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9 We propose a novel method using Bayesian networks to learn the

10 structure of effective connectivity among brain regions involved in a

11 functional MR experiment. The approach is exploratory in the sense

12 that it does not require an a priori model as in the earlier approaches,

13 such as the Structural Equation Modeling or Dynamic Causal

14 Modeling, which can only affirm or refute the connectivity of a

15 previously known anatomical model or a hypothesized model. The

16 conditional probabilities that render the interactions among brain

17 regions in Bayesian networks represent the connectivity in the complete

18 statistical sense. The present method is applicable even when the

19 number of regions involved in the cognitive network is large or

20 unknown. We demonstrate the present approach by using synthetic

21 data and fMRI data collected in silent word reading and counting

22 Stroop tasks.
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28 Introduction

29 With the rapid development of medical imaging techniques,

30 researchers are now able to obtain a multifaceted view of brain
31 function and anatomy (Maurer and Fitzpatrik, 1993). Functional
32 brain imaging represents a range of measurement techniques,

33 which extract quantitative information about physiological func-
34 tion and provide functional maps showing which regions are
35 specialized for different sensory or cognitive functions (Maintz and
36 Viergever, 1996). Although many researchers have attempted to

37 identify the individual brain areas involved in various cognitive
38 tasks, holistic views of effective connectivity of higher-order
39 functions have not been investigated thoroughly. More recently,

40 functional integration studies describing how functionally special-
41 ized areas interact and how these interactions lead the brain to
42 perform a specific task have become one of the hot topics in brain

43mapping research (Penny et al., 2004a). In this paper, we present
44an exploratory approach to determine effective connectivity among

45brain regions from fMRI data based on Bayesian graphical models
46where interactions among the regions are represented by condi-
47tional probabilities.

48Presently, the information about neural interactions is often
49extracted by decomposing interregional covariances among acti-
50vations. Structural Equation Modeling (SEM) has been the most

51commonly used method to analyze the effective connectivity
52among brain regions. McIntosh and Gonzalez-Lima (1994) first
53described SEM and applied for network analysis of vision tasks
54using PET. Other researchers (McIntosh et al., 1994; Krause et al.,

551999; Nyberg et al., 1996; Bavelier et al., 2000; Honey et al., 2002;
56Nezafat et al., 2001; McKiernan et al., 2001; Petersson et al., 2000;
57Buchel and Friston, 1997) have later used SEM for the analysis of

58networks of brain regions involved in sensory or cognitive tasks.
59Bullmore et al. showed how to search for the best fitting covariance
60model of connectivity from fMRI data by using SEM (Bullmore et

61al., 2000). Mechelli et al. (2002) constructed a multisubject
62network based on SEM to illustrate the differences in connectivity
63among subjects. The covariances between the brain regions in
64SEM describe the behavior of a neural system only in the second-

65order statistical sense, whereas the conditional probability densities
66(CPDs) characterizing graphical models describe the behavior of a
67network in the complete statistical sense.

68Dynamic Causal Modeling (DCM) was introduced by Friston
69(2003) to model functional interactions at the neuronal level and
70comprises a bilinear model for neurodynamics and an extended

71balloon model for hemodynamics. DCM has shown to be a
72potential model for making inferences about the temporal changes
73of effective connectivity from fMRI data (Penny et al., 2004a,b;

74Friston, 2003). DCM models interactions at the neuronal rather
75than the hemodynamic level (Penny et al., 2004a), which is more
76useful in analyzing the temporal interactions between brain
77regions. Granger causality mapping (GCM), a linear method

78developed for modeling time-resolved fMR time-series, inves-
79tigates effective connectivity among activated brain areas by using
80a vector autoregressive (VAR) model (Goebel et al., 2003). The

81connectivity is computed by evaluating interactions between a
82current voxel and a reference voxel and introducing a statistical
83framework for distinguishing different types of interactions.
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84 Granger causality mapping renders a voxel-wise connectivity
85 analysis, whereas the present approach is region-wise and seeks
86 for a global representation of a neural system.

87 The existing methods of connectivity analysis, such as SEM,
88 DCM, and GCM, are confirmatory in the sense that they need a
89 prior connectivity model to begin with. The prior models are

90 often under anatomical constraints and complicated by the fact
91 that many of them have been obtained in the studies of monkeys.
92 And it is not always certain which areas are to be included in the

93 study, especially if the brain regions are involved in functions
94 unique to human, such as language and cognition (Bullmore et
95 al., 2000). Our method based on Bayesian networks allows

96 extraction of the connectivity among brain regions from
97 functional MRI data in an exploratory manner. Bayesian network
98 modeling is widely applicable for compactly representing the
99 joint probability distribution over a set of random variables

100 (Jordan, 1999). In our functional brain networks, the nodes
101 represent the activated brain regions and a connection between
102 two regions represents an interaction between them. The

103 Maximum A Posteriori (MAP) estimation of the structure of
104 the functional network is derived from fMRI data to maximize
105 the Bayesian Information Criterion (BIC) by using a greedy

106 search algorithm.
107 A synthetic fMRI data set was used to test the feasibility and
108 robustness of the proposed method. The method was further
109 demonstrated by exploring the functional structure from fMRI data

110 obtained in two experiments: a silent word reading task and a
111 counting Stroop task. The network derived for the reading task was
112 compared with the previous literature. The neural systems derived

113 for neutral and interference counting Stroop tasks performed by
114 normal control subjects were used to infer the differences of the
115 performances in the two tasks. The results obtained in the two real

116 fMRI data were consistent with the previous literature and
117 hypotheses, validating the present approach.

