each column brain vol-
ume by its mean as in Moeller and Strother (1991). PCA is a
convenient means of reducing the dimensionality of the data
by producing a square matrix, QNxN. We obtain Q through a
singular value decomposition (SVD) of X.

U TX � �V T � Q. (1)

By convention the eigen-time series (the principal compo-
nents comprising the rows of Q) are ordered by the amount of
variance they account for. It is common practice to truncate
the latter, small-variance components for complexity control,
resulting in Q*N*xN. The standard problem then becomes that
of how many components should be removed (Hansen et al.,
1999). Keeping too many components is analogous to overfit-
ting, or fitting to the noise, which leads to increased model
variance. Keeping too few components, however, corresponds
to having a model that is too simplistic to be accurate, which
manifests itself as bias. In either extreme, the resulting
model does not adequately describe the observed data and is
not optimized for describing future observations [two recent
examples of these considerations are found in Mørch (1998)
and Kjems et al. (2002), treatment of sample-size-dependent
learning curves].

To perform a CVA of Q* we calculate the canonical vector
matrix, L, from the eigenvectors of W�1B (where W is the
within-class variance and B is the between-class variance).
Thus, L defines directions that maximize B while minimizing
W. Now calculate

C � L TQ* � L TU T*X, (2)

where each row of C (ci, i � [1,N*]) holds the canonical score
(or canonical variate) for the ith CVA dimension and the jth
column (j � [1,N]) represents the class-labeled observations
in the canonical space for the jth image volume. Class mem-
bership can be defined by defining threshold boundaries for
each canonical score, resulting in separating hyperplanes
within the row space of C. We have chosen an alternative
classification that lends itself to Bayesian interpretation;
each class is viewed as belonging to a multivariate Gaussian
distribution in the canonical space (Strother et al., 2002). The
columns of the matrix LTUT* are termed canonical eigenim-
ages and are the SPMs obtained from PCA/CVA.

Prediction Accuracy and Split-Half Resampling

Resampling methods such as cross-validation are a non-
parametric approach used to estimate prediction risk. They
do not rely on assumptions about the statistical distribution
that generated the data at the cost of being more computa-
tionally expensive than derived analytical models [e.g., the
final prediction error of Akaike (1970); Ripley, 1998)]. The
NPAIRS framework as described in Strother et al. (2002)
relies on “split-half resampling,” defined as twofold cross-
validation applied to every possible combination of data
splits. For the reproducibility estimates, it is convenient to
have symmetric splits; in Strother et al. (2002), small but
significant reductions in r for 5–3 versus 4–4 spits were
observed. In this work, we use two repeated fMRI procedures
resulting in only one possible split. In this case, the split-half
resampling reduces to twofold cross-validation, the descrip-
tion of which follows from the more general treatment of
k-fold cross-validation found in Cherkassky and Mulier
(1998) and Efron and Tibshirani (1993).

Step 1. Divide the data, X, into two disjoint samples of
similar size. X � {X1,X2}.

Step 2A. Estimate one model (M1) from X2 and the other
(M2) from X1.

Step 2B. Estimate the first prediction accuracy value (P1)
by applying M1 to X1, and the second (P2), by applying M2

to X2.
Step 3. Calculate average prediction accuracy by averag-

ing P1 and P2.
In terms of the PCA/CVA model in the previous section,

applying M1 corresponds to using the canonical eigenimages
(LTUT* in Eq. [2] obtained from X2) to X1 and using the
corresponding separating hyperplanes to classify each class-
labeled brain volume. We define prediction accuracy as the
posterior probability for each scan’s true class membership,
using Bayes formula

P[true class membership�test data; training model]

� (1/K)P[test data�true class membership; training model]

� P[true class membership],

(3)

where K is chosen such that the posterior probabilities for
each class sum to 1. The likelihood term
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P[test data�true class membership; training model]

� exp[�1
2� LTUT* (xte � x� tr

c )� 2] (4)

uses the perspective of each class belonging to a multivariate
Gaussian distribution and is dependent on the Euclidean
distance between the mean training-set scan for the class, x� tr

c ,
and the test set scan xte. The prior probability, P[true class
membership], is assigned by the relative frequency of each
class in the training data. We scale our prediction accuracy
measurements to range from 0 to 1, producing normalized
predictions Pn1, Pn2, and their average, P� n (Strother et al.,
2002).

Our CVA procedure relies on the number of PCs used to
control model complexity. Moreover, we are applying this
approach for a wide variety of preprocessing strategies. It has
been noted previously (Cherkassky and Mulier, 1998; Fried-
man, 1994) that a single resampling in the case of complexity
control and methodologic comparisons results in an optimis-
tic prediction accuracy estimate. We have not followed the
prescribed double resampling here because of constraints in
the amount of data and because our aim is to demonstrate
the ability to evaluate relative performance for different
methodologies rather than focus on the true predictive ability
of our models.

Reproducibility and SNR of an Analysis Model

Here we are measuring reproducibility as the correlation
between two SPMs. Since the PCA/CVA procedure is only
defined up to an arbitrary sign, we use the reference set
filtering described in Strother et al. (2002), which results in
positive values of r (small negative values are possible in
cases of low SNR). Strother et al. (2002) derived the relation-
ship between SPM reproducibility and the SNR of the repro-

ducible SPM (rSPM). The relationship highlights the fact
that the parameters of a given meta-model, including all data
analysis model parameters, are subject to uncertainty and
gives us some notion of the power of the modeling procedure.
The rSPM is obtained from two SPMs (each normalized by its
respective SD) whose similarity is in question. When plotted
against each other, they produce a scatter plot with each
common voxel represented as a data point. Figure 2A dem-
onstrates this scatter-plot concept with results from an indi-
vidual subject two-class CVA from both run 1 and run 2 as
described later under Methods. The rSPM is the projection
onto the direction of maximal signal within the scatter plot
(the solid line in Fig. 2A). The uncorrelated noise image
(nSPM) is defined by the direction perpendicular to the rSPM
(the dotted line in Fig. 2A). The signal and noise directions of
the scatter plot are found through PCA of the correlation
matrix,

�1 r
r 1� � �

1

�2

1

�2
1

�2

� 1

�2
��1 � r 0

0 1 � r��
1

�2

1

�2
1

�2

� 1

�2
� (5)

and correspond to 45° and 135° with variance (1 � r) and (1 �
r), respectively. Note that r is the correlation coefficient of the
two SPMs. The utility of this SNR representation is that the
rSPM can be interpreted as a z score pattern, denoted
rSPM(z), when scaled by the noise axis SD (�1 � r) under the
assumption that the noise distribution is Gaussian.

Moreover, Strother et al. (2002) proposed that, if we as-
sume a Gaussian signal distribution, the spread of the tails of
the normalized signal histogram could be summarized with
the familiar concept of the confidence interval.

