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A state-space modeling approach for examining dynamic relationship

between multiple brain regions was proposed in Ho, Ombao and

Shumway (Ho, M.R., Ombao, H., Shumway, R., 2005. A State-Space

Approach to Modelling Brain Dynamics to Appear in Statistica Sinica).

Their approach assumed that the quantity representing the influence of

one neuronal system over another, or effective connectivity, is time-

invariant. However, more andmore empirical evidence suggests that the

connectivity between brain areas may be dynamic which calls for

temporal modeling of effective connectivity. A Bayesian approach is

proposed to solve this problem in this paper. Our approach first

decomposes the observed time series into measurement error and the

BOLD (blood oxygenation level-dependent) signals. To capture the

complexities of the dynamic processes in the brain, region-specific

activations are subsequently modeled, as a linear function of the BOLD

signals history at other brain regions. The coefficients in these linear

functions represent effective connectivity between the regions under

consideration. They are further assumed to follow a random walk

process so to characterize the dynamic nature of brain connectivity. We

also consider the temporal dependence that may be present in the

measurement errors. ML-II method (Berger, J.O., 1985. Statistical

Decision Theory and Bayesian Analysis (2nd ed.). Springer, New York)

was employed to estimate the hyperparameters in the model and Bayes

factor was used to compare among competing models. Statistical

inference of the effective connectivity coefficients was based on their

posterior distributions and the corresponding Bayesian credible regions
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(Carlin, B.P., Louis, T.A., 2000. Bayes and Empirical Bayes Methods for

Data Analysis (2nd ed.). Chapman andHall, Boca Raton). The proposed

method was applied to a functional magnetic resonance imaging data set

and results support the theory of attentional control network and

demonstrate that this network is dynamic in nature.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

Functional magnetic resonance imaging (fMRI) is a technique to

determine which parts of the brain are activated by different types of

physical sensation or activity, such as sight, sound or the movement

of a subject’s fingers. In functional brain imaging studies, the signal

changes of interest are caused by the neuronal activity, but such

electrical activity is not directly detectable by fMRI. The signal being

measured in fMRI experiments is called the blood oxygenation

level-dependent (BOLD) response, which is a consequence of the

hemodynamic changes (including local changes in blood flow,

volume and oxygenation level) occurring within a few seconds of

changes in neuronal activity induced by external stimuli. The BOLD

signal is usually used as a proxy for the underlying neuronal activity.

Most fMRI studies concern the detection of sites of activation (Fhot-
spots_) in the brain and their relationship to the experimental

stimulation and we refer to these studies as activation studies.

Interested readers can refer to Clare (1997), Frackowiak et al. (2004),

and Jezzard et al. (2001) for the details on the theory and application

of fMRI in neurology, neuroscience, psychology and psychiatry.

There are also a large amount of recent works on estimation of the

hemodynamic response function (Glover, 1999; Burock and Dale,

2000; Genovese, 2000; Marrelect et al., 2003; Donnet et al., 2004;

Woolrich et al., 2004a). These studies do not reveal a great deal about

how different brain regions relate or Fcommunicate_ to each other.

http://www.sciencedirect.com
mailto:sourabh@isds.duke.edu
mailto:homh@ntu.edu.sg
http://dx.doi.org/10.1016/10.1016/10.1016/j.neuroimage.2005.10.019
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Disparate brain regions do not operate in isolation. There is

growing interest in studying the possible interactions between

different brain regions to understand the functional organization of

the brain. The study of the influence of one neuronal system over

another is usually referred to as effective connectivity analysis

(Friston, 1994; Nyberg and McIntosh, 2001) in brain imaging

literature. Two common approaches, namely, structural equation

modeling (see, for example, McIntosh and Gonzalez-Lima, 1994;

Kirk et al., 2005; Penny et al., 2004b) and time-varying parameter

regression (see, for example, Büchel and Friston, 1998), have been

applied to fMRI data for studying effective connectivity. However,

these approaches suffer from several limitations. For both

approaches, fMRI researchers first select their regions of interest.

Each region of interest usually consists of a few voxels. The first

mode of the Singular Value Decomposition of the time series of these

voxels is used to represent the temporal response for the selected

region of interest. In the applications of structural equation modeling,

a within-subject covariance matrix of the regions of interest is derived

and a path model specifying the connections between brain regions is

then fitted to this matrix. The strength of effective connectivity is

measured by the path or structural coefficients in this method. This

approach ignores the temporal correlation in the data which can lead

to inaccurate standard errors and test statistics. Connectivity between

brain regions is also assumed to be time-invariant.

Time-varying parameter regression, on the other hand, relaxes

this assumption and allows time-varying connectivity. In the

applications of time-varying parameter regression, one brain area’s

time series yi(t) is regressed on another brain area’s time series

y2(t) as (Büchel and Friston, 1998):

y1 tð Þ ¼ b tð Þy2 tð Þ þ e tð Þ;

b tð Þ ¼ b t � 1ð Þ þ w tð Þ;

where e(t) and w(t) are white noises and are independent of each

other. The regression coefficient, b(t), following a random walk

process, measures the dynamic effective connectivity in this

approach. Applications of time-varying parameter regression,

however, have been primarily limited to studying the relationship

between two brain regions so far. Amore general way to characterize

the dynamics of b(t) can be through functional coefficients model

which was first explored in Chen and Tsay (1993) and later extended

to nonlinear time series model by Cai et al. (2000). Harrison et al.

(2003) proposed the use of multivariate/vector autoregressive

(MAR) model for modeling effective connectivity. They included

interaction terms between pairs of contemporaneous regional time

series to account for the nonlinear inter-regional dependence in the

model. Lagged regional time series were also included to account for

the temporal autocorrelation. Their approach models the behavior of

the brain system simply by quantifying the relationships within the

measured data only. Our approach differs from theirs in a way that

we model the brain as a dynamic system and attempts to account for

correlations within the data by invoking state variables whose

dynamics generate the fMRI data. The MAR approach used by

Harrison et al. (2003) models temporal effects across different brain

regions without using state variables and inter-regional dependen-

cies within data are characterized in terms of the historical influence

one region has on another. Ho et al. (2005) (henceforth abbreviated

to HOS) proposed a state-space approach for studying effective

connectivity, which overcomes some of the limitations encountered

in the structural equation modeling and time-varying parameter

regression methods.
Horwitz (1998) and Horwitz et al. (1999) refer to all the

aforementioned approaches collectively as system-level neural

modeling, which attempts to address the problem that large

covariance in inter-regional activity can come about by direct

and indirect effects. Recently, Horwitz and his colleagues proposed

another approach, referred to as large-scale neural modeling, using

neurobiologically realistic networks to simulate neural data at

multiple spatial and temporal levels, such as single unit electro-

physiological data (Deco et al., 2004) and Positron Emission

Tomography (PET) data (Tagamets and Horwitz, 1998). Their

approach is computationally intensive and depends primarily on

emulating the qualitative patterns observed in the brain imaging

experiments. Statistical estimation of unknown parameters is of

secondary importance and these parameters are usually chosen or

fixed a priori (usually based on animal studies). HOS and the

method proposed in this paper can be classified as the system-level

neural modeling paradigm in Horwitz’s terminology. HOS differs

from the aforementioned methods primarily in its emphasis which

is to model the stochastic inter-relationship between the different

components of the multiple signals. Their approach treats the brain

as an input–output system, which is perturbed by known inputs

(i.e., experimental stimulus) in the experiments. The measured

responses (i.e., observed fMRI signal) are then used to estimate

various parameters that govern the evolution of the activation. The

HOS approach: (1) allows modeling relationships among multiple

brain areas; (2) separates the signal-of-interest (BOLD) from the

measurement noise; (3) models the temporal correlation explicitly

by the recent history of the experimental inputs.

This is similar to the dynamic causal model (DCM) recently

proposed by Friston et al. (2003). A major difference between the

DCM and HOS approach is that a biophysical model called FBalloon
Model_ (Buxton et al., 1998) is used to link the hemodynamic

response to the underlying neuronal activation in DCM. However,

one limitation of theDCMapproach is that it assumes a deterministic

relationship between brain regions and does not allow for noisy

dynamics. HOS approach, however, does not make such restrictive

assumption. DCM uses a bilinear expansion to approximate the

time/task dependence of effective connectivity (Friston et al., 2003).