118 Method

119 Neural systems modeling with Bayesian networks

120 A Bayesian network, a specific graphical model that utilizes
121 Bayes’ rule for inference, consists of a graph structure and a set of

122 parameters indicating the path coefficients. The graph structure S is
123 a directed acyclic graph (DAG) that encodes a set of conditional
124 independence assertions about the variables at nodes. The

125 parameters are represented by conditional probability distributions
126 (CPDs) defining the probabilities of the nodes given their parent
127 nodes.
128 Fig. 1 shows an example of a Bayesian network, representing a

129 neural system consisting of five brain regions; {ri: i = 1, 2, . . . 5}
130 denotes the set of brain regions activated during the task where ri
131 represents the ith brain region and xi denotes the activation of the

132 region; the set of the directed arcs and the conditional probabilities
133 { p(xi|xj): i, j = 1, 2 . . . 5; i m j} characterize the functional
134 connectivity among the brain regions, in the neural system. The

135 brain regions are presumed to collectively and interactively
136 perform the sensory or cognitive task in the fMRI experiment.
137 Consider a neural system consisting of a set of n brain regions

138 R = {ri; 1, 2, . . ., n} that is capable of collectively performing a
139 particular sensory or cognitive task. The activation of a brain
140 region ri is represented by the average of the time courses of

141hemodynamic responses of the neurons in the region. Suppose that
142the average of the time-series responses of the activated brain region

143is xi. The fMRI experiment is represented by the data set containing
144activations of all activated brain regions: x = {xi: 1, 2, . . . n}. From
145the chain rule of probability, the likelihood of the activation of the

146neural system is given by:

p xð Þ ¼ k
n

i ¼ 1
p xi jx1; N ; xi$1ð Þ ð1Þ

147148where p(x) indicates the joint probability of the activations of all

149brain regions in the neural system and defines the likelihood of the
150function of the neural system. For each variable xi, let ai % {xj; j =
1511, 2, . . ., n, i m j}be a set of parent nodes of xi that renders xi and its
152ancestors conditionally independent. That is,

p xi jx1; x2; N ; xi $ 1ð Þ ¼ p xi jai; hið Þ ð2Þ

153154where hi denotes the parameters of the distribution.
155Then, a Bayesian network representing the joint probability of

156the activation of all brain regions, i.e., of the whole brain system,
157can be written as:

p xð Þ ¼ k
n

i ¼ 1
p xi jai; hið Þ ð3Þ

158159where hi indicates the parameters of the CPDs, involving brain
160region ri and its parent nodes in ai. Let h = {hi,j: i, j = 1, 2, . . . n;
161i m j} denotes the set of parameters of the whole neural system.
162We presume that all CPDs in the graphical model carry the same

163form.
164For two activated regions r1 and r2, the interaction or the
165influence from region r1 to r2 is indicated by the conditional

166probability p(x2|x1), and the influence from r2 to r1 is p(x1|x2).
167Since the activities of r1 and r2 are not independent, the distribution
168of x1 will be affected when x2 is given, and vice versa. Thus, the

169interactions of two linked nodes are bi-directional in a Bayesian
170network. One of the biggest advantages for choosing Bayesian
171networks is that they have the bi-directional message passing

172architecture and can be learned in an unsupervised manner from
173data.

Fig. 1. Illustration of a neural system represented by a Bayesian network:

the set of five activated brain regions {ri: i = 1, 2, . . ., 5} is represented by

the nodes, and the conditional probabilities among them, { p(xi |xj): i, j = 1,

2, . . ., 5; i m j}, represent the interactions.
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174 Learning the structure

175 The structure learning refers to the learning of the topology of

176 the functional network with respect to the parameterization used.
177 We attempt to learn the structure of the neural system from
178 functional MRI data by taking a Bayesian approach considering the

179 probability distributions over the parameters or models. This
180 allows the determination of the confidence of one’s estimate and
181 the usage of predictive techniques such as Bayesian model

182 averaging (Murphy, 2002). The present model is a directed model,
183 as referred to the Bayesian networks, where all the nodes are fully
184 observed and the interactions are presumed to be Gaussian.

185 We attempt to obtain the Maximum A Posteriori (MAP)
186 estimation of the structure, Ŝ, given all the data set:

ŜS ¼ max
S

p S jDð Þ ð4Þ

187188 where from Bayes theorem,

p S jDð Þ ¼ p DjSð Þp Sð Þ
p Dð Þ ; ð5Þ

189190 as the denominator does not depend on S, only the numerator is

191 needed to be maximized. p(S) is assumed to have a uniform prior
192 over the structures (Heckerman and Geiger, 1995), and, to compute
193 p(D |S), the Bayesian approach averages over all possible

194 parameters, weighing each by their posterior probability:

p DjSð Þ ¼
Z

p DjS; hð Þp hjSð Þdh: ð6Þ

195196197 For large samples, the term p(D |S, h)p(h|S) is reasonably
198 approximated as a multivariate Gaussian (Kass and Raftery, 1995).
199 In addition, approximating the mean of the Gaussian with the

200 maximum likelihood (ML) estimates of h and ignoring the terms
201 that do not depend on the data set size N, we obtain the Bayesian
202 Information Criterion (BIC), indicating the fitness of the graph to

203 the data:

BIC hð Þ ¼ log p Djĥh
! o

$ 0:5l log Nf g
n

ð7Þ

204205 where ĥ is the ML estimate of the parameters and l is the number
206 of free parameters of the model. The present approach assigns a

207 score to each candidate graphical model, which measures how well
208 the graphical model describes the data set D (Margaritis, 2003) and
209 yields the best fit model by optimizing the BIC score.