FIG. 2. Global SNR of an analysis. (A) Scatter plot of first canonical eigenimages (SPMs) in runs 1 and 2 for a two-class (force, baseline)
CVA. Each data point represents a single voxel. The solid line represents the signal axis and the dotted line represents the noise axis from
the major and minor PCA axes of the scatter plot after each axis was normalized by its standard deviation. (B) The signal (solid line) and
noise (dotted line) histograms obtained by projecting the scatter plot data onto each corresponding PCA axis and normalizing by the noise
axis standard deviation. The thin solid line is the theoretical N�(0,1) distribution.
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CI(z) � (z1��/2 � z�/2)�1 � r

1 � r�
1/2

(6)

and the approximation

log(CI(z)1��) � log(2z1��/2) � (log e)�r �
r3

3
�

r 5

5 � (7)

Equation (7) demonstrates that the reproducible Gaussian
signal distribution may be thought of as being made up of a
fixed noise distribution (with r � 0) and a signal that scales
approximately linearly with r.

Figure 2B summarizes the scatter plot in Fig. 2A on a z
score scale after the major and minor axes have been nor-
malized by the minor axis SD. The thin solid line is the
theoretical N(0,1) distribution. The dotted and thick solid
lines represent the noise and signal histograms, respectively,
both normalized by the noise standard deviation.

METHODS

Data Acquisition

Behavioral protocol (the static force paradigm). The par-
adigm used for this study was a block design with each run
similar to the PET static force protocol 2 described in Muley
et al. (2001). Volunteers were visually cued to alternate be-
tween resting quietly while passively viewing the visual feed-
back screen (control state) and applying a randomly pre-
sented force level with the right thumb and forefinger to a
force transducer (force state). The force levels used were
200g, 400g, 600g, 800g, and 1000g, and the visual stimulus
was back-projected onto the bottom one-third of a screen at
the foot of the scanner couch. Each baseline stimulus lasted
45 s and consisted of two red lines with a static yellow line in
between. This was followed by a brief, 4-s transition period
indicated by a “GET READY” message, prior to a 45-s force
stimulus consisting of high and low boundary lines and a
moving white trace line displaying the force applied to the
transducer. The force stimulus boundary lines were constant
across force level, requiring the subject to quickly adjust to a
randomized force by trying to maintain the white trace line
within the boundaries. The 45-s force period was ended with
a sudden transition back to the static yellow line baseline
stimulus. In all, each force level was presented once per
procedure and was preceded and followed by a baseline pe-
riod for a total of six baseline periods and five transition and
force periods per procedure. This task was practiced prior to
fMRI data collection outside (and briefly inside) the scanner
until the subject could reliably stay within the boundary
lines at each force level.

MRI. The data for this study were collected on a 1.5-T
clinical scanner (Siemens Medical Systems, Iselin, NJ) with a
standard quadrature head coil. An initial high resolution
T1-weighted anatomical scan was taken using a 3D FLASH
sequence [TR � 35 ms; TE � 6 ms; FA � 45°; NEX � 1;
FOV � 165 � 220 mm; matrix, 192 � 256; slab thickness, 180
mm; number of slices, 180; voxel dimensions, 0.86 � 0.86 �

1.0 mm; orientation, oblique transverse (axial), 20°; shift
mean, 6.4 mm (center of slice relative to magnet isocenter);
imaging time, 20 min]. In all but the first four volunteers in
this study, a second anatomic scan was acquired after the
fMRI runs. This second anatomic MRI was identical to the
first except the voxel dimension in the slice direction was
doubled (number of slices, 90; voxel dimensions, 0.86 �
0.86 � 2.0 mm; imaging time, 10 min).

The fMRI runs were acquired using an EPI BOLD se-
quence [TR � 3986 ms; TE � 60 ms; FA � 90°; NEX � 1;
FOV � 220 � 220 mm; matrix, 64 � 64; slab thickness, 150
mm; number of slices, 30; number of time points, 135; voxel
dimensions, 3.44 � 3.44 � 5 mm; orientation, oblique trans-
verse (axial), 20°; shift mean, 6.4 mm (center of slice relative
to magnet isocenter); imaging time per procedure, 9 min].

Data acquisitions for the first four volunteer subjects con-
sisted of the anatomic scan followed by three fMRI runs. Of
these, the best two (based on assessment of motion—see
“Preliminary Data Analysis”) were used. All other subjects
had a first anatomic scan followed by two fMRI procedures.

Subjects. Seventeen subjects were recruited from the
community surrounding the University of Minnesota Twin
Cities campus. Sixteen of the seventeen were included in this
study after screening for motion (maximum pixel move-
ment � 0.5 cm), performance of the task, and general image
quality. The 16 subjects were composed of 8 men (ranging in
age from 25 to 44 years with a mean of 31 year ) and 8 women
(ages 19 to 44 years, mean 25 years). All subjects tested
right-handed with the Edinburgh handedness inventory
(Oldfield, 1971) and underwent a neurologic examination as
in Muley et al. (2001).

Data Analysis

The software used for this work was written in IDL. The
NPAIRS algorithm is part of the VAST software library
(http://neurovia.umn.edu/incweb/npairs_info.html) at the VA
Medical Center, Minneapolis, Minnesota.

Preprocessing. As the relative impact of preprocessing on
the analysis chain is the focus of this investigation, we out-
line our generic methodology and its variations. The ap-
proach taken here was to (1) align each fMRI volume and
resample it into a Talairach reference space (Talairach and
Tournoux, 1988), (2) spatially smooth these volumes, and (3)
remove confounds by performing volume mean normalization
and then removing temporal trends and experimental block
effects within a GLM framework.

FMRI scan alignment was implemented with the auto-
mated image registration (AIR 3.08) program (Woods et al.,
1998). The anatomic and fMRI data were first stripped of
scalp, eyeballs, fat, and other structures, providing a mask of
brain voxels. After stripping, AIR was used to obtain a six-
parameter alignment transformation for each masked 3D
fMRI volume (from both experimental runs), bringing that
volume into alignment with the first scan of the first proce-
dure. As an alternative, the case of no fMRI scan alignment
was also considered (effectively corresponding to the identity
transformation for each individual scan).

Talairach resampling was ultimately affected by applying
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a single interpolation step to each fMRI scan. This transfor-
mation was derived from the fMRI scan alignment transfor-
mation (the identity transformation for the case of no align-
ment), a mean fMRI-to-structural MRI transformation, and a
structural-to-Talairach transformation. The mean fMRI-to-
structural MRI (6-parameter) transformation also used AIR
3.08. Applying the fMRI alignment transformations and sim-
ply averaging the scans calculated the mean fMRI volume.
For the case of no alignment, a separate mean volume for
each experimental procedure was obtained. The structural
MRI-to-Talairach transformations used 12 parameters to
map the structural volume for each subject to a Talairach
reference volume.

Smoothing was achieved by convolving each axial slice of
each volume with a 2D Gaussian kernel. The amount of
smoothing applied was dependent upon the full-width at
half-maximum (FWHM) of the smoothing kernel, which took
pixel values {0, 1.5, 6.0} multiplied by the in-plane pixel size
(3.44 � 3.44 mm). For simplicity, we refer to these smoothing
levels as {no, low, and high} smoothing, respectively.

After volume mean normalization, temporal detrending
was performed by using a linear combination of cosine basis
functions within the GLM framework as suggested by
Holmes et al. (1997); cosine and constant terms constituted
the covariates within a design matrix and the residuals of the
GLM model were retained as the detrended data. The num-
ber of cycles used per procedure was {0, 0.5, 2.0 cycles}. In all
cases, the DC term (run mean) was also subtracted from each
time course. Thus, we referred to the detrending levels as {dc,
low, and high} detrending. Note that this is a modification
from the procedure reported in LaConte et al. (2001); there,
run means were only removed in the case of 0.5 and 2.0 cycle
detrending. For the “no detrending” case in LaConte et al.
(2001), run means were removed before the PCA/CVA step
for the training data, and this training mean was also re-
moved from the test data (rather than the actual test-data
mean).

