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Abstract

   In neuroimaging functional mapping usually implies mapping function into an anatomical

space, for example using statistical parametric mapping to identify activation foci, or the

characterization of distributed changes with spatial modes (eigenimages or principal

components) (Friston et al 1993a).  This article is about a complementary approach; namely

mapping anatomy into a functional space.

  We describe a simple variant of multidimensional scaling (principal coordinates analysis

Gower 1966) that uses functional connectivity as its metric.  The scaling transformation

maps anatomy into a functional space.   The topography, or proximity relationships, in this

space embody the functional connectivity among brain regions.  The higher the functional

connectivity the closer the regions.  Functional connectivity is defined here as the

correlation between remote neurophysiological events.  The technique represents a

descriptive characterization of anatomically distributed changes in the brain that reveals the

structure of cortico-cortical interactions in terms of functional correlations.

   To illustrate the approach we have analyzed data from normal subjects and schizophrenic

patients obtained with PET during the performance of word generation tasks.  In particular

we focus on prefronto-temporal integration in normal subjects and show that, in

schizophrenia, the left temporal regions and prefrontal cortex evidence abnormal functional

connectivity.
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Introduction

   This article is about the topography of functional brain spaces and cortico-cortical

interactions. We present a descriptive method for characterizing the inter-relationships of

cortical areas in terms of functional connectivity.  The method employs metric

multidimensional scaling with functional connectivity as the metric, or measure, that

determines the proximity between cortical areas.  The objective is to transform anatomical

space so that the distance between cortical areas is directly related to their functional

connectivity.  This transformation defines a new space whose topography is purely

functional in nature.

Functional connectivity

   In the analysis of neuroimaging time-series functional connectivity is defined as the

temporal correlations between spatially remote neurophysiological events  (Friston et al

1993a).  This definition is operational and provides a simple characterization of functional

interactions.  The alternative is to refer explicitly to effective connectivity (i.e.the influence

one neural system exerts over another) (Friston et al 1993b).  These sorts of concepts were

originated in the analysis of separable spike trains obtained from multiunit electrode

recordings (e.g. Gerstein 1969, 1989; Gochin 1991; Aertsen and Preissl 1991).  In

electrophysiology it is often necessary to remove the confounding effects of stimulus-

locked transients (which introduce correlations that are not causally mediated by direct

neural interactions) in order to reveal the underlying effective connectivity.  The

confounding effect of stimulus-locked transients is less problematic in neuroimaging

because the promulgation of dynamics from primary sensory areas onwards is mediated by

neural connections (usually reciprocal and interconnecting).  However it should be

remembered that functional connectivity is not necessarily due to effective connectivity and,
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where it is, effective influences may be indirect.  Because functional connectivity (as

defined here) is simply a comment on observed correlations it cannot be used to infer causal

relationships in any rich way; however it does provide a very useful phenomenological

characterization of cortical interactions at any scale.

   Clearly the biological nature of functional connectivity in neuroimaging is different from

functional connectivity in electrophysiology.  The neural networks that might be identified

on the basis of phase-locked interactions (using multi-unit electrode recordings) in a

particular and transient brain state are not the same as macroscopic systems identified on the

basis of correlated blood flow observed with neuroimaging over a variety of brain states.

However in both instances the distributed and coordinated physiological changes can be

used to infer something about functional interactions either at the level of neural dynamics

and phase-locked cohorts or at the level of hemodynamics and cortical coactivations.

   Consider two times-series of K hemodynamic measurements, from voxels i and j in the

brain.  Let mik denoted the kth measurement  from voxel i.  The functional connectivity

between i and j  can be defined as:

ρij = Σ mik.mjk (1)

where the time-series have been normalized to zero mean and unit sum of squares

(Euclidean normalized  i.e. Σ(mik)2 = 1).  ρij is also known as the scalar or dot product of

vectors mi and mj.  Patterns of functional connections, or correlations, define distributed

brain systems.  These systems are identified using principal component analysis (PCA) or

singular value decomposition (SVD) of the functional connectivity matrix.  The distributed

systems that ensue are called eigenimages or spatial modes and have been used to

characterize the spatiotemporal dynamics of physiological time-series from several
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modalities; including multiunit electrode recordings (Mayer-Kress et al 1991), EEG

(Friedrich et al 1991), MEG (Fuchs et al 1992), PET (Friston et al 1993a) and functional

MRI (Friston et al 1993c).