In HOS, the quantities measuring effective connectivity are time-

invariant. There is increasing empirical evidence suggesting that

connectivity between different brain areas is dynamic and should be

understood as experiment- and time-dependent (Aertsen and Preißl,

1991; Friston, 1994; McIntosh and Gonzalez-Lima, 1994; Büchel

and Friston, 1998;McIntosh, 2000). This evidence calls for temporal

modeling of effective connectivity, which is the goal of this paper.

We propose a Bayesian approach to solve this problem. DCM also

uses a Bayesian scheme for estimating model parameters and model

selection, which has been implemented in SPM2 (Friston et al.,

2003; Penny et al., 2004a). Following the HOS approach, we

decompose the observedmultiple time series into measurement error

and the BOLD signals. The observed fMRI signals at each brain

region are modeled as a function of the BOLD signal. To capture the

complexities of the dynamic processes in the brain, the region-

specific time-varying coefficients in the activation equation are

subsequently modeled, as a linear function of the BOLD signals at

other brain regions, combinedwith error. These coefficients measure

the connectivity or coupling between the regions of interest. We

extend the HOS model to allow the connectivity coefficients to vary

in a stochastic manner. For simplicity, we assume that these

coefficients change as a random walk process but other processes

such as autoregressive and regime switching can be incorporated in a
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similar manner. In HOS, the measurement noise is assumed to be

independent but this assumption may not be appropriate, especially

for fMRI experiments with fast brain scanning rates (but see Penny et

al., 2003; Kiebel et al., 2003, for nonsphericity correction

implemented in SPM2 to deal with serial correlations in noise

through a variational Bayesian scheme). Therefore, we will consider

an extension which incorporates an autoregressive structure in the

measurement noise as well.

The organization of the paper is as follows.Our proposedmodelwill

be presented in Model formulation. Several alternative models are also

discussed. Bayesian procedures for parameter estimation and associated

computational details are described in Statistical analysis. We employ a

variant of the ML-II method (Berger, 1985) for choosing values for the

hyperparameters of the final-stage priors. Gibbs sampling is used for

generating the posterior distribution for the parameters of interest.

Model selection among the competing models considered in Model

formulation is based on Bayes factor (see, e.g., Kass and Raftery, 1995;

Penny et al., 2004a). This section also includes the results from aMonte

Carlo simulation which demonstrates the validity of our proposed

method. We further illustrate our technique on an fMRI data set so to

investigate the attentional control network in the human brain. The

details of the experiment and the data set are described in Application.

We conclude our paper in Conclusions and future work.
Model formulation

A typical modeled BOLD response, x(t), usually occurs

between 3 and 10 s after the stimulus, s(t), is presented and
Fig. 1. Convolution of hemody
reaches the peak at about 6 s. The delay of the BOLD response is

usually modeled by a hemodynamic response function (HRF), h(t),

which weighs the past stimulus values by a convolution:

x tð Þ ¼
Z t

0

h uð Þs t � uð Þdu; ð1Þ

where s(t) takes the value of F1_ when the stimulus is FON_ and F0_
when the stimulus is FOFF_. The top panel in Fig. 1 shows a

stimulus, s(t), presented periodically in an fMRI experiment. The

HRF is usually modeled by Poisson, Gaussian or Gamma density,

or by the difference of two Gamma functions which was used in

this paper. The second panel in Fig. 1 shows a typical

hemodynamic response function and the bottom panel shows what

the BOLD signal looks like after the convolution with the periodic

stimulus function in the top panel. The magnitude of the BOLD

signal, denoted as b, varies over brain regions and experimental

conditions, and is usually estimated by the general linear model:

yi tð Þ ¼ ai þ bixi tð Þ þ ei tð Þ; ð2Þ

where yi(t) is the observed fMRI signal or the measured BOLD

response (as opposed to the modeled BOLD, x(t)) recorded by the

MRI scanner, ei(t) is measurement noise at voxel i (voxel is 3D

generalization of pixel). The coefficient, bi , measures the

Factivation_ at voxel i in fMRI studies and ai represents the

baseline. Without loss of generality, we assume that the fMRI data

are detrended here. Detrending is a common preprocessing step in

fMRI experiments and attempts to remove the drift (mainly caused

by the MRI scanner) present in the fMRI data. A priori detrending

is not necessary but can simplify the computation.
namic response function.
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In model (2), the Factivation_, b, is assumed to be time-

invariant, which may not be realistic. Many studies report

Flearning_ effect in fMRI experiments, where strong fMRI

activation is mainly detected in the beginning of the experiment

but becomes weaker later on (see Milham et al., 2002, 2003a,b, for

example). Therefore, it is reasonable to consider the activation to

be time-varying as:

yi tð Þ ¼ ai þ bi tð Þxi tð Þ þ ei tð Þ: ð3Þ

The time-varying activation idea was also exploited in Gössl et al.

(2001).

There is an alternative formulation where the activation can be

expanded in terms of time-varying basis functions.3 The param-

eters then become time-invariant coefficients of these basis

functions. Mathematically, this is equivalent to the implementation

of time-varying activations in SPM2, where the stimulus functions

xi(t) are modulated with one or more time-varying basis functions

to give an expanded set of regressors. These regressors are then

convolved and form explanatory variables in the general linear

model. The most usual forms for these basis functions are mono-

exponential decays to model adaptation and learning effects. The

key difference between the SPM2 approach and the notion of a

time-varying activation that we proposed here is that the former is

deterministic whereas, in our model, the activation can change

stochastically.

Functionally specialized brain areas do not operate on their own

but interact with one another depending on the context. HOS

therefore augmented the above model to model the influence of

one brain region on another. The model assumes the time-varying

Factivation_ in Eq. (3) in terms of the history of the error-free fMRI

signal from itself and another region as:

bi tð Þ ¼ ci;iZi t � 1ð Þ þ ci;jZj t � 1ð Þ þ wi tð Þ; ð4Þ

where Zi(t � 1) = xi(t � 1)bi(t � 1) represents the error-free fMRI

signal for the i-th region and at time point t. Hence, the right-hand

side of Eq. (4) involves this error-free fMRI signal for the previous

time-point t � 1. Higher order effects of the BOLD history (from

t � 2, t � 3 and so on) may also be considered (see also Lahaye

et al., 2003 for a similar idea in using the signal history in the

quantification of large-scale connectivity). In this model, the

coefficients ci ,i and ci ,j measure the influence on region i from

itself and region j, respectively. The first coefficient reflects the

self-feedback and second coefficient characterizes the coupling

relationship between two regions i and j.

In HOS, these connectivity coefficients are assumed to be time-

invariant. In this paper, we relax this assumption to accommodate

time-dependent connectivity between brain regions and focus on

the connectivity varying in a random walk manner (see Eq. (5.3)).

Without loss of generality, we discuss our approach for examining

effective connectivity among three regions. It will be applied to

study attentional control network from an fMRI experiment,

described in Application. Our approach is very general and is

readily generalized to an arbitrary number of regions and other

types of time-varying processes for characterizing connectivity.

In summary, our models have the following three components,

which are connected in a hierarchical manner.
3 We thank Professor Karl J. Friston for bringing our attention to this

alternative formulation.
A. The first component connects the observed fMRI signals to the

(convolved) stimulus at every brain region (see Eq. (3)). The

strength of connection is characterized by the time-varying

Factivation_ parameter, b(t).
B. The second component connects the activation parameter, b(t),

from one region at any time point to the noise-free BOLD signal

corresponding to all three regions at the previous time-point (see

Eq. (4)). The strength of connection between brain regions is

characterized by the effective connectivity parameter, ci ,j.
C. The effective connectivity parameter, ci ,j, is modeled as time-

varying, which allows a dynamic relation between effective

connectivity parameter at any time point and the previous time

point. Without loss of generality, we illustrate our method based

on three regions of interest below. Connectivity between more

regions of interest can be examined in a similar manner.

We introduce the following notation. For i = 1, 2, 3; t = 1,. . .,T, let

yi(t) = observed fMRI signal corresponding to the i-th region at

time-point t,

xi(t) = stimulus, convolved with the hemodynamic response

function, for the i-th region and time-point t,

ai = baseline trend corresponding to the i-th region,

bi(t) = activation coefficient corresponding to the i-th region at

time point t,

ci,j(t) = influence of j-th region on the i-th region at time-point t.