In total, 10 preprocessing combinations were studied; 1
was no preprocessing (i.e., dc detrending, no smoothing, and
no alignment) and the other 9 were combinations of the three
detrending and three smoothing levels with alignment.

Preliminary data analysis. As standard practice, we ad-
vocate an initial screening of data preceding a full-blown
analysis. In many cases this step is as simple as screening
the data for motion or surveying a handful of scans for the
presence of distortions. In this case, the initial investigation
was more thorough and was used as a guiding step for pro-
ceeding with the analysis. Our general philosophy was to
explore the data set for inherent structure (without imposing
a priori knowledge) and then to examine flexible models
before committing to any particular model (Bullmore et al.,
1996, 2000; Rabe-Hesketh et al., 1997; Strother et al., 1995).

An initial PCA study was used to explore the data of
individual subjects by applying it to Talairach aligned vol-
umes with no smoothing or detrending. Possible structures of
interest were PCs that appeared to correspond to the exper-
imental stimulus design and aberrant components corre-
sponding to undesirable phenomenon. As part of the initial
PCA study, the initial scans before T1 relaxation reached

equilibrium were identified and removed. After removing the
initial scans, the AIR3 alignment calculations were per-
formed with respect to the new “first” time point, and then
new fMRI-to-fMRI and fMRI-to-structural transformations
were calculated as previously described. This second align-
ment was used to estimate maximum and mean pixel dis-
placement to screen for subject motion.

FIG. 3. Exploratory PCA of an AIR3 aligned dataset (no smooth-
ing or detrending). The initial scans before T1 relaxation has reached
equilibrium in both run drive the greatest portion of the variance
(PC1) and are also apparent in subsequent components. After re-
moval of the first three scans in each run, the components shown
here were “promoted” (PC2 became PC1, etc.) with original-to-pro-
moted correlation coefficients of 1.00, 0.99, 0.95, and 0.99, respec-
tively. The percentages of variance explained by promoted compo-
nents are shown in parentheses.
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After removal of the nonequilibrium scans, flexible CVA
models were explored. Both data procedures were used to
build one 22-class and two 11-class models for each subject.
The data were preprocessed with high detrending, low
smoothing, and AIR3 alignment. For the 22-class CVA, each
control and force period in each run had a unique class label.
Class labels for the 11-class CVA consisted of the 6 class
labels based on the temporal order of the control periods and
5 class labels for each of the force levels that was randomized
in time for a single procedure. Only scans acquired entirely
within the 45-s control and 45-s force states (neglecting the
4-s “ready” effect) were considered. Therefore, three to four
scans acquired during the transition from control to force
(between scans 11 and 14, 33 and 37, 56 and 60, 79 and 82,
and 102 and 105), as well as two transition scans from force
to control (between scans 23 and 25, 46 and 48, 69 and 71, 92
and 94, and 115 and 117) were excluded from the analysis.
The variability of excluded scans arose from slight variations
of timing between the fMRI stimulus task control and the
scanner acquisition TR of 4 s. On average, 30 time points
(initial scans plus transition scans) were excluded from the

total 135 scans in each procedure. Both the 22-class and the
11-class CVA models were built on the first 50 PCs (of the
average possible 210 and 105, respectively).

Study of the analysis chain. The focus of this article is on
the evaluation of preprocessing decisions within an analysis
chain, with each analysis chain resulting in a meta-model
that includes the parameters for the preprocessing opera-
tions as well as the final statistical analysis. In our specific
case, an analysis chain is composed of the Talairach resam-
pling, smoothing, and detrending operations as well as the
PCA and CVA steps. For each of the 16 subjects, two meta-
models (one for each run) were derived for each of the 10
combinations of preprocessing methods described above us-
ing five levels of model complexity {10, 25, 50, 75, and 100
PCs}. Thus, the procedure depicted in Fig. 1 was applied 800
times. As in our initial data exploration, transition scans
(those not exclusively acquired during only control or force
periods) were removed from the PCA/CVA step, leaving ap-
proximately 105 scans in each run. Based on results of our
initial data exploration (described below) and to avoid the

FIG. 4. Twenty-two class CVA of three subjects (A–C) preprocessed with high detrending, low smoothing, and AIR3 alignment. Each
block of baseline and force scans in both run was designated by a unique class label (for visualization, force levels are illustrated with their
relative symbol size) as in (D). For each procedure, open symbols represent the mean canonical variable values for the scans in each baseline
block; closed symbols and their sizes represent the mean force levels. Circles and crosses represent the first and second procedures,
respectively. (A–C) Arrows represent the temporal order of block-to-block transitions, and the bold lines each represent one possible
discriminant boundary between baseline and force classes.
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FIG. 5. Eleven-class CVA of run 2 of an individual subject preprocessed with high detrending, low smoothing, and AIR3 alignment. Each
baseline segment and force block was designated by a unique class label as shown in (D). (A–D) Open symbols represent baseline, closed
symbols represent force (with relative size indicating force level). The connecting arrows in (A) show the temporal evolution of the
experiment. Canonical variables one and two are shown in (B) and (C), respectively, and are arranged to illustrate their relation to (A). The
top 1% of values from the canonical eigenimages corresponding to canonical variables 1 and 2 are superimposed on anatomic data and shown
in (E) and (F), respectively.
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FIG. 6. Prediction accuracy versus SPM reproducibility for four individual subjects (A–D). These plots are the NPAIRS alternative to
ROC analysis. The optimal graph location, representing the ideal data set and analysis should provide perfect prediction and reproducibility
(p,r) � (1,1). Each curve represents a combination of smoothing, alignment, and temporal detrending analyzed with a range of simple to
complex models (i.e., the number of PCs). See key in lower portion of (D). These curves depict a tradeoff between reproducibility, the match
to the experimental design structure (prediction), and model complexity (degrees of freedom).
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additional complexities of a multidimensional result per
meta-model we used a two-class (task and control) CVA sta-
tistical model. As provided by the NPAIRS framework, re-
producibility and prediction metrics were used to evaluate
the meta-model choices. For each subject, the meta-model for
each run produced a SPM and the correlation coefficient
between the two SPMs was calculated. Similarly, the predic-
tion accuracy for both models were calculated.

RESULTS

Preliminary Data Analysis

Figure 3 illustrates the utility of PCA for separating the
fMRI time series into interpretable variance components in
the two repeated runs from a single subject. The data are
AIR3 aligned without smoothing or detrending. Shown are
the first five principal components before removal of the
initial scans (those before T1 relaxation has reached equilib-
rium). These first three preequilibrium scans in both proce-
dures are clearly outliers and drive the greatest portion of the
variance in the data as indicated in the first component and
are observable, although subtle in effect, in PC 3 and PC 4.
Upon removal of these initial scans in both procedures, the
new PCs largely represent a promotion of the originals (PC 2
correlates almost perfectly with the new first PC after the
initial scan removal�see the legend to Fig. 3 for precise
correlation values). These remaining PCs suggest stimulus-
coupled effects (PC 2 and PC 3) and procedure differences
(PC 2, PC 3, and PC 4), coupled with equilibration of low-
frequency fluctuations such as movement (PC 4) and other
higher frequency (perhaps physiologically derived) compo-
nents (PC 5).