   In the present application functional connectivity is used in a different way:  Namely to

constrain the proximity of two cortical areas in some functional space.  This application

capitalises on the fact that the functional connectivity between i and j is the same as between

j and i.  This symmetry means functional connectivity can support a measure of distance in

a Euclidean sense (a metric).  The space on which this measure is made is constructed

using multidimensional scaling.

Multidimensional scaling

   Multidimensional scaling is a descriptive method for representing the structure of a

system, on the basis of pairwise measures of similarity or confusability (Torgerson 1958,

Shepard 1980).  The resulting multidimensional spatial configuration of the system's

elements embodies (in its proximity relationships) the comparative similarities.  The

technique was developed primarily in the analysis of perceptual spaces.  The proposal that

stimuli be modeled by points in space, so that perceived similarity is represented by spatial

distances, goes back to the days of Isaac Newton (1794).  The implementation of this idea

is however relatively new (Kruskal 1964,  Gower 1966, Shepard 1980).  In this paper we

focus on classical or metric scaling (see Chatfield and Collins 1980).  The input to a scaling

analysis is a (n x n) square symmetric matrix of similarities, and the output is an (n x r)

matrix of coordinates of n point in r dimensions.  A typical  model underlying classical

scaling can be summarized by:

Fmon(δij) ≅ dij
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dij = √Σ(xil - xjl)2 (2)

 where Fmon(.) is a decreasing monotonic function.   δij  is the measure of similarity between

elements i and j.   dij  is the distance between them in a Euclidean space.   x il   is the

projection of the i th point onto the lth dimension.  (≅   means equal, except for unspecified

error terms).   The points are usually plotted in a subspace of this Euclidean space spanned

by the r eigenvectors (of the matrix of dot products of the point locations) with 'large'

eigenvalues (Carroll & Wish 1974, Shepard 1980, Chatfield and Collins 1980) (see

below).  The resulting distribution of points in the new r-dimensional subspace will

capture, in a parsimonious way, the structure of the comparative similarities.

Multidimensional scaling with functional connectivity.

    In this section we observe that if the correlation or functional connectivity is used as the

measure of similarity between brain regions, then there is a very simple way to compute the

distances dij above to construct a functional (multidimensional scaling) space.  The

approach is equivalent to a principal coordinates analysis (Gower 1966) of the imaging

time-series.

   One normally considers K measurements at n voxels as K points in an n-dimensional

space (n-space).  However there is an entirely equivalent representation of n points in a K-

space.  The distance between points in this K--space can be used directly as a measurement

of dij  This is the same as using the functional connectivity (ρij) as the measure of similarity

( δij  =  ρij) where the function relating similarity and distance is given by:

Fmon(ρij) = dij = √2.√(1  -  ρij) (3)
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   The points in K-space are simply rotated to reveal the greatest structure using the

eigenvectors of the K x K dot product matrix of their locations.  This rotation brings the

'principal coordinates' of the distribution into view.  The veracity of eqn(3) is demonstrated

by noting that orthogonal rotation does not change Euclidean distances and so:

dij = √Σ(xil - xjl)2 = √Σ(mik - mjk)2 = √2.√(1  -  ρij) (4)

where mik and xil  are the coordinates of the points before and after rotation.  This approach

to identifying the coordinates xil is called a principal co-ordinates analysis (Gower 1966)

although the term classical scaling is preferred to avoid confusion with PCA (Chatfield and

Collins 1980).

   Although care has been taken to relate this characterization of functional topography to

classical scaling, principal co-ordinates analysis and metric multidimensional scaling, the

underlying idea is very simple:  Imagine K measures from n voxels plotted as n points in a

K-space.  Because they have been normalized to zero mean and unit sum of squares, these

points will fall on an K-1 dimensional hypersphere.  The closer any two points are to each

other, then the greater their correlation or functional connectivity (in fact the correlation is

the cosine of the angle subtended at the origin).  The distribution of these points embodies

the functional topography.  A view of this distribution, that reveals the greatest structure, is

simply obtained by rotating the points to maximize their apparent dispersion (variance).  In

other words one looks at the subspace with the largest 'volume' (spanned by the

eigenvectors with the largest eigenvalues).   Note that in this view (or projection) the

distances seen will not be the actual distances in the K-1 dimensional space.  One can either

regard this discrepancy as being attributable to 'noise' (where the variance in the remaining
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dimensions is sufficiently small to be ignored and the equality in eqn(3) becomes ≅ ), or

acknowledge explicitly that one is looking at a high dimensional space 'from the side'.