In fMRI studies, one often uses the same hemodynamic

response function h (see Eq. (1) above) for all voxels and the

hemodynamic response to a particular event is taken to be the time-

invariant voxel-specific activation times the convolution of h and

the stimulus function, which results in voxel-specific (or region-

specific) hemodynamic response. However, it is possible to relax

this assumption and allow Fheterogeneity_ in hemodynamic

response function (see, for example, Birn et al., 2001; Friston et

al., 1998; Liao et al., 2002). One way is to expand the

hemodynamic response function with a small number of temporal

basis functions (Friston et al., 1998). This provides a multivariate

characterization of the hemodynamic response to a particular event

or brain state that is unique to each voxel. Our proposed approach,

on the other hand, accommodates voxel-specific hemodynamic

response via voxel-specific time-varying activation and it would be

redundant to further assume different hemodynamic response

function for each voxel, thus we consider only homogenous

response function x1(t) = x2(t) = x3(t) in this paper. We denote the

common value of x1(t), x2(t), and x3(t), by x(t). The generalization

to heterogenous hemodynamic response function is straightfor-

ward. Our proposed model is given by

Model M1

yi tð Þ ¼ ai þ x tð Þbi tð Þ þ ei tð Þ; t ¼ 1; N ;T ;

i ¼ 1;2;3; ð5:1Þ

bi tð Þ ¼ x t � 1ð Þ
X3
k ¼ 1

ci;k tð Þbk t � 1ð Þ
#"
þ wi tð Þ;

t ¼ 2; N ;T ; i ¼ 1; 2; 3; ð5:2Þ
ci;j tð Þ ¼ ci;j t � 1ð Þ þ di;j tð Þ; t ¼ 2; N ;T ; i;j

¼ 1; 2; 3: ð5:3Þ
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Notice that Eqs. (5.1)–(5.3) correspond to A–C above. The

quantities ei(t), wi(t), dij(t) are random errors. We assume that

(E1) ei(t), s are independent and identically distributed (i.i.d.)

N(0, ri
2);

(E2) wi(t), s are i.i.d. N(0, rw
2);

(E3) di ,j(t), s are i.i.d. N(0, rd
2);

(E4) all the errors in (E1–E3) are independent.

In matrix notation, the relations given by Eqs. (5.1)–(5.3) can

be expressed as

yt ¼ aþ Atbt þ et; t ¼ 1; N ;T ; ð6:1Þ

bt ¼ G tAt � 1bt � 1 þ wt; t ¼ 2; N ;T ; ð6:2Þ

G t ¼ G t � 1 þDt; t ¼ 2; N ;T ; ð6:3Þ

where

yt ¼
y1 tð Þ
y2 tð Þ
y3 tð Þ

1
A

0
@ ; At¼

x1 tð Þ 0 0

0 x2 tð Þ 0

0 0 x3 tð Þ

1
A

0
@ ¼ x tð ÞI3; a ¼

a1
a2
a3

1
A

0
@ ;

bt ¼
b1 tð Þ
b2 tð Þ
b3 tð Þ

1
A

0
@ ; G t ¼

c1;1 tð Þ c1;2 tð Þ c1;3 tð Þ
c2;1 tð Þ c2;2 tð Þ c2;3 tð Þ
c3;1 tð Þ c3;2 tð Þ c3;3 tð Þ

1
A

0
@ ;

et ¼
e1 tð Þ
e2 tð Þ
e3 tð Þ

1
A

0
@ ; wt ¼

w1 tð Þ
w2 tð Þ
w3 tð Þ

1
A

0
@ ; Dt ¼

d1;1 tð Þ d1;2 tð Þ d1;3 tð Þ
d2;1 tð Þ d2;2 tð Þ d2;3 tð Þ
d3;1 tð Þ d3;2 tð Þ d3;3 tð Þ

1
A

0
@ :

ð7Þ
Moreover, we make the following assumptions.

(P1) The prior for b1 is given by a trivariate normal distribution

with mean b0 and dispersion matrix rb
2I3, and b0 and rb

2

are assumed to be known. Write b0 = (b1(0), b2(0),

b3(0))
T.

(P2) The prior for ci ,j(1) is given by a normal distribution with

mean ci ,j(0) and variance rc
2. These nine normal distribu-

tions are assumed to be independent and the associated

parameters (10 in number) are also assumed to be known.

(P3) The prior a is given by a trivariate normal with mean m =

(l1, l2, l3)
T, and dispersion matrix rb

2I 3, and m and ra
2 are

assumed to be known.

(P4) The priors for r1
2, r2

2, r3
2, rw

2, ry
2 are assumed to be

independent and follow Inverse Gamma distribution

(denoted as IG(a, d)). The IG distribution means that the

inverse of each of the variance terms is distributed as two-

parameter Gamma distribution with parameters a and d,

which control the shape and scale of the distribution.4 In

our analyses, we set a = d = 0 which results in non-

informative prior. Given that we are ignorant of these

parameters, noninformative prior is a natural choice.

Interested readers can refer to O’Hagan and Forster (2004,

p. 306) for more details on the definition of IG distribution.

(P5) All the distributions given by (P1) – (P4) above are

independent.

The set of relations given by Eqs. (5.1)–(5.3), and the

assumptions (E1)–(E4), (P1)–(P5) constitute M1.
4 The probability density function for an IG random variable, x, has the

form, f(x) ” (1 / x)((d+2)/2) exp(�a / 2x) where a is the scale parameter and

d is the shape parameter.
Model M2

In model M1, for every region i, the measurement errors

ei(1),. . .,ei(T), are assumed to be independent. This assumption

may not be realistic especially for fMRI data collected at a fast image

acquisition rate. In typical fMRI activation analysis, the measure-

ment noise is usually assumed to follow an autoregressive process

(see, for example, Penny et al., 2003; Woolrich et al., 2001, 2004b;

Worsley, 2003). That is, there may still be temporal dependence in

the background process which cannot be accounted for by models

(5.1)–(5.3). To address this issue, we consider another extension and

introduce the temporal dependence in ei(t). For illustration, we

assume that for every region i, the ei(t) follows an autoregressive

process of order 1 with an unknown parameter qi,AqiA < 1. Higher

order autoregressive process can be incorporated in a similar manner.

In other words, we replace the assumption (E1) by the following:

(E5) for every i , the following hold: ei(1), ei(2) �
qiei(1),. . .,ei(T) � qiei(T � 1) are independent,

ei(1) ¨ N(0, ri
2 / (1 � qi

2)), ei(2) � qiei(1),. . .,ei
(T) � qiei(T � 1) are i.i.d. N(0, ri

2), and moreover, e ¼def
ei 1ð Þ;ei 2ð Þ � qiei 1ð Þ; N ;ei Tð Þ � qiei T � 1ð Þð ÞT; i ¼ 1; 2; 3
are assumed to be independent,

(E6) all the distributions in (E2), (E3) given (E5) are independent.

In the absence of prior knowledge on how qi varies over i, we

decide to choose noninformative prior for qi in our analysis. The

assumption (P5) of model M1 is, therefore, replaced by the

following:

(P6) the (noninformative) prior for qi is given by a uniform

distribution over (�1, 1),
(P7) all the distributions given by P1–P4 and (P6) above are

independent.

The set of relations given by Eqs. (5.1)– (5.3), and the

assumptions , (E5) and (E6), and (P1) (P2) (P3) (P4), (P6) and

(P7) constitute M2.

Model M3

Notice that in Eq. (5.2), we assume that the influence of the j-th

region on the i-th region to be given not by bj(t � 1) but rather by

x(t � 1)bj(t � 1): An alternative way to explore the time-varying

effective connectivity, as in time-varying parameter regression

models, is to use bi(t � 1) only on the right hand side of Eq. (4)

which leads to:

yi tð Þ ¼ ai þ x tð Þbi tð Þ þ ei tð Þ; t ¼ 1; N ;T ; i

¼ 1; 2; 3; ð8:1Þ

bi tð Þ ¼
X3
k ¼ 1

ci;k tð Þbk t � 1ð Þ þ wi tð Þ; t ¼ 2; N ;T ; i

¼ 1; 2; 3; ð8:2Þ ð8:2Þ
ci;j tð Þ ¼ ci; j t � 1ð Þ þ di; j tð Þ; t ¼ 2; N ;T ; i; j

¼ 1; 2; 3: ð8:3Þ

The set of relations given by Eqs. (8.1)– (8.3), and the

assumptions (E1)–(E4), (P1)–(P5) constitute M3.
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This model can indeed be thought of a dynamic version of

multivariate time-varying parameter regression, which is related to

dynamic hierarchical models considered in Gamerman and Migon

(1993) and in West and Harrison (1999).