Three individual subject results typifying our findings
from the 22-class CVA are shown in Fig. 4 (see Fig. 4D for a
graphical reminder of the class structure). Displayed is the
c1, c2 subspace (the first two rows of c). Recall that these are
the two canonical variables that explain the most variance in
the W�1B matrix and thus define the directions that give the
best separation between the chosen class structure while
simultaneously minimizing the pooled, within-class disper-
sion. Each symbol represents the class-mean canonical vari-
able values for the scans in each baseline or force block. Most
striking is the nonstationary baseline-force response from
run to run. For example, the subject in Fig. 4A shows similar
baseline-force pairs within each run, but run 1 is nearly
perpendicular to run 2 in the c1, c2 plane. In Fig. 4B, the
baseline-force response is nearly the same for both proce-
dures other than the first few baseline-force pairs. The sub-
ject in Fig. 4C has a run 2 response much like that in Fig. 4A.
The first run in Fig. 4C, however, is unusual in that it has
three distinct baseline-force pair directions: (i) horizontal
(e.g., the baseline one to force one pair), (ii) positive diagonal
(e.g., force one to baseline two), and (iii) negative diagonal
(e.g., baseline three to force three). The bold lines in Figs.
4A–4C illustrate that the mean baseline-force effect in both
runs is linearly separable for each subject. Such a discrimi-
nant boundary existed for all but one subject (not shown).
Beyond the baseline-force effect, no other structure (such as
temporal order of the experimental blocks or separation of

the individual force levels) was consistently observed across
subjects.

Figure 5 demonstrates the results of the 11-class CVAs
(see Fig. 5D) applied to run 2 of an individual subject and
illustrates the temporal and spatial information provided by
a CVA. Figures 5B and 5C represent the first and second
canonical scores. Figure 5A shows the mean class locations in
the c1, c2 space as derived from Figs. 5B and 5C. Figures 5E
and 5F represent the first and second canonical eigenimages
obtained from the columns of the LTUT* matrix [Eq. (2)],
respectively, superimposed on the anatomic data. Shown in
Figs. 5E and 5F are the 1% extreme values (top 0.5% positive
values in red and bottom 0.5% negative values in green,
which are both shown since sign is arbitrary in CVA). The
SPM in Fig. 5E, which corresponds to the time course in Fig.
5B, shows a different pattern from Fig. 5F (corresponding to
the time course in Fig. 5C). To qualitatively summarize the
results for the other subjects (data not shown), most 11-class
CVA results were able to clearly discriminate force and base-
line, but showed little other consistently discernible struc-
ture.

Study of the Analysis Chain

Evaluation of prediction versus reproducibility. Figure 6
demonstrates the relationship of prediction and reproducibil-
ity metrics for four individual subjects. Each curve repre-
sents a combination of smoothing, alignment, and temporal
detrending analyzed with a range of simple to complex mod-
els (i.e., number of PCs). As in an ROC analysis, the predic-
tion versus reproducibility plots have a clear optimal graph
location: the ideal data set and analysis chain should provide
perfect prediction and reproducibility (p,r) � (1,1). This re-
sult, however, is impossible to obtain in practice, as perfect
reproducibility (r � 1) requires infinite SNR. Thus decisions
within the (p,r) space should take into account that each
curve depicts a tradeoff between reproducibility (SPM SNR),
the match to the experimental design structure (prediction),
and model complexity (degrees of freedom). The most striking
feature for these single-subject plots is the differences across
subjects. In Fig. 6A, sensitivity to the various analysis chains
seems to be primarily in the direction of prediction accuracy,
with detrending having the largest impact (in the order of dc,
high, low). Moreover, within each of these detrending levels,
there is an ordering with degree of spatial smoothing. Repro-
ducibility in Fig. 6B tends to be highest with low model
complexity, while prediction tends to favor high model com-
plexity. Figure 6C illustrates a clear progression from left-
to-right (increasing global reproducibility) with smoothing,
as well as a tendency for improved prediction accuracy.
Within these trends, higher complexity seems to correspond
with prediction accuracy while intermediate complexity
(around 25 PCs) optimizes reproducibility. Figure 6D high-
lights an inverse relationship with complexity and reproduc-
ibility that is prevalent for all for all but Fig. 6C, which has
relatively low levels of prediction and reproducibility. This
relationship indicates a loss of SNR with the more flexible
models. Also for Fig. 6D, other components of the analysis
chain tend to have relatively little impact on either perfor-
mance metric.
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Figure 7 summarizes the average prediction versus repro-
ducibility results of the 16 subjects. On average, the different
preprocessing combinations have a striking effect on both
performance metrics, reinforcing our notion that these
choices should be optimized. We do not see evidence of any
advantage to just alignment, comparing detrending and no
spatial smoothing (black triangle and blue triangle curves).
For the curves without temporal detrending (blue), there
appears to be an optimal model complexity for prediction
(that is, a tendency for an intermediate level of complexity to
result in a maximum prediction value). For the curves with
some detrending, more complex models tend to converge
toward better prediction with a large drop in reproducibility.
At the same time, simple models sacrifice prediction for re-
producibility. This is a classic illustration of a bias-variance
tradeoff; high bias (from simple models) tends to favor repro-
ducibility at the cost of prediction, and increased variance
(from more flexible models) has the reverse effect. Finally, it
is interesting to note that the best performance in terms of
optimizing either metric is obtained with heavy smoothing,
which results in a general trend upward and to the right in
the (p,r) space. This may be unacceptable for many neurosci-
entific questions, indicating that optimization using these
metrics must be performed as a function of spatial scale (i.e.,
smoothing kernel size). Based on the evidence for converging
performance curves (e.g., brown circle-square and red circle-
square) we expect different preprocessing and model choices
to perform best at different spatial scales.

The subject variability demonstrated in Fig. 6 is so great
that the mean curves in Fig. 7 may not provide a meaningful
summary. Figure 8 provides a direct multivariate test of the
mean differences while allowing for random subject effects
(Kustra, 2000). In Fig. 8, preprocessing is used as the class
structure for this summary CVA of our individual subject
prediction–reproducibility curves. Thus, each data point in
Fig. 8A represents a preprocessing curve for an individual
subject as described by the matrix of model results versus
preprocessing in Fig. 8D. In this matrix, each subject formed
a block of preprocessing data vectors consisting of the one r
and two p values for all five levels of model complexity. The
mean vector for each subject block was removed, and a CVA
was applied with results shown in Figs. 8A–8C with the first
two canonical eigenvectors accounting for 91% of the vari-
ance. The preprocessing class means and 95% confidence
circles illustrate that the 2D (p,r) curve shapes seen in Fig. 7
reflect statistically meaningful differences after removal of
random subject effects. Unlike the Fig. 5 canonical score time
courses, the plots in Figs. 8B and 8C represent classification
across subjects (not time) and stack each subject’s prepro-
cessing class labels for visualization of the spread about each
class mean. The canonical score in Fig. 8B is largely influ-
enced by the three levels of smoothing, creating a ramp for
each level of detrending. There is also a mild suggestion of an
upward trend with increased degree of detrending (the
“smoothing ramp” for dc detrending is lower than the low
detrending ramp which is lower than the high detrending
ramp). The main effect seen in the canonical score in Fig. 8C
is separation of dc detrending from the other detrending
levels. Within the higher detrending levels, there is also some

influence from smoothing. Some smoothing and/or detrend-
ing seems to reduce spread about the preprocessing class
means, as we see a greater spread for dc detrending with no
smoothing (black and blue triangles) in both Fig. 8B and Fig.
8C, than for the other preprocessing combinations.