   Mathematically this rotation can be implemented using SVD.  Let  M = [m1 .....mn] be a

matrix of the normalized data (one column vector per voxel time-series) and X = [x1

.....xr]T be the matrix of desired coordinates (T denotes transposition).  Using SVD M can

be factorized (Golub and Van Loan 1991):

[u s v] = SVD{M}

such that: M = u.s.vT (5)

where u and v are unitary orthogonal matrices and s is a diagonal matrix.  The principal

axes of the n points in  K-space are given by the eigenvectors of M.MT.  i.e. u:

M.MT = u.λ .uT

where λ = s2 and: X = MT.u (6)

   Voxels that have a correlation of unity will occupy the same point in the new space.

Voxels that have independent dynamics (ρ ij = 0) will be √2 apart.  Voxels that are

negatively but totally correlated (ρij = -1) will be maximally separated (by a distance of 2).

Profound negative correlations denote a functional association that are modelled in the

functional space as diametrically opposed locations on the hypersphere.  In other words

two regions with profound negative correlations will form two 'poles' in functional space.

   There is an interesting aspect of this application of classical scaling to neuroimaging data.

Normally the data used in multidimensional scaling represent similarities between discrete
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elements (e.g. voxels). However neuroimaging data can also be thought of as a good lattice

representation of a continuous and smooth process in anatomical space.  This means that

the scaling transformation represents a mapping (or distortion) of one volume into another.

In other words an anatomical region (e.g. the superior temporal gyrus) has a continuous

and distributed representation in the functional space defined by the scaling procedure.  The

location and shape of this new volume will of course be completely different from the

anatomical volume but local contiguity relationships will be preserved.  This preservation is

due to high local autocorrelations (smoothness) in the underlying process (that is assumed

to have a twice differentable autocorrelation function at zero).  Consider two points in the

image process separated by dx.  As dx tends to zero the correlation between the two point

will tend to unity (because of the assumption about the autocorrelation function) and the

distance in functional space will tend to zero by eqn(3).  In other words proximate points in

anatomical and functional spaces both tend to zero in the limit of small separations.

Contiguity of this sort implies that bounded regions in anatomical space remain connected

in functional space (however tenuously) however these regions may be intersect themselves

in a highly complicated way and two anatomical regions can occupy the same functional

space.  Clearly for real (voxel) data this contiguity preservation depends on voxel sizes

being 'small' relative to the width of the autocorrelation function.  For PET data this is

assured but in other modalities (e.g. functional MRI) this may not be the case.

   In what follows anatomical regions are represented as continuous distributions in

functional space with varying density.  This density is simply the density of points

corresponding to voxels in the original anatomical volume.

The functional topography of word generation
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   In this section we apply the scaling transformation to a PET time-series from a verbal

fluency activation study.  These data are the same used to illustrate the identification of

spatial modes using PCA in Friston et al (1993a).  In brief the data were obtained from six

subjects scanned 12 times (every eight minutes) whilst performing one of two verbal tasks.

Scans were obtained with a CTI PET camera (model 953B CTI Knoxville, TN USA). 15O

was administered intravenously as radiolabelled water infused over two minutes.  Total

counts per voxel during the buildup phase of radioactivity served as an estimate of regional

cerebral blood flow (rCBF) (Fox and Mintun 1989). Subjects performed two tasks in

alternation.  The first task involved repeating a letter presented aurally at one per two

seconds (word shadowing).  The second was a paced verbal fluency task, where the

subjects responded with a word that began with the letter presented (intrinsic word

generation).  To facilitate intersubject pooling, data were stereotactically normalized

(Friston et al 1990) and whole brain differences were removed using ANCOVA (Friston et

al 1991).  Although the scaling transformation can be applied to single subjects we used the

average voxel rCBF over all the subjects for the same reasons given in Friston et al (1993a)

   A subset of voxels was selected in which a significant amount of variance, due to the 12

conditions, was observed (ANCOVA F > 2.6 p<0.05 df 11,54).  This subset is shown in a

statistical parametric map (Friston et al 1991) of the F ratio in Figure 1 (left).  The time-

series from each of these voxels formed the data matrix M with 12 rows (one for each

condition) and 6477 columns (one for each voxel).  Following normalization (to zero mean

and unit sum of squares over each column) M was subject to singular value decomposition

according to eqn(5) and the coordinates X of the voxels in the functional space computed

as in eqn(6).