Model M4

This model is similar to M3 but autoregressive error structure

is incorporated in the measurement noise (as in M2). The set of

relations given by Eqs. (8.1)–(8.3), and the assumptions (E2),

(E3), (E5) and (E6), and (P1)–(P4), (P6) and (P7) constitute

M4.

Statistical analysis

We propose a Bayesian approach to estimate the four models

described in the previous section. Recall that the (measurement)

errors in Eq. (5.1) are assumed to have different variances. In our

preliminary empirical analysis, we did not find compelling

evidences supporting the fact that these variances are different

in our data.5 Therefore, we present our method under the

additional assumption that r1 = j2 = j3 = je in Eq. (5.1) here.

Under this additional condition, assumptions (E1), (P4) and (E5)

(and consequently (E4), (P5) and (P7)) are then modified

accordingly. To save space, we do not mention these modifica-

tions separately. It must, however, be stressed that our model is

flexible enough to accommodate heterogenous jis.
As we demonstrate in Application section, model M1 with

homogenous measurement error variance assumption fits the data

the best among the four candidate models. All our results and

computational details given in the present section refer to this

model. Our interest focuses on the connectivity parameters

{ci,j(t), i, j = 1, 2, 3}. The steps to construct the posterior

distribution for this set of parameters using a Gibbs sampler are

described below. To summarize the posterior inference, posterior

mean and posterior standard deviation of the ci,j(t)s, and the

corresponding highest posterior density Bayesian credible region

(also known as HPD BCR) were obtained. These regions were

constructed by solving a nonlinear equation (see, e.g., Carlin and

Louis, 2000, pp. 35–38) and they contain, by definition, the

posterior modes with a chosen posterior probability (1 � a). We

use a = 0.05 for the present work.

Notice that the HPD BCR is not the same as the confidence

interval and should not be interpreted or used in the same way as

in frequentist paradigm for hypothesis testing. The HPD BCR

tells us the probability of a parameter falling in a specific range

given the observed data. Even though the HPD BCR of ci,j(t)
includes zero, this may not imply that the corresponding ci,j(t) is
statistically insignificant. This can be seen clearly in our

simulation study reported later in Simulation.

It should be emphasized that the Gibbs sampler scheme

(Gelfand and Smith, 1990) we used assumes that the following

final-stage hyperparameters are known:

b0 ið Þ:i ¼ 1;2;3f g; li:i ¼ 1;2;3f g; ci;jð0Þ :i;j ¼ 1;2;3
� �

;

rb;rc;ra
� �

;a;d:
5 Before fitting our fMRI data to the four models, we checked the

omogeneity of variance assumption on the time series from these three
h
regions by Barlett’s test (Bartlett, 1937).
These hyperparameters are usually unknown in practice as in

our case. We applied a method similar to the empirical Bayes

technique (Berger, 1985) for selecting appropriate values of

these parameters.

Posterior distributions

In this section, we describe the computational details for

obtaining the required posterior distributions and associated

statistics (posterior mean, posterior variance and Bayesian credible

regions), and the initial-stage hyperparameters empirically. The

notation FYAI_ below refers to the conditional distribution of a

random variable Y given another variables and/or parameters. Also,

X = ((xij))¨ N9(A, s
2I81), means that xijs are i.i.d. N(aij, s

2), where

X = ((xij)) is a 9� 9 randommatrix andA = ((aij)) is a 9� 9matrix of

real entries. Introducing the notations = (re
2, rw

2, rd
2), our model can

now be rewritten in the form of probability distributions:

yT jy1; N ;yT�1;a;b1; N ;bT ;G1; N ;GT ;r ¨N3 aþ xTT ;r2
e I3

� �
;

bT jy1; N ;yT�1;a;b1; N ;bT�1;G1; N ;GT ;r ¨N 3 xT�1GTbT�1;r
2
wI3

� �
;

GT jy1; N ;yT�1;a;b1; N ;bT�1;G1; N ;GT�1;r¨N9 GT�1;r2
dI81

� �
;

s s s
y2 jy1;a;b1;b2;G1;G2;r ¨ N3 aþ x2b2;r

2
e I3

� �
;

b2 jy1;a;b1;G1;G2;r ¨ N3 x1G2b1;r
2
wI3

� �
;

G2 jy1;a;b1;G1;r ¨ N9 G1;r2
d; I81

� �
;

y1 ja;b1;G1;r ¨ N3 aþ x1b1;r
2
e I3

� �
;

b1 ja;G1;r ¨ N3 b0;r
2
b;I3

� �
;

a jG1;r ¨ N3 m0;r
2
a;I3

� �
;

G1 j r ¨ N9 b0;r
2
c ;I3

� �
;

r2
e;r

2
w;r

2
d ¨ i:i:d: IG a;dð Þ:

ð9Þ
To save space, we further denote

w ¼ða;b1;b2; N ;bT ;G1;G2; N ;GT Þu a1;a2;a3;b1 tð Þ;b2 tð Þ;b3 tð Þ;tð

¼ 1;2; N ;T ; ci; j tð Þ;i;j ¼ 1;2;3;t ¼ 1; N ;TÞ;
and

q ¼  ;rð Þ:
Notice now that the joint posterior distribution of

qu b1;b2; N ;bT ;G1;G2; N ;GT ;a;r2
e ;r

2
w;r

2
d

� �
is proportional to the following:Y
¼ exp � Q1 þ a

2r2
e
� Q2 þ a

2r2
w

� Q3 þ a

2r2
d

� Q4

2r2
b

� Q5

2r2
b

� Q6

2r2
c

! 

� 1

r2
e

�	 d þ 2
1
þ 3T

2

I
1

r2
w

�	 dþ2
2
þ 3 T � 1ð Þ

2

I
1

r2
d

�	 dþ2
2
þ 9 T � 1ð Þ

2

#"
;

ð10Þ
where (writing xt for x(t))

Q1 ¼def
X3
i ¼ 1

XT
t ¼ 1

yi tð Þ � ai � xtbi tð Þð Þ2;

Q2 ¼def
X3
i ¼ 1

XT
t ¼ 2

bi tð Þ�xt�1

"X3
k ¼ 1

cikbkðt �1Þ
#! 2

;

Q3 ¼def
X3
i ¼ 1

XT
j ¼ 1

XT
t ¼ 2

ci;j tð Þ�ci;j t�1ð Þ
� �2

; Q4 ¼def
X3
i ¼ 1

bi 1ð Þ�bi 0ð Þð Þ2;

Q5 ¼
def
X3
i ¼ 1

ai � lið Þ2; Q6 ¼
def
X3
i ¼ 1

X3
i ¼ 1

ci;j 1ð Þ � ci;j 0ð Þ
� �2

:

ð11Þ
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The details leading to the expression in Eq. (10) are provided in the

Appendix A.1.

Our interests focus on the posterior distribution of the connec-

tivity parameters, ci ,j(t)s, which were obtained by the Gibbs sam-

pling scheme. In the Appendix A.2, we list all the full conditionals

necessary for implementation of the Gibbs sampling scheme.

Choice of hyperparameters

Our computation above assumes known values of the final-

stage hyperparameters. In practice, these quantities are usually

unknown and can be obtained by a slight modification of the ML-II

method proposed by Berger (1985, pp. 99–101). The details of the

computation are presented below.

We denote the hyperparameters collectively as:

x ¼def xY;xr

� �
;

where

xy ¼
def

b0 ið Þ;i ¼ 1; 2; 3; li;i ¼ 1; 2; 3; ci; j 0ð Þ;i; j
�
¼ 1; 2; 3; rb;rc;raÞ and xs ¼

def
a;dð Þ:

To estimate these hyperparameters, one can maximize the

marginal density of observed y ¼def y1; y2; N ; yTð Þ, given by

p Y jxð Þ ¼ Xp Y jqð Þp q jxð Þdq; ð12Þ

with respect to x (this expression can also be regarded as the

likelihood function for the hyperparameters given the data). This

approach to setting hyperparameters is called ML-II (Berger,

1985). Note that the marginal density p(IA) will not be proper if the
prior distribution p (qAx) is improper. Despite this, maximization

of Eq. (l2) is possible. Thus

x̂x ¼ argmax
x

p Y jxð Þ

may be chosen as the set of appropriate hyperparameters. The

approach we employ for maximization is new from a compu-

tational point of view. The rationales of our method are provided

in the Appendix C. The details of our method are now described.