The arrows in Fig. 8A indicate the preprocessing choices
used to generate the SPMs in Fig. 9; shown are dc detrend-
ing, no smoothing, no alignment (Fig. 9A), low detrending,
low smoothing, alignment (Fig. 9B), high detrending, high
smoothing, and alignment (Fig. 9C). These SPMs also corre-
spond to the appropriate average preprocessing lines in Fig.
7. The SPMs are the average of the rSPM(z)s (the normalized
reproducible SPMs) across all subjects and all five levels of
model complexity. We are not advocating statistical inference
on averaged z scores, but rather we wanted to display mean-
ingful images that would provide some intuition about the
relationship of our reproducibility and prediction perfor-
mance metrics with the resulting SPMs. The three patterns
displayed are very similar, and differences seem to largely
arise from smoothing. Contributions of detrending and align-
ment may produce more subtle effects, but it is not possible to
claim this from inspecting these average maps.

Global SPM SNR and reproducibility. The densities
shown in Fig. 2B are typical of those for the other 15 subjects’
two-class CVA results, where we have noticed a consistency
in the noise distribution being slightly peaked and having
extended tails compared to the N(0,1) distribution. One pos-
sible explanation for this phenomenon is that the fMRI noise
properties are not spatially stationary. In other words, dif-
ferent regions of the acquired brain volume are noisier than
others owing to nonhomogeneous vascular signal contribu-
tions or sensitivity to imaging parameters. We intend to
study this effect further in later studies.

Figure 10 shows the 16 subjects’ reproducibility results
versus their rSPM and nSPM confidence intervals for: dc
detrending, no smoothing, no alignment, and medium model
complexity (75 PCs); low detrending, high smoothing, align-
ment, and high model complexity (100 PCs); and low detrend-
ing, high smoothing, alignment, and low model complexity
(25 PCs). These plots allow us to summarize the information
in Fig. 2 arising from many subjects compared with the solid
lines that represent theoretical values for a Gaussian distri-
bution from Eq. (7). Values pertaining to the spread of the
noise histograms are on the x axis of these plots since the
nSPMs, by definition, have reproducibility values of zero.
Figure 10A demonstrates the least Gaussian noise distribu-
tion with the longest tail (experimental 99% values � Gauss-
ian) and the most peaked center (experimental 90% values �
Gaussian). In Fig. 10B, the preprocessing and increased
model complexity have generated a more consistent, more
Gaussian-like noise distribution, with increased prediction
(Fig. 7) and no change in global SNR as reflected in the
reproducibility values of Fig. 10B versus Fig. 10A. Compared
to Fig. 10B, reducing model complexity in Fig. 10C generates
a less consistent noise distribution with a longer tail, similar
prediction (Fig. 7) but much higher reproducibility and hence
global SNR values. Overall, the offset from the theoretical
Gaussian results seems dependent on the analysis chain and
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is remarkably consistent across subjects for a broad range of
reproducibility values.

DISCUSSION

We have demonstrated a flexible data analysis framework for
appraising various analysis chains for individual subjects with

repeated procedures given the NPAIRS performance metrics,
namely, prediction accuracy and reproducibility. These perfor-
mance metrics provide complementary information about the
quality of a given meta-model by making use of test set valida-
tion. The NPAIRS framework can easily be broadened to com-
pare experimental variations across functional tasks as well as
across multiple subjects (Strother et al., 2002).

FIG. 7. Prediction accuracy versus SPM reproducibility averaged across all 16 subjects. See key in lower portion.

FIG. 8. CVA summary of model performance versus preprocessing. A CVA was performed on our performance metric result data using
the data matrix defined in (D). The 10-class structure consisted of the 10 preprocessing combinations used, and each class had 16 members
(the 16 subjects). The variable space consisted of the reproducibility measure and two prediction accuracy estimates obtained for each level
of model complexity. (A–C) Large symbols represent mean locations, while small symbols represent actual data points. The symbol shapes
themselves distinguish the 10 preprocessing classes and correspond to the plots in Figs. 6 and 7. Arrows demark analysis chains displayed in Fig.
9.

FIG. 9. Average of the normalized reproducible SPMs (rSPM(z)s) for the 16 subjects and five levels of model complexity. Shown are dc
detrending, no smoothing, no alignment (A); low detrending, low smoothing, and alignment (B); and high detrending, high smoothing, and
alignment (C). Average of the normalized reproducible SPMs (rSPM(z)s) for the 16 subjects and five levels of model complexity. Shown are
dc detrending, no smoothing, no alignment (A); low detrending, low smoothing, and alignment (B); and high detrending, high smoothing, and
alignment (C).
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Our general methodologic development was intended to
effectively demonstrate the flexibility of NPAIRS. The pre-
liminary multivariate data analysis allowed us to screen
the quality of our volunteer data for motion, image quality,
and performance of the experimental task. We also very
quickly arrived at an appreciation for the variability of the
data across runs and across subjects. In addition, this
analysis step allowed us to evaluate the type of model best
suited to demonstrate the NPAIRS methodology. During
our study of the analysis chain, the choice of the CVA class
structure could have been parameterized within the resa-
mpling exercise along with the rest of the analysis chain.
The decision to evaluate preprocessing using a two-class
model arose from several factors. The initial 22-class and
11-class model results demonstrated a baseline force effect
that was robust for virtually every subject. In addition, the
primary goal of this work was to demonstrate our perfor-
mance metric-based approach for evaluating preprocess-
ing. We therefore focused our energy on finding a suitable
model for demonstrating this framework rather than the
ideal model from the perspective of a neuroscience inter-
pretation.

We acknowledge that our estimates of prediction accuracy
are biased from a pure machine-learning point of view since
we have resampled for model complexity without an addi-
tional resampling for prediction accuracy [a situation that is
known to lead to optimistic estimates (Cherkassky and Mu-
lier, 1998; Friedman, 1994)]. We feel, however, that this
procedure makes sense for relative comparisons in this neu-
roimaging setting—it is very natural to treat repeated runs
or individual subjects as independent units. For the case
treated here, more experimental runs than the two we col-
lected would be necessary for a second resampling estimate
of the true prediction accuracy value. For complex functional

tasks, it is very difficult to obtain several runs of high quality
(in terms of motion and independent behavioral measure-
ments), and long scanning session times introduce additional
concerns over stationarity issues of both the scanner and the
weary volunteer. Further, the true prediction accuracy re-
sults are only of secondary importance—what is necessary
for these studies is the relative impact of prediction accuracy
for each methodologic decision.