210 There are two different approaches for learning the structure of
211 the network: constraint-based approach and search-and-score
212 approach (Jordan, 1999). The constraint-based approach begins

213 with a fully connected graph and removes edges in a sequential
214 manner if certain conditional independencies are absent in the data.
215 This approach has the disadvantage of repeated independence tests,
216 leading to a loss of statistical power. The more popular search-and-

217 score approach searches through the space of possible DAGs and
218 returns either the best one or a sample of the best models by using a
219 fitness score (Murphy, 2004). Since the number of DAGs is super-

220 exponential of the number of nodes, an exhaustive search in the
221 space is impractical. So, either a local search algorithm, such as
222 greedy hill climbing, or a global search algorithm, such as Markov

223 Chain Monte Carlo (MCMC) method (Wesley, 1994), should be
224 employed. We used the Metropolis–Hastings (MH) algorithm
225 (Wesley, 1994), an MCMC algorithm, to search the space of DAGs

226 to find the optimal structure of the network.

227Experiments and results

228In this section, we illustrate our technique with experiments

229on a synthetic data set and two fMRI data sets obtained from the
230fMRI Data Center, Dartmouth College (fMRIDC): a silent word
231reading task (access number: 2-2000-11189) and a counting

232Stroop task (access number: 2-2000-1123B). We tested our
233method on a synthetic data set for robustness and compared the
234results with the SEM approach. The structures of the neural

235systems involved in the two tasks were derived, and their validity
236was investigated with the help of the past literature and known
237hypotheses.

238Synthetic data

239Synthetic fMRI data sets were generated to test the feasibility

240and robustness of the proposed method for detecting the underlying
241neural system.

242Data generation and simulation

243A neural system was simulated with synthetic time-series where
244interactions among the brain regions are represented by linear

245coefficients. Suppose that the activities had zero mean Gaussian
246variates with an n & n covariance matrix !, i.e., N(x; 0, !).
247Regression equations describe how the activity of one region is
248related to the activity of the other regions with a set of linear

249coefficients:

xt ¼ Mxt þ et ð8Þ

250251where xt denotes the vector of activations of the regions at time t

252and et is the zero mean Gaussian innovation. Matrix M = {mij}n&n

253is formed by the predicted interactions among regions. By
254subtracting Mx t

from both sides of the regression equation and
255multiplying by (I $ M)$1, where I is an n & n identity matrix, the

256equation becomes:

xt ¼ I$Mð Þ$1et: ð9Þ

257258259Eq. (9) can be used to generate synthetic data from a known
260model given by M. The Gaussian variates et was randomly

261generated and then pre-multiplied by (I $ M)$1. This approach
262was repeated for each t to obtain the time-series.
263All synthetic time-series were simulated to have 300 time

264points, and the data set was generated based on the following
265parameters: the structure was the same as in Fig. 1; the nonzero
266elements of the linear coefficient matrix M were m21 = 1.1, m23 =

2670.6, m31 = 0.8, m42 = 1.3, m43 = 1.1, m52 = 0.9, and m54 = 1.2. We
268used the present method to derive the functional structure from the
269synthetic data set.

270Robustness

271The synthetic data set was corrupted by adding random
272Gaussian noise (Signal/Noise = 1.0) at randomly selected time

273points for each time-series to test the robustness of our method.
274The percentage of corrupted time points was varied from 10% to
27560% in steps of 10%.

276We used a likelihood ratio (LR) measure to assess the matching
277between the learned structure and the known structure as for a
278given specificity, no other test renders a higher sensitivity (Penny

279et al., 2004a). If p(x|h, Ŝ) and p(x|h, S) are the likelihoods of the
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280 estimated structure Ŝ and the actual structure S, then the log of the
281 likelihood ratio is given by

log R ¼ log p xjh; ŜS
" #

$ log p xjh; Sð Þ: ð10Þ

282283284 Under the null hypothesis that the models are identical, and for

285 large t, $2 log R is distributed as a v2 variable having degrees of
286 freedom equal to the difference in number of parameters between
287 the models. The results of fitness of our method at various amount
288 of noise are shown in Fig. 2. The values of log LRs were scaled

289 between 0 and 1 for better display. The results were stable until
290 40% of the data points were corrupted by random noise.

291 Comparison with SEM

292 The SEM approach proposed by Bullmore et al. (2000) was
293 used to derive the neural systems generated by the synthetic data

294 sets, and the performances were compared with our technique
295 with Bayesian networks. Several synthetic data sets were
296 generated to simulate brain systems with different number of
297 regions, n = 3, 4, . . ., 15, as illustrated in Fig. 1. The log-likelihood

298 ratios against the number of brain regions are shown in Fig. 3.
299 As seen, our technique with Bayesian networks derived the
300 neural systems closer to the ground truth on all randomly generated

301 synthetic data sets. In the case of synthetic network with 13
302 regions, the estimated structure did not match well with the actual
303 structure, indicating that the algorithm might have fallen into a

304 local minimum during searching. As the number of regions in the
305 neural system increases, the probability of the structure falling into
306 the local minimum becomes higher.

307 Silent reading task

308 Data

309 The fMRI data used in this experiment consist of six subjects
310 (five males, one female), aged between 20 and 34, with English as
311 the first language. The experiment consisted of a 3 & 2 factorial

312 design, three frequencies of presentation: 20, 40, and 60 words per
313 minute, and for each, words and pseudowords presentations
314 alternated with a resting condition. The task involved silent

315 reading of words and pseudowords as soon as they appeared on

316the screen; the resting condition involved fixating to a cross in the
317middle of the screen. Each subject was presented with 105 words
318and 105 pseudowords. Stimuli were composed of four, five, or six

319letters and were presented in 12 blocks. Each block lasted 21 s and
320was followed by a resting period of 16 s. Data for each subject
321contain 360 volume images with a repetition time (TR) of 3.15 s/

322volume. For more details of the experiment, the reader is kindly
323referred to Mechelli et al. (2000).