Notice that we can re-write Eq. (12) as

p Y jxð Þ ¼
Z Z

p Y jY;sð Þp Y jxY
� �

dY


�
p s jxrð Þds ð13Þ

Instead of working with Eq. (13) (or with Eq. (12)), we work with

an analogue of it. The analogue of Eq.(13) (or of Eq. (12)) we

propose is given by

p̂p Y jxY
� �

¼
Z

p Y jY;ŝsð Þp Y jxwð ÞdY; ð14Þ

where s is the posterior mode of s, i.e., s maximizes the functionZ
p Y jY;sð Þp Y jxY

� �
dY; ð15Þ

over s. A heuristic justification for this step can be offered by

noting that the integral in Eq. (13) is bounded above by that in Eq.

(14) if p(sAXr) is proper. A more detailed explanation of choosing

s as an estimate of r can be found in the Appendix C.

The next step involves the maximization of the integrated

likelihood (14) with respect to y. We denote the maxima of this

likelihood function as p̂ (YAx̂y) which is attained at x̂y.
Model selection

We now discuss how to pick the best fit model out of a set of

competing models via Bayes factor (Clyde and George, 2004; Kass

and Raftery, 1995; Penny et al., 2004a). It must, however, be

stressed that what we computed and employed for the purpose of

model selection is not exactly Bayes factor but a variant of it. This

is because Bayes factor is a ratio of integrated likelihoods but we

worked with the ratio of some analogues of these likelihoods. In

what follows, the expression FBayes factor_ refers to this modified

ratio.

Given the values of the hyperparameters from model j and

model k, calculation of Bayes factor requires only the computation

of the marginals, p̂ Mj
(YAX̂Y), or equivalently the logarithms of the

marginals, to obtain the ratios

BF j;kð Þ ¼
p̂pMj

Y j x̂xY
� �

p̂pMk
Y j x̂xY
� � ;

for j m k. Note that estimates of the hyperparameters are obtained

separately and independently for each modelMj. Following Jeffreys

(1961), a modelMj is said to be significantly better than modelMk if

BF( j, k) > 3. Thus, by a series of pairwise comparisons, we can pick

the Fbest model_ from a set of competing models.

Model implementation by Gibbs sampler

Bayesian inference of the time-varying connectivity parameters

requires the computation of the posterior distribution pM1
(qAY, x̂Y,

x̂ s), which is analytically nontractable but can be approximated

numerically by Gibbs sampling. The algorithm proceeds iteratively

by first starting from an arbitrary choice of initial values from the

parameter space and then simulating realizations from the Ffull_
conditional distribution of each parameter given the data and

current values of other parameters. The full conditional distribution

of each parameter is given in Appendix A.2. After sufficiently

large number of iterations, also known as the burn-in time, the

algorithm is said to be Fconverged_ to the true posterior distribution
of the parameters.

In our analysis, arbitrary initial values were used for a trial run

of the Gibbs sampler but were then modified. In particular, we used

posterior estimates of the parameters obtained from the trial run as

initial values for the final run of the Gibbs sampler. In the final run,

we discarded the realizations obtained in the first 5000 burn-in

iterations and retained the next 5000 realizations as samples from

the posterior. Indeed, informal convergence checks indicated that

convergence reached in much fewer iterations (see Gelman and

Rubin, 1992; Raftery and Lewis, 1992, for more discussion on

convergence diagnostics). We experimented a few different initial

values of the parameters but results stayed the same.

Essentially the same Gibbs sampling scheme was used for

implementing all four models. Because of the assumption on

temporal dependence between the ei(t)s in models M2 and M4,

minor modification is needed when implementing these two

models. The full conditional distribution for each qi within

posterior is needed. The corresponding density function can be

shown to be the product of a normal density function, truncated to

(�1, 1) and another function which is bounded by one. The details

are described in the Appendix D.

All of our computations were carried out on a 650 MHz

Pentium III machine with 64 MB memory and 20 GB diskspace.
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Computations for each model run required about 3 min. Our

programs were written in C language.

Simulation

To verify our proposed Bayesian procedure, we generated time

series data according to M1 (see Eqs. (5.1)–(5.3)). The length of

each time series was 285 and the values of the hemodynamic

response function, x(t) were the same as those used in the

Application section (Application). Models M1 to M4 were then

fitted to the generated data. A total of 50 Monte Carlo simulations

were run. The goal is to examine if our proposed method can

correctly identify the true model and can capture the true parameter

values.

To assess the performance of Bayes factor in identifying the

correct model (i.e., M1), it is required to compute the logarithm of

the marginal of the simulated data Yunder all four models M1–M4

and examine which of the four models yields the maximum

marginal. The logarithm of marginals under both models M3 and

M4 turned out to be �V for all the simulated data sets, correctly
Fig. 2. Highest posterior density Bayesian credible region’s of the
indicating their inappropriateness. Over 60% cases of our

simulated data sets, the marginal under M1 turned out to be higher

than the marginal under M2 (i.e., M1 fits the data better than M2).

This demonstrates the capability of Bayes factor in selecting the

true model correctly.

Given that the correct model can be selected using Bayes

factor, we now turn to assess the performance of our proposed

parameter estimation procedure. Because the results across 50

simulations are very similar, we chose the results from one

simulation for the discussion below. We focus on the results for

the connectivity parameters ci,j(t). Fig. 2 shows the true value

(solid line) and the 95% HPD BCR (dashed lines) for these

connectivity parameters. Nearly all true values of ci,j(t) are

included within the respective 95% HPD BCR. Notice that the

true values were chosen to vary over time and fluctuate around

zero. As mentioned above, HPD BCR cannot be used in the

same way as confidence interval in frequentist paradigm for

hypothesis testing. In other words, the HPD BCR includes

zeroes in it at all time points but it may not imply that the ci,j(t)
is insignificant.
c i,j(t), s for model Msub 1 from Monte Carlo simulation.
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In sum, the above results demonstrate the validity of our

proposed Bayesian procedure for modeling dynamic effective

connectivity.
Application

In this section, we present an empirical application of the

proposed approach for investigating the mechanism of attentional

control using fMRI data from a single subject.

Attentional control network

The human brain has limited processing capacity and it is

important to have mechanisms to filter out task-irrelevant

information and select task-relevant information. Attention is

the cognitive function underlying the human brain that can

discriminate between relevant and irrelevant information. In a

recent review, Frith (2001) argued that there are two types of

selection processes in the brain, bottom-up and top-down.

Bottom-up selection is driven by the intrinsic properties of a

stimulus. Conversely, top-down selection favors the task-

relevant feature(s) of the stimulus, independent of its intrinsic

properties. Such top-down selection bias requires coordination of

neural activity within the attentional network and is usually

referred to as the attentional control. Implementation of the

attentional control has been suggested to involve (at least) three

systems (e.g., Banich et al., 2000): (1) a system processing task-

relevant stimulus dimensions (task-relevant processing system);

(2) a system processing task-irrelevant stimulus dimensions

(task-irrelevant processing system); and (3) a higher order

executive control system (source of control) performing the

top-down selection bias that may increase the neural activity

within the task-relevant processing system and/or may suppress

the neural activity within the task-irrelevant processing system.

Many studies have found the dorsal lateral prefrontal cortex to

be a main source of the attentional control. Depending on the

types of the task (visual, auditory, etc.), the sites of the

attentional control (task-relevant and task-irrelevant processing

systems) might vary.