It is also interesting to note that, unlike all other machine-
learning settings we are aware of, our model selection is not
solely based on prediction. For our data, the global SPM
reproducibility metric often acts as an additional penaliza-
tion against complex models. Most cases reported in Figs. 6
and 7 illustrate that complex models tend to sacrifice repro-
ducibility and global SNR, even if prediction is improved. In
a few instances, however, we saw the opposite effect (e.g.,
Fig. 6C). Within the NPAIRS framework the prediction ver-
sus reproducibility curves of Figs. 6 and 7 represent a viable,
data-driven alternative to ROC analysis for evaluating meth-
odologies. As with ROC, there is one optimal graph location;
the ideal data set and analysis should provide perfect predic-
tion and reproducibility (p,r) � (1,1). Barring the ideal case of
both perfect prediction and reproducibility, choosing one
analysis chain at the exclusion of several others requires
careful consideration. Is the point (0.6,0.6) better or worse
than (0.55,0.85)? It is not clear that Euclidean distances are
appropriate within this space, especially since points close
together in the p–r space can originate from vastly different
models as is most easily appreciated by viewing canonical
eigenimages arising from different levels of smoothing. Ulti-
mately, choosing a model from these curves represents a
bias-variance tradeoff, with simple models tending toward
high bias (lacking the degrees of freedom to adequately de-
scribe the data) and complex models tending toward in-

FIG. 10. SPM reproducibility versus log confidence interval. Two correlation coefficients were calculated from scatter plots as in Fig. 2
of the first canonical eigenimages in both runs for a two-class (force, baseline) CVA and correspond to the rSPM (major axis) and the nSPM
(which are defined by the direction of the minor axis and have correlation coefficients of zero by definition). Confidence intervals (width of
histogram) were calculated using histograms as illustrated in Fig. 2 (those corresponding to zero correlation were obtained from the noise
histograms). Circles, triangles, and squares correspond to an individual subject’s confidence intervals of 90, 95, and 99%, respectively. (A) A
preprocessing of no detrending, no smoothing, and no alignment with model complexity of 75 PCs. (B) Low detrending, high smoothing, AIR3
alignment with 100 PCs; (C) Low detrending, high smoothing, and AIR3 alignment with 25 PCs.
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creased variance (having the flexibility to incorporate spuri-
ous features). One solution may be to use consensus methods
(Hansen et al., 2001) by combining a subset of competing
meta-models that are closest to the ideal.

Figures 6–8 attempt to summarize the relative perfor-
mance of our candidate analysis chains for this single-subject
study. The results for Fig. 6 indicate that competing analysis
chains impact our performance metrics differently for each
subject. Also some subjects tend to have better performance
metrics than others, independent of our experimental quality
control. This has also been recently reported in (Shaw, 2002).
From this, a strong argument could be made that the anal-
ysis chain should be optimized for each individual. While this
approach may, indeed, be beneficial in some cases, it is im-
portant to realize that the prediction and reproducibility
results are resampled estimates and therefore subject to
uncertainty. Thus the average results over all subjects (Fig.
7) may be more indicative of the relative impact of each
analysis chain. In Fig. 8, we tested whether or not the mean
curves in Fig. 7 provide a statistically meaningful summary
of the impact of preprocessing choices for all sixteen subjects.
Mean results in Figs. 7 and 8 do not show an impact in
performance metrics with alignment (black and blue trian-
gles); however, the scope of our analysis chains did not cover
the case of no alignment combined with other preprocessing
operations. Detrending made some impact, but spatial
smoothing provides the greatest benefits. We believe that the
optimal preprocessing in general is highly dependent on the
analysis chain as well as all other experimental parameters.
Thus, as in ROC studies, our specific findings may or may not
apply directly to other data sets.

At present, we observe slight but systematic deviations in
our noise estimates from our assumed Gaussian distribution,
as illustrated by the noise histogram shapes (such as in Fig.
2B) as well as the systematic offsets in the reproducibility
versus confidence interval results in Fig. 10. We attribute
this to the fact that we are globally characterizing spatially
varying noise. Taken together, the results in Figs. 6–8 and
10 demonstrate that while there is large variation across
subjects (Figs. 6, 8, and 10) the reproducible signal and noise
distributions resulting from different analysis chains vary
systematically across subjects in ways that may be charac-
terized within the NPAIRS framework. We are also exploring
extensions of Eqs. (6) and (7) to other distribution assump-
tions. Our analysis of the SNR of the reproducible activation
patterns is important because this development provides
standardized SPMs, which can be compared to the results of
other models. As was pointed out by an anonymous reviewer,
it is likely that combining the normalized split-half SPMs
with smoothing would allow us to account for spatially vary-
ing noise. This comes from recognizing that our rSPMs are
random effects SPMs with a pooled variance as noted in
Strother et al. (2002) [see Worsley et al., 2002, for details of a
related method]. In addition, CVA analysis by itself provides
an approximate random effects correction depending on the
chosen class structure (Kustra, 2000). These important is-
sues are a key focus of our ongoing research and will be
address in detail in a subsequent paper.

CONCLUSION

We have demonstrated a flexible data analysis framework
for evaluating preprocessing decisions in fMRI analysis using
prediction and reproducibility metrics provided by the
NPAIRS framework. Using reproducibility we were able to
characterize the global SNR properties of our analysis and
generate z score images useful for direct comparison with
other analysis approaches. Finally, we have demonstrated
cross-validation-derived prediction versus reproducibility
curves as an alternative to simulation-based ROC analysis.

ACKNOWLEDGMENTS

The authors acknowledge the thoughtful comments from our anon-
ymous reviewers; the practical discussions with Professor Vladimir
Cherkassky; the helpful comments of Dr. Shing-Chung Ngan, Kirt
Shaper, and Craig Benson; and the technical assistance from James
Arnold. This work was partly supported by the NIH Human Brain
Project P20 Grant MN57180.

REFERENCES

Aguirre, G. K., Zarahn, E., and D’Esposito, M. 1998a. A critique of
the use of the Kolmogorov-Smirnov (KS) statistic for the analysis
of BOLD fMRI data. Magn. Reson. Med. 39: 500–505.

Aguirre, G. K., Zarahn, E., and D’Esposito, M. 1998b. The inferential
impact of global signal covariates in functional neuroimaging anal-
ysis. NeuroImage 8: 302–306.

Akaike, H. 1970. Statistical predictor identification. Ann. Inst. Stat.
Math. 22: 203–217.

Auffermann, W. F., Ngan, S.-C., Sarkar, S., Yacoub, E., and Hu, X.
2001. Nonadditive two-way ANOVA for event-related fMRI data
analysis. NeuroImage 14: 406–416.

Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., and
Hyde, J. S. 1992. Time course EPI of human brain function during
task activation. Magn. Reson. Med. 25: 390–398.

Bandettini, P. A., Jesmanowicz, A., Wong, E. C., and Hyde, J. S.
1993. Processing strategies for time-course data sets in functional
MRI of the human brain. Magn. Reson. Med. 30: 161–173.

Buchel, C., Holmes, A. P., Rees, G., and Friston, K. J. 1998. Char-
acterizing stimulus-response functions using nonlinear regressors
in parametric fMRI experiments. NeuroImage 8: 140–148.

Bullmore, E. T., Horwitz, B., Honey, G., Brammer, M., Williams, S.,
and Sharma, T. 2000. How good is good enough in path analysis of
fMRI data? NeuroImage 11: 289–301.