324Detection of activation

325All functional images of the subjects were realigned, coregis-
326tered, normalized, and smoothed as the preprocessing steps. The

327design matrix, convolved with a synthetic hemodynamic response
328function (HRF), was used as the reference waveform for each time-
329series and then estimated the parameters of the linear model. The
330time-series were high-pass-filtered using a set of discrete Cosine

331basis functions with a cutoff period of 156 s and low-pass-filtered
332using a symmetric HRF as the smoothing kernel to condition the
333temporal autocorrelations (see Mechelli et al., 2000 for details).

334The regions showing increased activity during reading for
335both words and pseudowords were identified by statistically
336comparing the fMRI signal while reading relative to the rest

337condition. The changes in the blood oxygenation level dependent
338(BOLD) contrast, associated with the performance of the reading
339task, were assessed on a voxel-by-voxel basis by using the
340general linear model (Friston et al., 1995) and the theory of

341Gaussian fields (Worsley and Friston, 1995). This analysis
342pipeline thus uses multivariate regression analysis and corrects
343for temporal and spatial autocorrelations of the fMRI data. Group

344analyses were performed using a fixed-effect analysis (FFX)
345(Friston et al., 1999). Significant hemodynamic changes for each
346contrast were assessed using the t statistical parametric maps, and

347the results were reported by giving the t values; and the statistical
348inferences were made at P < 0.05 corrected for multiple
349comparisons by using Family-wise Error Rate (FWER) (Worsley

350et al., 1996, 2004).
351We used SPM2 (Friston et al., 1995) for the above analysis-
352preprocessing and identification of significantly activated regions.
353Talairach daemon database (Lancaster et al., 2004) and the co-

354planar stereotaxic atlas (Talairach and Tournoux, 1988) were used
355to assist the specification of the activated regions in Talairach
356coordinates. The Montreal Neurological Institute (MNI) coordi-

Fig. 2. Illustration of the robustness of the proposed method for deriving

neural systems: the log-likelihood ratios of prediction versus the percentage

of number of data points corrupted by random noise.

Fig. 3. The comparison of performances in deriving the functional

structures of neural systems, by the SEM method and the present approach:

the log-likelihoods are shown against the number of brain regions.

X. Zheng, J.C. Rajapakse / NeuroImage xx (2006) xxx–xxx4
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357 nates given by SPM2 were converted to the corresponding

358 Talairach coordinates by using the technique described by Brett
359 (2002). Table 1 and Fig. 4 show the activations found during the
360 silent word reading task. The activations were found in bilateral
361 extrastriate cortices, superior parietal lobes, middle temporal

362 cortices, inferior frontal sulci, and middle frontal cortices, and
363 the cerebellum.

364 Derivation of neural system

365 The time courses of significantly activated regions were
366 extracted by taking the averages of the time-series at the peak-

367activated voxels and its neighbors at the cluster level for all

368subjects. All extracted time-series representing activated regions
369were formed into a matrix as the input to learn the structure of the
370neural system. The Metropolis–Hastings algorithm was used to
371search the space of all DAGs, with the Bayesian Information

372Criterion (BIC) as the score function to find the optimal model.
373The software package, Bayes Net Toolbox, written by Murphy
374(2004) was used for structure learning. Fig. 5 shows the posterior

375probability of the DAGs, assuming a uniform structural prior, and
376each point in the horizontal axis, representing a possible graph
377structure; the structure with the highest score was chosen to

t1.1 Table 1

Significantly activated regions during the reading condition relative to the rest condition are shown in 3D MNI coordinates with t statisticst1.2

Brain regions (Brodmann areas) Coordinates t valuet1.3

Left extrastriate cortex (LEC: BA18, BA19) ($16, $98, 6) 17.19t1.4
Right extrastriate cortex (REC: BA18, BA19) (16, $99, $6) 17.19t1.5
Left superior parietal lobule (LSPL: BA7) ($28, $60, 56) 7.65t1.6
Right superior parietal lobule (RSPL: BA7) (24, $58, 54) 7.53t1.7
Left middle temporal cortex (LMTC: BA21, BA22) ($50, $52, 8) 6.51t1.8
Right middle temporal cortex (RMTC: BA21, BA22) (58, $46, 8) 8.13t1.9
Left inferior frontal gyrus (LIFG: BA44, BA45) ($40, 12, 28) 7.33t1.10
Right inferior frontal gyrus (RIFG: BA44, BA45) (40, 8, 30) 7.46t1.11
Left middle frontal gyrus (LMFG: BA46, BA9) ($48, 36, 6) 6.68t1.12
Right middle frontal gyrus (RMFG: BA46, BA9) (40, 38, $8) 6.50t1.13

Statistical inferences were made at P < 0.05 corrected for multiple comparisons by using FWER.t1.14

Fig. 4. Significantly activated brain regions obtained in the group study (using the fixed-effect analysis) of the silent reading task.

X. Zheng, J.C. Rajapakse / NeuroImage xx (2006) xxx–xxx 5



UNCORRECTED PROOF

ARTICLE IN PRESS

378 represent the network of this particular task. Fig. 6 shows the
379 acceptance ratio versus the number of the iteration steps as a crude
380 convergence diagnostic during the search for the optimal structure.
381 The network which had the highest BIC score is shown in Fig. 7.