Experimental design

There were two phases in the experiment. In the learning phase,

the subject learned to associate each of three unfamiliar shapes

with a unique color word (FBlue_, FYellow_ and FGreen_), until they
were able to name the three shapes with 100% accuracy before the

test phase started. In the test phase, two types of trials were

presented. In the interference trials, the shape was printed in an ink

color incongruent with the color used to name the shape whereas,

in the neutral trials, the shape was printed in white, which was not

a color name for any of the shapes. A block design was used, in

which a block of neutral trials was alternated with a block of

interference trials. A total of 6 interference and 6 neutral blocks

were presented, with each block consisting of 18 trials, presented at

a rate of one trial every 2 s. Each trial consisted of a 300 ms

fixation cross by a 1200 ms presentation of the stimulus (shape)

and 500 ms inter-trial interval. The subject was instructed to

subvocally name each shape with the corresponding color from the

learning phase, while ignoring the ink color in which the shape was

presented.
Data acquisition and preprocessing

A GE Signa (1.5 T) magnetic resonance imaging system

equipped for echo-planar imaging (EPI) was used for data

acquisition. For each run, a total of 300 EPI images were acquired

(TR = 1517 ms, TE = 40 ms, flip angle = 90-), each consisting of

15 contiguous slices (thickness = 7 mm, in-plan resolution = 3.75

mm, parallel to the AC–PC line). A high-resolution 3D anatomical

set (T1-weighted 3-dimensional spoiled gradient echo images) was

also collected. The head coil was fitted with a bite bar to minimize

head motion during the session. Stimuli were presented on a

goggle system. Interested readers can find more details about the

experiment in Milham et al. (2003a). The first seven volumes of

the images were discarded to allow the MR signal to reach steady

state.

Identification of region of interests

For illustration, three regions were selected to investigate the

attentional control network in the Stroop task. They were the

lingual gyrus, the middle occipital gyrus, and the dorsolateral

prefrontal cortex. The lingual gyrus (LG) is a visual area

sensitive to color information (Corbetta et al., 1991) represent-

ing a site for processing task-irrelevant information (i.e., the

ink color) in the present experiment (Kelley et al., 1998). The

middle occipital gyrus (MOG) is another visual area sensitive to

shape information and represents a site for processing task-

relevant information (the shape’s form). The dorsolateral

prefrontal cortex (DLPFC) is selected to represent the source

of attentional control. These areas were also found to be

significantly activated in the interference trials comparing to

neutral trials in this experiment (see Milham et al., 2003a for

more details). For each of these regions, the location of peak

activation was identified. A sphere (radius 2 voxels or 4 mm;

total number of voxels in sphere is 33) with the peak at its

center was defined. The time series of these selected voxels

were then subjected to Singular Value Decomposition. The first

mode was used to represent the time series response for the

selected region. There were also other regions (e.g., anterior

cingulate gyrus) but with much weaker activation (P = 0.01),

we therefore focus only on the three chosen areas in this paper

to demonstrate our approach. We will explore the role of other

activated regions in the attentional control network in the

future.

Fig. 3 shows the time series of these three selected regions

after being detrended by running-line smoother (Marchini and

Ripley, 2000). A running-line smoother is a linear regression

fitted to the k-nearest neighbors of a given point and used to

predict the response at that point. For an fMRI experiment with

periodic design (e.g., a block of experimental stimuli and a

block of control stimuli are alternatively presented to the

subjects), Marchini and Ripley (2000) suggested setting k equal

to at least twice the cycle length (1 cycle = 1 block of

experimental stimuli + 1 block of control stimuli as in the

previous example).

Statistical analysis

We denote the detrended fMRI time series corresponding to

LG, MOG and DLPFC by y1(t), y2(t) and y3(t), respectively.

Our approach is very flexible and allows us to explore many
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possible alternative mechanisms of attentional control, for

example, if the DLPFC suppresses the activation of the LG

(c1,3(t)), and facilitates the activation of the MOG (c2,3(t)); if there
is reciprocal suppression between LG andMOG, (c1,2(t) and c2,1(t)),
(as our brain’s processing capacity is limited, the LG and the MOG

may need to compete for the limited Fresources_ in the brain); or if

there is feedback from the LG and the MOG on the DLPFC (c3,1(t)
and c3,2 (t)). These mechanisms can be explored separately or

simultaneously. We examined whether the LG, the MOG and the

DLPFC reciprocally influence each other simultaneously in models

M1 to M4.

The values of BF(j, k) were calculated between each pair of

candidate models based on the fMRI data. We have calculated

(logarithm of) marginal density, denoted p̂Mj
(YAx̂y) for each

model Mj. The Bayes factors can be obtained in two steps: (i) by

computing appropriate differences between these numbers and (ii)

by exponentiating these differences (cf. Eq. (15) above). Table 1

shows the values of logarithm of p̂Mj
(YAx̂y). As in Eq. (14), the
Table 1

Logarithm of the approximate marginal density p̂Mj
(YAx̂)

Model Logarithm of p̂Mj
(YAx̂y)

M1 �5.0784 � 10199

M2 �7.7936 � 10269

M3 �V
M4 �V
M5 �4.1350 � 10177
value of s for each of the four models was fixed in the

calculation of BF.

Notice that the marginal density of the observed data is very

small for all four models. It is not surprising since the data are of

very high dimensionality (285 time points � 3 regions). The above

table clearly shows that M1 is the best fit model among the four.

The posterior mode (solid line) for ci,j(t), i, j = 1, 2, 3 with the

corresponding 95% HPD BCR (dash lines) for M1 is shown in Fig.

4. The mean and variance of the posterior modes over time are

shown in Table 2.

Notice that, in Table 2, the variances of the posterior modes for

c3,1(t) and c3,2(t) are very small which suggest that the

corresponding connectivity may not vary much over time and

may regard as constant. Moreover, the averages of the posterior

modes for these two coefficients are almost zero throughout the

experiment. Together, it suggests we may consider to simplify M1

by constraining these two coefficients to be zero.

This Fconstrained_ model (model M5) was fitted and the Bayes

factor between M5 and M1, BF(5,1), is much larger than 3 (see

Table 1). This means M5 fits the data significantly better than

model M1.
6

6 We did not perform an exhaustive research for all possible models

(more than 500) which is computationally very intensive. Instead, we rely

on the mean and variance of posterior modes to guide us for model

modification. We ran another simulation to verify this procedure and the

results supported this approach for model modification.



Fig. 4. Highest posterior density Bayesian credible region’s of the c i,j(t), s for model Msub 1 from the analysis of the empirical fMRI data set.
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We have considered some other simplifications in combination

with the above constraints (i.e., c3,1(t) = g3, 2(t) = 0) such as c2, 3(t) =
0 for all t, by the same token. However, fitting such model did not

further improve the results in the sense of increasing (logarithm of)

the marginal density. This may be due to the fact that the posterior

variability of c2, 3(t) is nonnegligible (i.e., the connectivity between
MOG and LG is time-varying), and thus replacing c2, 3(t) by zero

may not be appropriate.
Table 2

Summary statistics for the connectivity parameter estimates in M1

C(t) Mean of posterior mode Variance of posterior mode

c12(t) �0.1495 1.3942

c13(t) �3.0382 3.9779

c21(t) �0.8365 0.1838

c23(t) �0.2667 0.1577

c31(t) 0.4179 0.1330

c32(t) 0.1365 0.0634
Results and interpretations

We focus our discussion on the results of the connectivity

coefficients in model M5. The posterior mode for c1,2(t), c2,1(t),
c1,3(t) and c2,3(t) with the corresponding 95% HPD BCRs

(intervals) are shown in Fig. 5. It can be seen that the coefficient

c1,3(t) became stronger in a negative direction over time. This

result suggests that there was a substantial suppression from

DLPFC on LG (c1,3(t)) and the strength of suppression grew

steadily stronger over time. Fig. 6 shows the snapshot for the

smoothed posterior distribution of this coefficient at various time

points in the experiment. The coefficient of c2,3(t) was also

negative throughout the experiment but was much weaker than

c1,3(t).
The LG and MOG processed conflicting information (ink

color vs. shape) in the experiment and it has been argued that

competitive inhibition may exist between these two sites of

control (see Herd et al., in press, for example). Our results

showed that there was substantial suppression from MOG on LG



Fig. 5. Highest posterior density Bayesian credible region’s of the c i,j(t)s for model M5 from the analysis of the empirical fMRI data set.
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(c1,2 (t)) but no clear indication of suppression from LG to MOG

(c2,1(t)).
Since model M5 was found to fit better than model M1, it

implies that the assumption that the coefficients c3,1(t) and c3,2(t)
were zero in the whole experiment was tenable. We may

conclude that there was no feedback from the two sites of

control (LG and MOG) to the source of control (DLPFC) directly.