Bullmore, E. T., Rabehesketh, S., Morris, R. G., Williams, S. C. R.,
Gregory, L., Gray, J. A., and Brammer, M. J. 1996. Functional
magnetic resonance image analysis of a large-scale neurocognitive
network. NeuroImage 4: 16–33.

Cherkassky, V., and Mulier, F. 1998. Learning from Data: Concepts,
Theory, and Methods. Wiley, New York.

Constable, T. R., Skudlarski, P., and Gore, J. C. 1995. An ROC
approach for evaluating functional brain MR imaging and postpro-
cessing protocols. Magn. Res. Med. 34: 57–64.

Efron, B., and Tibshirani, R. J. 1993. An Introduction To the Boot-
strap. Academic Press, San Diego.

Fletcher, P. C., Dolan, R. J., Shallice, T., Frith, C. D., Frackowiak,
R. S. J., and Friston, K. J. 1996. Is multivariate analysis of PET
data more revealing than the univariate approach? Evidence from
a study of episodic memory retrieval. NeuroImage 3: 209–215.

Friedman, J. H. 1994. An overview of predictive learning and func-
tion approximation. In From Statistics to Neural Networks: Theory

25PREPROCESSING CHOICES IN SINGLE-SUBJECT BOLD fMRI USING NPAIRS



and Pattern Recognition Applications (V. Cherkassky, J. H. Fried-
man, and H. Wechsler, Eds.). Springer-Verlag, Berlin.

Friston, K. J., Frith, C. D., Frackowiak, R. S., and Turner, R. 1995a.
Characterizing dynamic brain responses with fMRI: A multivari-
ate approach. NeuroImage 2: 166–172.

Friston, K. J., Holmes, A., Poline, J-B., Price, C. J., and Frith, C. D.
1996. Detecting activations in PET and fMRI: Levels of inference
and power. NeuroImage 40: 223–235.

Friston, K. J., Holmes, A. P., Poline, J-B., Grasby, P. J., Williams,
S. C. R., Frackowiak, R. S. J., and Turner, R. 1995b. Analysis of
fMRI time-series revisited. NeuroImage 2: 45–53.

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J-B., Firth, C. D.,
and Frackowiak, R. S. J. 1995c. Statistical parametric maps in
functional neuroimaging: A general linear approach. Hum. Brain
Map. 2: 189–210.

Hansen, L. K., Larsen, J., Nielsen, F. A., Strother, S. C., Rostrup, E.,
Savoy, R., Lange, N., Sidtis, J., Svarer, C., and Paulson, O. B.
1999. Generalizable patterns in neuroimaging: How many princi-
pal components? NeuroImage 9: 534–544.

Hansen, L. K., Nielsen, F. A., Strother, S. C., and Lange, N. 2001.
Consensus inference in neuroimaging. NeuroImage 13: 2001.

Holmes, A. P., Josephs, O., Buchel, C., and Friston, K. J. 1997.
Statistical modeling of low-frequency confounds in fMRI. Neuro-
Image 5: S480.

Kjems, U., Hansen, L. K., and Strother, S. C. 2002. The quantitative
evaluation of functional neuroimaging experiments: Generaliza-
tion error and learning curves. NeuroImage 15: 772–786.

Kjems, U., Strother, S. C., Anderson, J. A., Law, I., and Hansen, L. K.
1999. Enhancing the multivariate signal of [15O] water PET stud-
ies with a new non-linear neuroanatomical registration algorithm.
IEEE Trans. Med. Img. 18: 306–319.

Kustra, K. 2000. Statistical Analysis of Medical Images with Appli-
cations to Neuroimaging. PhD Thesis, University of Toronto.
(http://www.utstat.utoronto.cal�rafal/thesis.ps.gz.)

Kustra, R., and Strother, S. C. 2001. Penalized discriminant analysis
of [15O] water PET brain images with prediction error selection of
smoothing and regularization hyperparameters. IEEE Trans.
Med. Img. 20: 376–387.

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E.,
Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E.,
Cohen, M. S., Turner, R., Cheng, H-M., Brady, T. J., and Rosen,
B. R. 1992. Dynamic magnetic resonance imaging of human brain
activity during primary sensory stimulation. Proc. Natl. Acad. Sci.
USA 89: 5675–5679.

LaConte, S., Strother, S. C., Anderson, J., Muley, S., Frutiger, S.,
Hansen, L. K., Yacoub, E., Hu, X., and Rottenberg, D. A. 2001.
Evaluating pre-processing choices in single-subject BOLD-fMRI
studies using data-driven performance metrics. NeuroImage
13(Part 2): S179.

LaConte, S. M., Ngan, S-C., and Hu, X. 2000. Wavelet transform
based Wiener filtering of event-related fMRI data. Magn. Reson.
Med. 44: 746–757.

Lange, N. 1996. Statistical approaches to human brain mapping by
functional magnetic resonance imaging. Stat. Med. 15: 389–428.

Lange, N. 1997. Empirical and substantive models, the Bayesian
paradigm and meta-analysis in functional brain imaging. Hum.
Brain Map. 5: 259–263.

Lange, N. 1999. Statistical procedures for functional MRI. In Medi-
cal Radiology-Diagnostic Imaging and Radiation Oncology: Func-
tional MRI (P. Bandettini and C. Moonen, Eds.). Springer Verlag,
New York.

Lange, N., Strother, S. C., Anderson, J. R., Nielsen, F. A., Holmes,
A. P., Kolenda, T., Savoy, R., and Hansen, L. K. 1999. Plurality and
resemblance in fMRI data analysis. NeuroImage 10: 282–303.

Le, T. H., and Hu, X. 1997. Methods for assessing accuracy and
reliability in functional MRI. NMR Biomed. 10: 160–164.

Lowe, M. J., Mock, B. J., and Sorenson, J. A. 1998. Functional
connectivity in single and multislice echoplanar imaging using
resting-state fluctuations. NeuroImage 7: 119–132.

Mardia, K. V., Kent, J. T., and Bibby, J. M. 1979. Multivariate
Analysis. Academic Press, San Diego.

McKeown, M. J., Makeig, S., Brown, G. G., Jung, T.-P., Kinderman,
S. S., Bell, A. J., and Sejnowski, T. J. 1998. Analysis of fMRI data
by blind separation into independent spatial components. Hum.
Brain Map. 6: 160–188.

Metz, C. E. 1978. Basic principles of ROC analysis. Semin. Nuclear
Med. 8: 283–298.

Moeller, J. R., and Strother, S. C. 1991. A regional covariance ap-
proach to the analysis of functional patterns in positron emission
tomographic data. J. Cereb. Blood. Flow Metab. 11: A121–A135.

Mørch, N. 1998. A Multivariate Approach to Functional Neuromod-
eling, Ph.D. thesis. Danish Technical University.

Mørch, N., Hansen, L. K., Strother, S. C., Svarer, C., Rottenberg,
D. A., Lautrup, B., Savoy, R., and Paulson, O. B. 1997. Nonlinear
versus linear models in functional neuroimaging: Learning curves
and generalization crossover. In Lecture Notes in Computer Sci-
ence 1230: Information Processing in Medical Imaging (J. Duncan
and G. Gindi, Eds.). Springer-Verlag, New York.