382 The left hemisphere has been the focus of the analysis of the
383 neural correlates of reading tasks. Since some language tasks such
384 as those involving different languages, English-knowing bilin-

385 guals, literate versus illiterate, etc., show activation in both
386 hemispheres (Kim et al., 1997; Tan et al., 2000; Petersson et al.,
387 2000), we included all the activated regions of the cortex and

388 explored all possible connections among all the brain regions.
389 The extrastriate cortex (EC: BA18, BA19) in the visual cortex
390 plays the role of visual representation in word processing (Kolb

391 and Whishaw, 1996). The connection from the extrastriate cortex
392 to superior parietal lobe (SPL: BA7) forms the dorsal stream of
393 visual analysis, performing the perception of visual word form. As
394 seen in Fig. 7, the connections from EC to SPL are found in both

395 hemispheres (LEC Y LSPL and REC Y RSPL). Meanwhile, the
396 connections from the EC to prefrontal cortex including middle
397 frontal gyrus (MFG: BA46, BA9) and inferior frontal gyrus (IFG:

398BA44, BA45) represent the information flow for the processing of

399semantic analysis and decision (LEC Y LMFG, LEC Y RMFG,
400LEC Y RIFG, REC Y RMFG, REC Y LMFG, and REC Y
401LIFG) (Bullmore et al., 2000). Furthermore, the connections

402between EC and middle temporal cortex (MTC: BA21, BA22),
403associated with the retaining and recalling of words from the
404memory (Kolb and Whishaw, 1996), are found in both hemisphere

405with reversed directions (REC Y RMTC, LMTC Y LEC); the
406reversed direction may be due to the bi-directional characteristic of
407the connectivity, represented by the Bayesian networks. In
408addition, a homologous interhemispheric connection between the

409ECs of both sides (REC Y LEC) is found, which may be due to
410the transcallosal inferences between two hemispheres (McIntosh et
411al., 1994).

412The parietal lobe generally performs the integration of sensory
413information for the control of movement. In particular, the superior
414parietal lobe (SPL: BA7) plays the role of visual analysis and

415mainly makes efferent connections to the prefrontal cortex
416including MFG and IFG, providing more elaborate information
417(LSPL Y LMFG, LSPL Y RIFG) (Kolb and Whishaw, 1996). A
418homologous interhemispheric connection is also found between the

419SPLs (LSPLY RSPL). As seen in Fig. 7, the functional links from
420EC via SPL to prefrontal cortex form the dorsal visual pathway of
421language processing (LEC Y LSPL Y LMFG, LEC Y LSPL Y
422RIFG) (McIntosh et al., 1994).
423The temporal lobes are involved in understanding and process-
424ing language, intermediate and long-term memory, complex

425memories, the retrieval of language or words, and emotional
426responses (BrainPlace.com). The middle temporal cortex (MTC:
427BA21, BA22) involved in our model is the general association

428cortex that integrates the input from the lower level auditory and
429visual areas for retaining in the memory. In particular, the posterior
430aspect of the left middle temporal cortex, which is also called the
431Wernicke’s area, is involved in storing the visual word forms and

432processing lexical–semantic information (Fiebach et al., 2002). It

Fig. 5. The posterior scores of the possible DAGs derived from the

Metropolis –Hastings algorithm, assuming a uniform prior for the

structures.

Fig. 6. The acceptance ratio versus the number of MCMC steps in finding

the optimal structure of the neural system.

Fig. 7. The neural system learned from fMRI data of the silent reading task.

L(R)EC: left (right) extrastriate cortex, L(R)SPL: left (right) superior

parietal lobe, L(R)MTC: left (right) middle temporal cortex, L(R)IFG: left

(right) inferior frontal gyrus, L(R)MFG: left (right) middle frontal gyrus.
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433 is supposed to have connections with LSPL for movement control
434 (LMTC Y LSPL), with the prefrontal cortex for semantic
435 phonologic retrieval and semantic processing (LMTC Y RIFG,

436 LMTC Y LMFG) and with EC for memory retention (LMTC Y
437 LEC, LMTCY REC) (Price, 2000; Hampson et al., 2002; Horwitz
438 and Braun, 2003).

439 The MFG is involved in tasks that require executive control,
440 such as the selection of behavior based on short-term memory
441 (Krause et al., 1999). It receives inputs from the posterior parietal

442 and superior temporal sulci. The IFG is most active for phonemic
443 decisions and receives inputs from temporal lobes and parietal
444 lobes (Price, 2000; BrainPlace.com). As seen in Fig. 7, except for

445 the connections that have been mentioned above, there are
446 interhemispheric connections between the prefrontal regions,
447 including the interconnection between the homologous regions of
448 IFG (LMFG Y RIFG, RMFG Y LIFG, LIFG Y RIFG), which

449 may be involved in semantic processing during inner speech
450 (Bullmore et al., 2000).
451 In the derived interhemispheric language network, the left

452 hemisphere showed dominant pathways, which is consistent with
453 the traditional language network (left-hemispheric). Although the
454 activations have been symmetrically distributed in both hemi-

455 spheres, the right hemisphere activations may be due to the
456 transcallosal influence of the left. This hypothesis is supported by
457 the fact that there are more connections between the regions in the
458 left hemisphere and the regions in the right hemisphere receive

459 only results of processing in the left regions.
460 The connections in our model that are consistent with the
461 previous literature are given in Table 2. Due to the fact that the

462 specific networks for each cognitive task are different even though
463 the tasks are very similar (e.g., different presenting rate, different
464 words, or different block design in reading tasks), the existing

465 literature can only be used as a general reference to an existing
466 connection. The connectivity pattern derived from our method is
467 consistent with the information flow in the silent reading task as

468 evidenced by the literature, but the connections without a
469 corresponding reference cannot be corroborated.

470 Interference counting task

471 Data

472 Functional MRI data used in this experiment were obtained

473 from a counting Stroop task testing the cognitive interference that
474 occurs when processing of one stimulus feature impedes the
475 simultaneous processing of a second stimulus attribute (Bush et al.,

476 1998). Data were collected by Tamm et al. (2002) to investigate the
477 performance of females with fragile X-syndrome on the cognitive
478 interference task compared to a healthy control group. The

479 participants included 14 females with fragile X-syndrome and 14
480 age-matched healthy control females without the fragile X
481 mutation, ranging in age from 10 to 22 (mean age 15.43). The
482 task consisted of 12 alternating experimental (interference) and

483 controlled (neutral) conditions with the rest condition. For both
484 conditions, the subjects were instructed to press the button that
485 corresponded to the number of words appearing on the screen.