Furthermore, there is no strong evidence suggesting self-feedback

at the DLPFC (c3,3 (t). However, positive self-feedback at LG

(c1,1(t)) and MOG (c2,2(t)) can be seen throughout the

experiment.

Overall speaking, our results are in accord with the theory of

attentional control that DLPFC serves as a top-down control to

decrease the neural activity within processing systems containing

irrelevant and potential interfering information (Banich et al.,

2000; Milham et al., 2002, 2003a,b). Our analyses suggest that the

connectivity was dynamic (between DLPFC and LG) in this

network. The present findings were based on a single subject’s

data. More fMRI data will be analyzed in the future to cross-

validate the present findings.
Conclusions and future work

In this paper, we have extended the HOS approach to

examine time-varying effective connectivity. Bayesian procedure

for parameter estimation via Gibbs sampling has been pre-

sented. Issues pertaining to model selection and model

simplification have also been addressed. Our results support

the attentional control network theory and provide evidence that

effective connectivity was dynamic in this network. For

convenience, we detrended our fMRI data first before the

Bayesian analysis. A priori detrending is not a necessary step

and the drift component in the form of polynomial, random

walk or cubic spline can be added to our model in a

straightforward manner (see HOS, Discussion section for an

illustration).

We focus the analysis on fMRI data from a single-subject in

this paper. In fMRI experiments, data from multiple subjects are

usually collected. Estimates for the connectivity can vary greatly

across subjects when analyzing the connectivity separately for

each subject. This raises the question of whether these differences
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in connectivity are significant or simply due to chance (Mechelli

et al., 2002). Therefore, it is important to develop a method to

characterize subject-specific variability in connectivity that

permits evaluation of between-subject or between-group differ-

ences. One future direction is to extend the current work to

modeling individual differences in dynamic connectivity patterns

across the subjects.

A random walk process was postulated for characterizing the

dynamics of the connectivity in this paper. Other time-varying

mechanisms for the effective connectivity parameters and possibly

in the error variances are possible and will be explored in the

future. In particular, we plan to investigate the behavior of time-

varying effective connectivity parameters assuming (i) very little or

no change in them within every epoch of rest and activation, but

(ii) substantial change from one epoch to another (rest to

activation, and activation to rest).

To end this paper, we would like to offer a few comments

about the differences between our approach and DCM (Friston et

al., 2003) for effective connectivity analysis. DCM is a

generative or forward model that explains hemodynamic

responses as the product of neuronal activity. Neuronal activity

in one area has an influence over neuronal activity in another

area. In DCM, the coupling is at the level of neuronal activity as
encoded by some hidden variables. In Eq. (5), we formulate the

coupling among regions in terms of modeled hemodynamic

responses namely xi(t)bi(t). The key difference is that our

approach is not based on an explicit physiologically motivated

forward model but, unlike DCM, can accommodate stochastic

variations in coupling. In our model, the influences are exerted

through stimulus-dependent activation that is mediated by the

hemodynamic response. Our approach is more agnostic to the

underlying physiological mechanisms and, as such, represents a

more parsimonious characterization of dependencies among

different regions. In our future work, we plan to modify our

approach to couple the underlying neuronal activities. Besides

DCM, partial least squares approach (Lobaugh et al., 2001;

McIntosh and Lobaugh, 2004) has been proposed recently for

studying effective connectivity in brain imaging literature. A

systematic comparison between our approach and these other

techniques will be pursued in the future.
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Appendix A. Derivation for the joint posterior distribution (10)

Recall the definitions of Q1,. . .,Q6 given in Eq. (11). Notice that the likelihood, from model (5.1), is given by:

exp �Q1=2r2
e

� �
ffiffiffiffiffiffi
2p
p� �3T

r3T
e

:

Moreover, the contributions of Eqs. (5.2) and (5.3) to the posterior are given respectively by

exp �Q2=2r2
w

� �
ffiffiffiffiffiffi
2p
p� �3 T � 1ð Þ

r3 T � 1ð Þ
w

and
exp �Q3=2r2

d

� �
ffiffiffiffiffiffi
2p
p� �9 T � 1ð Þ

r9 T � 1ð Þ
d

:

The priors for b1, a and {cij(1), i,j = 1,2,3} are given respectively by

exp �Q4=2r2
b

� �
ffiffiffiffiffiffi
2p
p� �3

r3
b

;
exp �Q5=2r2

a

� �
ffiffiffiffiffiffi
2p
p� �3

r3
a

and
exp �Q6=2r

2
c

� �
ffiffiffiffiffiffi
2p
p� �9

r9
c

:

The prior for jq
2 is proportional to

1

r2
e

�	 d þ 2
2

exp � a

2r2
e

�	
: ðA:1Þ

The priors for rw
2 and rd

2 are obtained by replacing rq
2 by rw

2 and rd
2, respectively, in Eq. (A.1).

Therefore, the joint posterior distribution of b1, b2,. . .,bTG 1, G 2,. . .,G T, a, re
2, rw

2, rd
2 is proportional to the following:

Y
¼ exp � Q1 þ a

2r2
e
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�	 d þ 2
2
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I
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�	 dþ2
2
þ9 T�1ð Þ

2

:

This establishes Eq. (10).

Appendix B. Derivation for the full conditional distribution of the parameters in model M1

The propositions stated below enable us to implement Gibbs sampling scheme for obtaining the posterior distribution of the ci,j(t)s. The
proof is simple and hence omitted.

For every parameter k, the distribution of the parameter k given all other parameters and the observations y1, y2,. . .,yT is written as

p(kAh�k, y1, y2,. . .,yT):

1. p(aiAq� a i
, y1, y2,. . ., yT) is normal with mean and variance

~
T

t ¼ 1

yi tð Þ � xtbi tð Þf g

r2
e

þ li

r2
a

T
r2

e

þ 1
r2

a

and
T

r2
e
þ 1

r2
a

�	 �1
; i ¼ 1; 2; 3:
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2. p(bi(1)Aq�b i(1)
, y1, y2,. . .,yT) is normal with mean and variance

x1 yi 1ð Þ � aif g
r2

e

þ
xi ~

3

l ¼ 1

cl;i 2ð Þ bl 2ð Þ � xi ~
3

k ¼ 1; kmi
cl;k 2ð Þbk 1ð Þ

)(

r2
w

þ b1 0ð Þ
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b

x21
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e

þ
x21 c21;i 2ð Þ þ c22;i 2ð Þ þ c23;i 2ð Þ
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r2
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r2

b
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1
A

0
@
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; i ¼ 1; 2; 3:

3. p(bi(t)Aq� b i(t)
, y1, y2,. . .,yT) (t = 2,. . .,T � 1) is normal with mean and variance

xt yi tð Þ � aif g
r2

e

þ
xt�1 ~

3

j ¼ 1
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3
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; i ¼ 1; 2; 3:

4. p(bi(T)Aq�b i(T)
, y1, y2,. . .,yT) is normal with mean and variance

xT yi Tð Þ � aif g
r2

e

þ
xT�1 ~

3

j ¼ 1
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r2
w

x2T
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e
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r2
w
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e
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w

! �1

; i ¼ 1; 2; 3:

5. p(ci,j(1)Aq�c i,j(1)
, y1, y2,. . .,yT) is normal with mean and variance

ci;j 2ð Þ
r2

d

þ
ci;j 0ð Þ

r2
c

1
r2

d

þ 1
r2

c
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1

r2
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r2
c
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; i;j ¼ 1; 2; 3:

6. p(ci,j(T)Aq�c i,j(T)
, y1, y2,. . .,yT) is normal with mean and variance

ci;j T � 1ð Þ
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d
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2
j T � 1ð Þ
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; i; j ¼ 1; 2; 3:

7. p(ci,j(t)Aq�c i,j(t)
, y1, y2,. . .,yT) (t = 2,. . .,T � 1) is normal with mean and variance

ci;j t � 1ð Þ þ ci;j t þ 1ð Þ
r2

d
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xt�1bj t � 1ð Þ bi tð Þ � xt�1 ~

3

k ¼ 1;k m j

ci;k tð Þbk t � 1ð Þ
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2
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r2
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and
2

r2
d

þ
x2t�1b

2
j t � 1ð Þ
r2
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; i; j ¼ 1; 2; 3:

8. (a) p(re
2Aq� re

2 , y1, y2,. . .,yT) is IG(Q1 + a, d + 3T). [For definition of Q1, refer to Eq. (11).]