Muley, S. A., Strother, S. C., Ashe, J., Frutiger, S. A., Anderson, J. R.,
Sidtis, J. J., and Rottenberg, D. A. 2001. Effects of changes in
experimental design on PET studies of isometric force. NeuroIm-
age 13: 185–195.

Ngan, S-C., and Hu, X. 1999. Analysis of functional magnetic reso-
nance imaging data using self-organizing mapping with spatial
connectivity. Magn. Reson. Med. 41: 939–946.

Ngan, S-C., LaConte, S. M., and Hu, X. 2000. Temporal filtering of
event-related fMRI data using cross-validation. NeuroImage 11:
797–804.

Ogawa, S., Lee, T.-M., Kay, A. R., and Tank, D. W. 1990a. Brain
magnetic resonance imaging with contrast dependent on blood
oxygenation. Proc. Natl. Acad. Sci. USA 87: 9868–9872.

Ogawa, S., Lee, T.-M., Nayak, A. S., and Glynn, P. 1990b. Oxygen-
ation-sensitive contrast in magnetic resonance image of rodent
brain at high magnetic fields. Magn. Reson. Med. 14: 68–78.

Oldfield, R. C. 1971. The assessment and analysis of handedness:
The Edinburgh inventory. Neuropsychologia 9: 97–113.

Petersson, K. 1998. Comments on a Monte Carlo approach to the
analysis of functional neuroimaging data. NeuroImage 8: 108–112.

Poline, J-B., Worsley, K. J., Evans, A. C., and Friston, K. J. 1997.
Combining spatial extent and peak intensity to test for activations
in functional imaging. NeuroImage 5: 83–96.

Rabe-Hesketh, S., Bullmore, E. T., and Brammer, M. J. 1997. The
analysis of functional magnetic resonance images. Stat. Methods
Med. Res. 6: 215–237.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cam-
bridge Univ. Press, Cambridge/New York.

Ripley, B. D. 1998. Statistical theories of model fitting. In Neural
Networks and Machine Learning (C. M. Bishop, Ed.). Springer-
Verlag, Berlin.

Shaw, M., Strother, S. C., Podzebenko, K., Anderson J., Gavrilescu,
M., Egan, G., and Watson, J. 2002. Optimized pre-processing for
improved signal detection in fMRI. [abstract]. Presented at the 8th
International Conference on Functional Mapping of the Human
Brain, June 2–6, 2002, Sendai, Japan. Available on CD-Rom in
NeuroImage, Vol. 16, No. 2.

Skudlarski, P., Constable, R. T., and Gore, J. C. 1999. ROC analysis
of statistical methods used in functional MRI: Individual subjects.
NeuroImage 9: 311–329.

26 LACONTE ET AL.



Stone, M. 1974. Cross-validatory choice and assessment of statistical
predictions. J. R. Stat. Soc. B 36: 111–147.

Strother, S. C., Kanno, I., and Rottenberg, D. A. 1995. Principal
component analysis, variance partitioning and “functional connec-
tivity.” J. Cereb. Blood Flow Metab. 15: 353–360.

Strother, S. C., Anderson, J., Hansen, L. K., Kjems, U., Kustra, R.,
Siditis, J., Frutiger, S., Muley, S., LaConte, S., and Rottenberg, D.
2002. The quantitative evaluation of functional neuroimaging ex-
periments: The NPAIRS data analysis framework. NeuroImage
15: 747–771.

Strother, S. C., Lange, N., Anderson, J. R., Schaper, K. A., Rehm, K.,
Hansen, L. K., and Rottenberg, D. A. 1997. Activation pattern
reproducibility: Measuring the effects of group size and data anal-
ysis models. Hum. Brain Map. 5: 312–316.

Strother, S. C., Lange, N., Savoy, R. L., Anderson, J. R., Sidtis, J. J.,
Hansen, L. K., Bandettini, P. A., O’Craven, K., Rezza, M., Rosen,
B. R., and Rottenberg, D. A. 1996. Multidimensional state-spaces
for fMRI and PET activation studies. NeuroImage 3(Pt 2): S98.

Sychra, J. J., Bandettini, P. A., Bhattacharya, N., and Lin, Q. 1994.
Synthetic imags by subspace transforms. I. principal components
images and related filters. Med. Phys. 21(2): 193–201.

Talairach, P., and Tournoux, J. 1988. A Stereotactic Coplanar Atlas
of the Human Brain. Thieme, Stuttgart.

Tegeler, C., Strother, S. C., Anderson, J. R., and Kim, S-G. 1999.
Reproducibility of BOLD-based functional MRI obtained at 4T.
Hum. Brain Map. 7: 267–283.

Turner, R., Le Bihan, D., Moonen, C. T., Despres, D., and Frank, J.
1991. Echo-planar time course MRI of cat brain oxygenation
changes. Magn. Reson. Med. 22: 159–166.

Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., and
Mazziotta, J. C. 1998. Automated image registration: I. General

methods and intrasubject, intramodality validation. J. Comput.
Assist. Tomogr. 22: 139–152.

Woods, R. P., Dapretto, M., Sicotte, N. L., Toga, A. W., and Mazzi-
otta, J. C. 1999. Creation and use of a Talairach-compatible atlas
for accurate, automated, nonlinear intersubject registration and
analysis of functional imaging data. Hum. Brain Map. 8: 73–79.

Worsley, K. J. 1997. An overview and some new developments in the
statistical analysis of PET and fMRI data. Hum. Brain Map. 5:
254–258.

Worsley, K. J., Evans, A. C., Marrett, S., and Neelin, P. 1992. A
three-dimensional statistical analysis of CBF activation studies in
human brain. J. Cereb. Blood Flow Metab. 12: 900–918.

Worsley, K. J., and Friston, K. J. 1995. Analysis of fMRI time-series
revisited—Again. NeuroImage 2: 173–181.

Worsley, K. J., Liao, C. H., Aston, J., Petre, V. Duncan, G. H.,
Morales, F., and Evans, A. C. 2002. A general statistical analysis
for fMRI data. NeuroImage 15: 1–15.

Worsley, K. J., Marrett, S., Neelin, P., and Evans, A. C. 1996a.
Searching scale space for activation in PET images. Hum. Brain
Map. 4: 74–90.

Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J.,
and Evans, A. C. 1996b. A unified statistical approach for deter-
mining significant signals in images of cerebral activation. Hum.
Brain Map. 4: 58–73.

Worsley, K. J., Poline, J. B., Fristion, K. J., and Evans, A. C. 1997.
Characterizing the response of PET and fMRI data using multi-
variate linear models. NeuroImage 6: 305–319.

Xiong, J., Gao, J-H., Lancaster, J. L., and Fox, P. T. 1996. Assess-
ment and optimization of functional MRI analysis. Hum. Brain
Map. 4: 153–167.

27PREPROCESSING CHOICES IN SINGLE-SUBJECT BOLD fMRI USING NPAIRS


	INTRODUCTION
	FIG. 1

	THEORETICAL BACKGROUND
	FIG. 2

	METHODS
	FIG. 3
	FIG. 4
	FIG. 5
	FIG. 6

	RESULTS
	FIG. 7

	DISCUSSION
	FIG. 8
	FIG. 9
	FIG. 10

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