486 During the neutral counting task, the word ‘‘fish’’ was presented 1,
487 2, 3, or 4 times on the screen (15 trials) and during the interference
488 counting task, the words ‘‘one’’, ‘‘two’’, ‘‘three’’, and ‘‘four’’ were

489 presented 1, 2, 3, or 4 times on the screen (15 trials). Stimuli were
490 presented for 1350 ms at a rate of one every 2 s (TR) for a total of
491 180 trials (90 experimental, 90 control). For more details of the

492experiment, the reader is referred to Tamm et al. (2002). Our
493method is demonstrated using the data collected only on the control
494group.

495Detection of activation

496We explore the networks involved in the neutral and
497interference counting tasks by normal controls and attempt to

498make inferences on the differences of the performances of the two
499tasks (Fig. 8).
500The preprocessed functional images of the subjects were

501provided by the fMRIDC; images were reconstructed by using
502Inverse Fourier Transform from each of the 225 time points into
50364 & 64 & 18 image matrices and voxel size of 3.75 & 3.75 & 7

504mm3. Using SPM2, the images were motion-corrected again to
505reduce the artifacts (Friston et al., 1996) and the regions showing
506significant activation during counting relative to the rest condition

507were detected using the fixed-effect analysis. The statistical
508inferences were made at P < 0.05 corrected for multiple
509comparisons by using the Family-wise Error Rate (FWER). Table
5103 and Fig. 3 show significant activations of the control group in

511this experiment. The activations were found in both neutral and
512interference conditions in right superior parietal lobe (RSPL), left
513inferior parietal lobe (LIPL), anterior frontal gyrus (AFG), right

514lateral middle frontal gyrus (RLMFG), medial middle frontal gyrus
515(MMFG), ventral inferior frontal gyrus (VIFG), primary motor area
516(PMA), supplementary motor area (SMA) and anterior cingulate

517cortex (ACC). The left superior parietal lobe (LSPL) and left lateral
518middle frontal gyrus (LLMFG) were significantly activated only in

t2.1Table 2

The list of the connections between the activated brain regions, found to be

involved in the silent reading task, which had been previously verified in

other language-based tasks t2.2

Connection Functional description Relative reference t2.3

LEC Y LSPL Perception of

visual word form

(Horwitz et al., 1998) t2.4

REC Y RSPL Perception of

visual word form

(McIntosh et al., 1994) t2.5

LEC Y LMFG Semantic decision

and analysis

(Krause et al., 1999) t2.6
(Bullmore et al., 2000) t2.7

REC Y RMFG Semantic decision

and analysis

(Krause et al., 1999) t2.8

REC Y LEC Homologous

interconnection

(McIntosh and

Gonzalez-Lima, 1994) t2.9
(McIntosh et al., 1994) t2.10
(Krause et al., 1999) t2.11

LSPL Y LMFG Executive control (Honey et al., 2002) t2.12
LSPL Y RIFG Phonemic decisions (Honey et al., 2002) t2.13
LSPL Y RSPL Homologous

interconnection

(Honey et al., 2002) t2.14

LMTC Y LSPL Semantic processing (Price, 2000) t2.15
(Horwitz et al., 1998) t2.16

LMTC Y LIFG Semantic phonologic

retrieval

(McKiernan et al., 2001) t2.17
(Matsumoto et al., 2004) t2.18
(Hampson et al., 2002) t2.19
(Mechelli et al., 2002) t2.20

LMTC Y LEC Memory retention (Nyberg et al., 1996) t2.21
LMTC Y REC Memory retention (McIntosh et al., 1994) t2.22
LMFG Y RIFG Inner speech

production

(Krause et al., 1999) t2.23
(Nyberg et al., 1996) t2.24
(Petersson et al., 2000) t2.25

LIFG Y RIFG Homologous

interconnection

(Honey et al., 2002) t2.26
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519 the interference task. On the other hand, activation was seen on
520 either side of the lateral inferior frontal gyrus (LIFG) for both tasks
521 (left for the neutral task and right for the interference task). Thus,

522 despite the similar activation in the medial cortex (including ACC,
523 SMA, VIFG, and AFG), the left hemisphere showed more
524 activations in the interference counting task. Although proper

525 motion correction was performed on the data, the crescentic frontal
526 activations (AFG) in Fig. 3 may look like motion artifact
527 (Bullmore et al., 1999; Field et al., 2000; Friston et al., 1996;

528 Gavrilescu et al., 2004).

529 Derivation of neural system

530 The time courses of significantly activated brain regions were
531 extracted by taking the averages of the time-series at peak-
532 activated voxels and neighboring voxels at the cluster level for all
533 subjects. The extracted time courses were then used as the input

534 data for learning the structure of the neural system, by using a
535 search-and-score method, similar to the silent reading word task.
536 The networks which had the highest BIC scores for the two tasks

537 are shown in Fig. 3; here onwards, we refer them as ‘‘neutral
538 network’’ and ‘‘interference network’’, respectively.
539 The similar activation seen in the medial cortices for both

540 conditions may indicate that the function of counting is mainly
541 processed by the medial areas especially in the anterior cingulate

542cortex (ACC: BA24), which had been shown to be playing an
543essential role in counting Stroop (Hayward et al., 2004; Shin et al.,
5442001; Bush et al., 1998). Thus, the different activation in the lateral

545cortices between the two conditions may reflect the effects of
546‘‘interference’’; more activation in the language areas in the left
547hemisphere was found in the interference counting task. This is due

548to the fact that the subjects had been distracted by the meaning of
549the words being counted in the interference counting task.
550The ACC is engaged during the Stroop task in order to resolve