8. (b) p(rw
2Aq�re

2 , y1, y2,. . .,yT) is IG(Q2 + a, d + 3(T � 1)). [For definition of Q2, refer to Eq. (11).]

8. (c) p(rd
2Aq�re

2 , y1, y2,. . .,yT) is IG(Q3 + a, d + 9(T � 1)). [For definition of Q3, refer to Eq. (11).]
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Appendix C. Computational details and rationale for the choice of hyperparameters

Since the integral (12) is not, in general, analytically tractable, an alternative to analytical integration is Monte Carlo integration. In other

words, provided that the prior p (qAx) is proper for all plausible x , one can draw samples of size, say, N of q, denoted by q(k), k = 1,. . .,N.
Given the samples, Eq. (12) may be estimated as

p̂p Y jxð Þ ¼ 1

N

XN
k ¼ 1

p Y jq kð Þ
� �

ðA:2Þ

Note that it is necessary to compute the estimate (A.2) for each of many possible choices of x . In practice, hyperparameters can be chosen by

simulation from a given plausible range. Thus, it is very important that a fast efficient Monte Carlo simulation scheme is adopted to reduce

the computational burden. Markov Chain Monte Carlo (MCMC) is a general-purpose algorithm but is computationally very expensive for the

current purpose.

The discussion above motivates us to see if we can employ direct Monte Carlo integration. However, in order to employ this, it is

necessary that the prior on q given x (p(qAx)) is proper; otherwise, samples cannot be drawn from it. For our analysis, we chose independent

Inverse Gamma IG(a,d) priors on components of s, which means the inverse of the component in s follows independent Gamma

distribution (see also footnote 4 for the mathematical definition of IG(a,d)). We set the two parameters a = d = 0 in our application which

implies impropriety of the prior for s and consequently for all the parameters.

This, in turn, suggests that without some modification Monte Carlo integration cannot be employed in this context. Notice now that the

problem arising out of impropriety of the prior for s can be avoided by integrating out s in Eq. (12). This implies that the marginal density

under consideration is given by the following:

p Y jxY
� �

”

Z
exp � Q4

2r2
b

� Q5

2r2
a
� Q6

2r2
c

! 
� 1

Q
3T � 1ð Þ=2
1 Q

3T � 4ð Þ=2
2 Q

9T � 10ð Þ=2
3

dY: ðA:3Þ

However, there does not appear to be any obvious Monte Carlo based method for evaluating this integral numerically.

One way to avoid numerical evaluation of Eq. (12) or of Eq. (A.3) is to plug in a reasonable estimate (typically, the posterior mode) of s
the integrand in Eq. (12) and evaluate the integral of the resulting integrand with respect only to y by Monte Carlo method. The quantity

obtained in this manner is readily seen to be a function of xy alone. This function is subsequently maximized with respect to xy. Details have
been provided in Choice of hyperparameters.

Notice that in Eq. (12), or in Eq. (13), the set of parameters, denoted by q, is sought to be eliminated by integration for the purpose of

obtaining the hyperparameters. Therefore, q may be considered as a set of ‘‘nuisance parameters’’. A relevant reference on elimination of

nuisance parameters can be found in Berger et al. (1999). In their paper, these authors discussed primarily elimination of the nuisance

parameters by integrating them out, but also discussed maximization with respect to the nuisance parameters for the same purpose. In

particular, they refer to the functional form that results after integrating out nuisance parameters from the likelihood as ‘‘uniform-integrated

likelihood’’. Maximization with respect to the nuisance parameters, fixing those of interest, produces what is known as ‘‘profile likelihood’’.

For implementation of the ML-II method, integration alone has been recommended for elimination of nuisance parameters (see Eq. (12)).

However, as discussed earlier, eliminating nuisance parameters in our problem with a combination of integration and maximization is

computationally more convenient than integration alone. In particular, eliminating s by fixing it to its posterior mode takes care of the

problem caused by impropriety of the prior for s. This then allows for Monte Carlo integration which is needed for obtaining an estimate of

p(YAx), denoted as p(YAxy).
Given improper priors on all the components of s as mentioned before, we computed their posterior distributions under different choices

of the hyperparameters of y. The posteriors remained almost unchanged which suggests considerable robustness of our approach. Therefore,

in replacing Eq. (12) by Eq. (14), we do not introduce any additional dependence among the quantity to be maximized over xy. This certainly
is a computational advantage (see also Example 3 of Berger et al., 1999). Therefore, for the purpose of finding a meaningful analogue of Eq.

(12), we fixed s to its posterior mode and avoided consequently the integration with respect to s in Eq.(12).
Appendix D. Derivation for the full conditional distribution of the parameters in model M2

The propositions stated below enable us to implement Gibbs sampling scheme for obtaining the posterior distribution of the ci,j(t)s in
M2. The prior for q is assumed to be the i.i.d. uniform priors over (�1, 1). Notice also that the definition of Q1 (p. 11) needs to be modified

to:

Q4
1 ¼

def
X3
i ¼ 1

Q1;i; ðA:2:1Þ

where

Q1;i ¼
def

XT
t ¼ 2

yi tð Þ � ai � xtbi tð Þf g � q yi t � 1ð Þ � ai � xt�1bi t � 1ð Þf g½ �2 þ 1� q2
i

� �
yi 1ð Þ � ai � x1bi 1ð Þf g2: ðA:2:2Þ
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Notice now that the joint posterior distribution of
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As in Appendix A.2, for every parameter k, the distribution of the parameter k given all other parameters and the observations y1,

y2,. . .,yT is written as p(kAq�k, y1, y2,. . .,yT):

1. p(aiAq� a i
, y1, y2,. . .,yT) is normal with mean and variance
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2. p(bi(1)Aq�b i(1)
, y1, y2,. . .,yT) is normal with mean and variance
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3. p(bi(t)Aq�b i
(t), y1, y2,. . .,yT) (t = 2,. . .,T � 1) is normal with mean and variance

xt 1þ q2
i

� �
yi tð Þ � aið Þ

� �
r2

e
� xt qi yi t þ 1ð Þ � ai � xt�1bi t þ 1ð Þð Þf g

r2
e

xt qi yi t � 1ð Þ � ai � xt�1bi t � 1ð Þð Þf g
r2

e
þ

xt�1 ~
3

j ¼ 1

ci;j tð Þbj t � 1ð Þ

r2
w

þ
xt ~

3

l ¼ 1

cl;i t þ 1ð Þ bl t þ 1ð Þ � xt ~
3

k ¼ 1; kmi
cl;k t þ 1ð Þbj t � 1ð Þ

#"

r2
w

x2t 1þ q2
i

� �
r2

e
þ

1þ x2t c21;i t þ 1ð Þ þ c22;i t þ 1ð Þ þ c23;i t þ 1ð Þ
� �

r2
w

4. p(bi(T)Aq�b i(T)
, y1, y2,. . .,yT) is normal with mean and variance

xT yi Tð Þ � aið Þ � qi yi T � 1ð Þ � ai � xT�1b1 T � 1ð Þð Þf g
r2

e
þ

xT�1 ~
3

j ¼ 1

ci;j Tð Þbj T � 1ð Þ

r2
w

x2T
r2

e
þ 1

r2
w

and
x2T
r2

e

þ 1

r2
w

�	 �1
; i ¼ 1;2;3:
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7. p(ci,j(t)Aq� c i,j(t)
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8. (a) p(re
2Aq�re

2, y1, y2,. . .,yT) is IG(Q1
* + a, d + 3T). [For definition of Q1

*, refer to Eq. (A.2.1).]

8. (b) p(rw
2Aq�rw

2, y1, y2,. . .,yT) is IG(Q2 + a, d + 3(T � 1)). [For definition of Q2, refer to Eq. (11).]

8. (c) p(rd
2Aq�rd

2, y1, y2,. . .,yT) is IG(Q3 + a, d + 9(T � 1)). [For definition of Q3, refer to Eq. (11).]

9. p(q iAq�qi, y1, y2,. . .,yT) is a distribution having probability density function proportional to

1� q2
i

� �1
2 exp � Q1;i

2r2
e
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