   This space was essentially two dimensional [only two eigenvalues were greater than

unity. See Figure 1 (right)].   The location of voxels in this two-dimensional subspace is
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shown in Figure 2 by rendering voxels from different regions in different colours. The

anatomical regions corresponding to the different colours are shown in in the top row.

Anatomical regions were selected to include those parts of the brain which showed the

greatest variance during the 12 conditions (Figure 1 left).  Anterior regions (Figure 2 right)

included the mediodorsal thalamus (blue), the dorsolateral prefrontal cortex (DLPFC) and

Broca's area (red) and the anterior cingulate (green).  Posterior regions (Figure 2 left)

included the superior temporal regions (red), the posterior superior temporal regions (blue)

and the posterior cingulate (green).  The voxels constituting these regions were within

20mm of appropriate centres selected from the atlas of Talairach and Tournoux (1988).

See Table 1.  The reason that anterior and posterior regions are presented separately is

simply due to the fact that there are only three primary colours to play with but there are

more than three regions of interest.

   The corresponding functional space (Figure 2 - lower row) reveals a number of things

about the functional topography elicited by this set of activation tasks.  First each

anatomical region maps into a relatively localized portion of functional space.  This

preservation of local contiguity reflects the high correlations within anatomical regions, due

in part to smoothness in the original data and to high degrees of intra-regional functional

connectivity.  Secondly the anterior regions are almost in juxtaposition as are the posterior

regions, however the confluence of anterior and posterior regions form two diametrically

opposing poles (or one axis).  This configuration suggests an anterior-posterior axis with

prefronto-temporal and cingulo-cingulate components.  Thirdly within the anterior and

posterior sets of regions certain generic features are evident.  The most striking is particular

ordering of functional interactions.  For example the functional connectivity between the

posterior cingulate (green) and superior temporal regions (red) is high and similarly for the

superior temporal (red) and posterior temporal regions (blue), yet the posterior cingulate
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and posterior temporal regions show very little functional connectivity (they are √2 apart or

equivalently subtend 90o at the origin).  Finally within the main antero-posterior axis there

appear to be two subordinate axes.  The first is a prefronto-temporal axis (red/blue - red)

and the second is an anterior-posterior cingulate axis (green - green).  These two axes are

closely aligned but are not completely confounded.  

   These results are consistent with known anatomical connections.  For example DLPFC -

anterior cingulate connections, DLPFC - temporal connections, bitemporal commissural

connections and mediodorsal thalamic - DLPFC projections have all been demonstrated in

non-human primates (e.g. Goldman-Rakic 1986; 1988).  The mediodorsal thalamic region

and DLPFC are so correlated that one is embedded within the other (purple area).  This is

pleasing given the known thalamocortical projections to the DLPFC.

Interpretation of the functional space

   At this point one might ask if absolute position in this functional space has any meaning.

For example is the fact that the prefronto-temporal axis is horizontal (as opposed to vertical)

important.  The answer is yes.  The dimensions of the transformed space have specific

functional attributions which depend on the tasks employed to elicit the functional

interactions.  Because the dimensions of the functional space are defined by unit vectors in

a K-space of tasks each dimension is associated with a particular profile of the experimental

conditions.  For example the first dimension points in the direction of all the intrinsic word

generation tasks and away from the baseline word shadowing tasks.  Conversely the

second dimension points towards the first scans and away from the last scans.  The vectors

defining these directions are simply the first two columns of u and are shown in Figure 3

(left).  On the basis of these task-dependent profiles one could designate the first dimension

of the functional space as intentional (corresponding to the intentional or intrinsic
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generation of words) and the second as attentional (attentional changes or changes in

perceptual set as the experiment proceeds).