551competing streams of information in the selection of sensory inputs
552and responses (Bush et al., 1998). The effects are reflected in the
553interference network by the connections, ACC Y LLMFG (BA9)

554and ACCY RLMFG (BA9), for resolving interference effects, and
555ACC Y LLIFG (BA44), for phonemic decisions. The absence of
556connections from ACC to the left hemisphere in the neutral task
557shows more involvement of the semantic processing and decision

558making in the interference network (Fig. 9).
559The LMFG (BA9) is involved in tasks that require executive
560control and selection of behavior based on the short-term memory

561and receives inputs from the posterior parietal region (Price, 2000;
562BrainPlace.com). In this experiment, this region is involved in
563processing Stroop-related conflict and resolving interference

564effects (Tamm et al., 2002). The LLMFG in the interference
565network is connected to the LLIFG (BA44), and the RLMFG in the

Fig. 8. Brain regions showing significant activation in counting Stroop tasks relative to the rest condition: (A) the neutral counting and (B) the interference

counting. Statistical inferences were made at P < 0.05 corrected for multiple comparisons using FWER.
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566 neutral network has been connected to the RLIFG for executive
567 controls. The MMFG (BA8) is believed to play an important role

568 in the control of eye movements (Faw, 2002). The common
569 connections found for both tasks are MMFG Y RLMFG,
570 MMFG Y RLIFG, and MMFG Y LLIFG. The connection

571MMFGY SMA in the neutral network is absent in the interference
572network, while the connections MMFG Y RSPL, MMFG Y
573ACC, and MMFGY LPMA in the interference network are absent
574in the neutral network. The difference may be due to the different
575demands of concentration needed by the tasks.

Fig. 8 (continued).

t3.1 Table 3

The results of the analysis of the activation patterns of the control group performing the counting Stroop task: significantly activated regions during the

counting tasks relative to the rest condition are shown in 3D MNI coordinates with the significance values given by t statisticst3.2

Brain regions Neutral counting Interference countingt3.3

Coordinates t value Coordinates t valuet3.4

Left superior parietal lobe (LSPL: BA7) ($28,$74, 50) 6.42t3.5
Right superior parietal lobe (RSPL: BA7) (32, $72, 50) 4.98 (32, $72, 50) 6.10t3.6
Left inferior parietal lobe (LIPL: BA40) ($42, $38, 58) 10.97 ($42, $38, 60) 11.00t3.7
Anterior frontal gyrus (AFG: BA10) (2, 64, 14) 10.52 (4, 64, 14) 10.86t3.8
Left lateral middle frontal gyrus (LLMFG: BA9) ($54, 16, 44) 5.14t3.9
Right lateral middle frontal gyrus (RLMFG: BA9) (54, 12, 38) 5.09 (54, 12, 38) 6.32t3.10
Medial middle frontal gyrus (MMFG: BA8) (6, 34, 40) 8.47 (6, 34, 40) 8.64t3.11
Left lateral inferior frontal gyrus (LLIFG: BA44) ($56, 8, 34) 5.44t3.12
Right lateral inferior frontal gyrus (RLIFG: BA44) (56, 8, 34) 5.06t3.13
Ventral inferior frontal gyrus (VIFG: BA47) (16, 26, $16) 5.36 (16, 26, $16) 5.98t3.14
Supplementary motor area (SMA: BA6) ($6, $4, 64) 6.36 ($6, $4, 66) 6.29t3.15
Left primary motor area (LPMA: BA4) ($32, $26, 68) 6.98 ($34, $24, 66) 6.64t3.16
Anterior cingulate cortex (ACC: BA24) (10, 36, $8) 5.17 (10, 34, $8) 4.77t3.17

Statistical inferences were made at P < 0.05 corrected for multiple comparisons by using FWER.t3.18
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576 The LIFG is mostly active for phonemic decisions and receives
577 inputs from parietal lobes (Price, 2000; BrainPlace.com). In Fig. 3,

578 the LIFG in both networks has no output connection to other

579regions. The VIFG (BA47), including orbitofrontal cortex, plays a
580specific role in controlling voluntary goal-directed behavior

581(Tamm et al., 2002). The common connection for both tasks,

Fig. 9. Structures learned from the data for (A) the neutral counting task and (B) the interference counting task. A dotted circle indicates that the region is not

significantly activated in the particular task.
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582 VIFG Y LPMA (BA4), stores the voluntary activities involved
583 (Faw, 2002; Wu et al., 2004). The connection VIFG Y LLMFG
584 (BA9), found only in the interference network, is related to the

585 specific function of LMFG involved in processing Stroop-related
586 conflict.
587 The AFG (BA10) is believed to play a part in strategic

588 processes involved in memory retrieval and executive function
589 (Faw, 2002). The connections from AFG to other regions that are
590 common in both networks include: AFG Y SPL (BA7) and

591 AFG Y LMFG (BA9). The connections AFG Y LPMA (BA4)
592 and AFG Y RLIFG (BA44) are present in the neutral network but
593 absent in the interference network. The SMA is believed to play a

594 role in the planning of complex and coordinated movements (Kolb
595 and Whishaw, 1996). A connection from SMA to ventral inferior
596 frontal gyrus was found in both networks. The PMA is treated as
597 the storage of motor patterns and voluntary activities and is

598 involved in the expressive language of lips and tongue areas and
599 writing and sign language of hand and arm areas (Faw, 2002). The
600 connection LPMA Y SMA is common for both tasks, indicating

601 the voluntary movements involved in counting task (Wu et al.,
602 2004).
603 The parietal lobe generally performs the function of processing

604 and discriminating of sensory inputs (Kolb and Whishaw, 1996).
605 The activation in LIPL or supramarginal gyrus (BA40) observed in
606 this experiment has been linked to memories of visual word forms
607 of the language system and is likely to be associated with