   This perspective provides a slightly richer interpretation of the functional space in the

following way: Functional connectivity (distance) between two regions can be partitioned

into intentional (horizontal) and attentional (vertical) components.  For example the

horizontal proximity of the DLFPC (red) and anterior cingulate (green) is greater than their

vertical proximity.  In other words the functional connectivity between the DLPFC and

anterior cingulate is dominated by the intentional aspects of the tasks used to elicit the

functional interactions.  Similarly the (horizontal) prefronto-temporal axis is almost entirely

intentional whereas the (oblique) antero-posterior cingulate axis suggests both intentional

and attentional components.  This interpretation will be important below in examining the

functional topography of schizophrenia.

The relationship between the functional space and the spatial modes (eigenimages) of the

time-series

   The last part of this section comments on the intimate relationship between the

dimensions of the functional space and the eigenimages or spatial modes associated with

the time series.  The relationship is in fact very simple (see Chatfield and Collins 1980 page

200).  The time-dependent expression of the eigenimages are the same as the vectors

describing the dimensions in the functional K-space.  Figure 3 (right boxes) show the

eigenimages that correspond to the two dimensions used in the scaling transformation.

They are images of the first two columns of v in eqn(5).  See Friston et al (1993a) for a

fuller discussion of how one interprets these eigenimages.  In brief they represent the

distributed systems that best account for the observed variance-covariance structure

exhibited by a neurophysiological time series (it should be noted that the eigenimages
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presented here are not exactly the same as those presented in Friston et al (1993a) because

the current eigenimages are image of the eigenvectors of the correlation matrix, as opposed

to the covariance matrix that is usually used).  Consider again the singular value

decomposition of M:

M = u.s.vT

and: MTM = ρ = v.λ.vT

Therefore v is a matrix whose columns correspond to the eigenimages of M.  The rotation

implicit in our scaling approach is effected by:

X = MT.u = v . s

   X  is a matrix of the eigenvectors v scaled by their singular values.  Put simply one can

either use the eigenvectors of the functional connectivity matrix to (i) generate a series of

eigenimages or (ii) scale them according to their singular values and use them as

coordinates to construct a functional space.  These two analyses (principal coordinates

analysis and principal components analysis) are entirely equivalent from a mathematical

point of view, but reveal the nature of functional interactions from different perspectives.

Functional disintegration in schizophrenia

   In this section we present a analysis of previously published PET data examining

functional connectivity in schizophrenia (Friston et al 1994).  The notion that schizophrenia

represents a disintegration of the psyche is as old as its name, introduced by Bleuler (1913)

to convey a 'splitting' of mental faculties.  We have investigated the hypothesis that this
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mentalistic 'splitting' has a physiological basis, with a precise and regionally specific

character:

   Neurodevelopmental (e.g. Weinberger 1987) and cognitive models of schizophrenia (e.g.

Frith 1987) have emphasized abnormal fronto-limbic and prefronto-temporal integration.

Structural MRI studies of schizophrenic brains have found abnormalities in the temporal

cortex and underlying white matter with some consistency (McCarley et al 1993,

Williamson et al 1992, Shenton et al 1992).  Our previous analysis of the eigenimages,

derived from word generation PET activation studies, in normal subjects and schizophrenic

patients, pointed to abnormal functional connectivity between the left dorsolateral prefrontal

cortex (DLPFC) and the left superior and middle temporal gyri (Friston et al 1994).  We

applied the scaling transformation to the data in the hope of revealing, in a direct way, the

relationship between the temporal regions and prefrontal areas, in terms of functional

connectivity.

   The details of the experimental design and data acquisition have been described elsewhere

(Friston et al 1994) and will be summarized briefly.  Four groups of six subjects were

scanned six times during the performance of a series of word generation tasks (verbal

fluency, semantic categorisation and word shadowing.  Each task was preformed twice in

balanced order).  The four groups comprised (i) controls - a normal group, (ii) poor -

patients who produced a small number of words during FAS verbal fluency, (iii) odd -

patients who produced odd, inappropriate words and (iii) unimpaired - patients whose

performance was near-normal.  The patients all met DSMIII-R criteria (1987) for

schizophrenia.

   The data were stereotactically normalized (Friston et al 1991) and a mean rCBF estimate

for each voxel, for each condition, for each group, was obtained by averaging over

subjects in each group using the same techniques mentioned in the previous section.  A
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subset of voxels was selected at which differences between any of the six scans accounted

for a significant amount of variance (ANCOVA F > 3.9 p<0.001 df 5,24) in one or more

of the four groups.  The result was a large matrix of rCBF estimates (M), each comprising

six rows (one for each condition) and 4802 x 4 columns (one for each voxel in each

group).   M was normalized to a mean of zero and unit sum of squares (over each column).