608 arithmetic computing (counting) and language processing (read-
609 ing). As seen in Fig. 3, the LIPLs in both networks send the
610 representations of the inputs to the medial regions, AFG, MMFG,

611 VIFG, and SMA, which are mainly involved in the counting
612 function. The differences are seen as the extra activations in the
613 language areas of the interference network: the connections from

614 LIPL to LLIFG (BA44) and LSPL (BA7); as well as the
615 connection for processing Stroop-related conflict and resolving
616 interference effects: LIPL to LLMFG (BA9). The connections from

617 LIPL to RSPL (BA7) and RLIFG (BA44) are seen only in the
618 neutral network; this may account for a compensation function for
619 the absence of language pathways present in the interference
620 network and is likely to be involved in the visualization of symbols

621 instead of reading, i.e., ‘‘automatic speech’’, where the right
622 hemisphere is subserving residual aphasia speech (Vanlancker-
623 Sidtis et al., 2003). The LSPL (BA7) was activated only in the

624 interference counting task and has connections to the regions,
625 LLIFG and VIFG (BA47); the RSPL was activated in both tasks
626 and connected to the RLMFG (BA9), while the connections from

627 RSPL to SMA (BA6) and ACC (BA24) are found only in the
628 interference network.
629 In summary, the structures involved in both tasks are mostly

630 common, and the differences are mainly due to the specific
631 language areas activated in the interference counting task.
632 Connections present only in the interference network (such as
633 LIPL Y LLMFG Y LLIFG) are part of the language pathway,

634 thus performing phonetic and semantic analysis and decision.
635 Meanwhile, connections found only in the neutral network (such
636 as LIPL Y RLIFG) may perform a compensatory function for the

637 non-activated functions corresponding to the connections, LIPL Y
638 LLIFG and LIPL Y SPL, present in the interference network. In
639 addition, since the interactions between two regions were allowed

640 to be bi-directional, some connections are seen reversed between
641 the two networks such as MMFG Y RSPL in the interference
642 network versus RSPL Y MMFG in the neutral network.

643Discussion

644Earlier approaches to neural systems analysis, such as SEM,

645DCM, and GCM, are confirmatory; a researcher is more likely to
646use them to determine whether a previously known or hypothe-
647sized neural system model is valid rather than to ‘‘find’’ a suitable

648model from the data (Maruyama, 1989). The structures of those
649models were constrained by the prior models derived from
650previous studies or by anatomical constraints, although the exact

651model for the experiment under consideration is often unknown.
652Our method investigated the use of Bayesian networks to learn
653large or unexplored cognitive networks from fMRI data by

654assuming that the basis of such networks does not have proper
655prior models.
656In SEM, effective connectivity was explored using path
657coefficients indicating the covariances among regions (Bullmore

658et al., 2000). The present approach uses conditional probability
659densities in graphical models to determine the structure of a
660functional network. In contrast to the second-order models, such

661as SEM, the connections between the regions in the present
662approach were derived by considering CPDs describing the
663behavior of a network in the complete statistical sense, which

664renders more information about the effective connectivity. The
665results on the synthetic data showed that the Bayesian networks can
666better fit the functional imaging data than the covariance-based
667models. The connectivity analysis by GCM is voxel-wise; in

668contrast, our approach is region-wise and seeks for a global
669representation of a neural system. Both DCM and the present
670approach make inferences about the connectivity of the network in

671the Bayesian framework, therefore, there are no limits on the
672number of connections that can be modeled without an overfitting
673problem. However, the DCM analyzes interactions at the neuronal

674rather than the hemodynamic level, which is more useful in
675analyzing the temporal interactions among brain regions. Instead,
676our approach focuses on exploring the static structure of interactions

677of the neural systems.
678The complexity of the brain makes it difficult to be explored,
679especially in higher cognitive tasks; the analysis of functional
680integration (functional connectivity and effective connectivity) is

681still far from full understanding. The proposed method of exploring
682global neural systems from functional imaging data provides an
683alternate method to study brain function in terms of networks. The

684networks derived from our method for silent reading and Stroop
685tasks were consistent with the literature, providing a partial
686validation of our approach though the gold standard of the networks

687of the tasks considered is unavailable. In the silent reading task, the
688network demonstrated that the dominance of language processing in
689the left hemisphere and the regions in the right hemisphere receives

690the effects of processing from the left hemisphere. The interference
691network derived showed the involvement of language areas in the
692interference counting task compared to the neutral counting task.
693The structure of the present functional brain network was

694determined from the data by the present method in a completely
695exploratory manner. As seen in the experiments with synthetic data,
696the method was robust to random noise and outperformed SEM in

697determining the structure. The MCMC algorithm searches the DAG
698space and returns a sample of structures after search-and-score
699learning. We choose the structure with the highest score as it

700matches the data the best. This may not always be the best choice
701because of possible local minima. The simulations with synthetic
702data showed that, as the number of region increases, the search has a
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703 higher rate of falling into local minima. However, this problem can
704 be mitigated even if partial a priori knowledge of the regions of
705 activation or their connectivity is available. A compromise between

706 confirmatory and exploratory approaches might be more appropri-
707 ate for analysis of brain connectivity.
708 As illustrated in the experiment of Stroop task, the present

709 method offers the feasibility of comparing the differences how
710 brain regions interact in realizing the different tasks. This could be
711 extended to differentiate the performance of patients and healthy

712 participants performing the same cognitive tasks and explore
713 disconnectivity hypotheses in brain disease. A major advantage of
714 Bayesian networks might be its ability to infer network function in

715 the case of brain disorders as inferencing is a strength of the
716 graphical models. The main objective of the present work is to
717 determine the existence of significant interactions among brain
718 regions. Estimating the strengths of these interactions and

719 exploring the behavior of such networks due to an abnormal event
720 such as a stroke remain as future work.
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