   The matrix (M) was subject to the scaling transformation, as described in the above

section.  Note that all four groups were entered at the same time.  This meant that the

functional designation of the dimensions of the functional space was the same for all

groups.  The results of these analyses are seen in Figure 4 and 5.   Figure 4 (left) shows

the anatomical regions rendered in subsequent figures.  They included the left DLPFC and

medial prefrontal cortex (red), The left superior temporal region (green) and the left

posterior middle temporal cortex (blue).  Table 2 gives the centres of these regions in

stereotactic coordinates.  The two dimensions used in the scaling transformation were very

similar to the intentional and attentional dimensions seen in the previous section.  The first

dimension (Figure 4 top right) pointed towards the verbal fluency (first and last conditions)

and away from word shadowing (middle conditions).  It was largely indifferent

(orthogonal) to the semantic categorisation conditions.  The second dimension showed

monotonic time effects suggesting physiological adaptation due to putative attentional

changes.

   The functional space for the normal subjects and the schizophrenic groups are shown in

Figure 5.  In the normal subjects (top left) this set of tasks elicited a prefronto-temporal

axis.  The axis is slightly oblique suggesting some of this functional connectivity is due to

systematic time-dependent effects.  The similarity between this configuration and that of

similar regions in the previous section is evident.  The equivalent spaces for the

schizophrenic groups are markedly different from the normal space.  Although the DLPFC
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(red) has retained its position the temporal regions have moved across from the opposite

side to occupy a domain which spans high positive correlations with the DLPFC to total

independence.   The migration of the superior temporal regions is remarkably consistent

across the three schizophrenic groups and is predominantly in a right-left direction

suggesting this abnormality is due to intentional aspects of the tasks employed.  Conversely

the posterior temporal regions are less consistent in their displacement.  The horizontal

(intentional) shift is similar in all three groups but the vertical or attentional component is

different for each of the three groups (the unimpaired group showed a pronounced

movement of posterior temporal regions in the attentional dimension).  This suggests that

the functional connectivity elicited by intentional aspects of the word generation tasks result

in an abnormal pattern of prefronto-temporal integration that is largely invariant over

different schizophrenic subgroups.  However the [dys]functional connectivity elicited by

attentional components is specific to the group in question.  

   Notice that in the poor group the distance between the left DLPFC (red) and the superior

temporal regions (green) suggests an absence of functional connectivity (positive or

negative).  This represents a true left prefronto-superior temporal disintegration.

   This is not the place to embark on a detailed analysis of these results in terms of the

neuropyschology of schizophrenia, however it is worth pointing out that the observed

reversal and/or loss of prefronto-temporal integration is particularly relevant given the signs

and experiental symptoms of schizophrenia (see Frith 1993 and Friston et al 1994 for a

fuller discussion).

Discussion

   We have presented a simple application of metric multidimensional scaling that uses

functional connectivity as the underlying metric.  Functional connectivity is simply the
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correlation between remote neurophysiological events.  The technique provides an

expedient transformation which maps anatomical space into a functional space.  The

topography of this functional space is such that proximity implies a high degree of

functional connectivity.  The nature of this mapping means that anatomically distributed

systems that are functionally connected converge towards the same locus in functional

space.

   Potential applications of the technique have been demonstrated in the context of word

generation in normal subjects and abnormal prefronto-temporal integration in

schizophrenia.  In particular the negative correlations between prefrontal and temporal

activity normally seen are reversed in schizophrenia and the left superior temporal gyrus

appears to be dissociated from the prefrontal systems implicated in word generation.

   The techniques described here are not new.  Principal coordinates analysis or classical

metric scaling was introduced in the 1960's and other forms of multidimensional scaling

have been used in the context of neuroimaging (see Goldenberg et al 1989; Goldenberg

1989).  What is new here is that the correlations used in the classical scaling are

correlations in neuroimaging time-series.  These correlations are a simple characterization

of functional interactions and render the space defined by the scaling technique meaningful

in terms of functional connectivity.  The second novel aspect of the proposed (voxel-based)

application is that the transformation can be thought of as being applied to continuous

volumes (if the voxel data are a good lattice representation of a smooth continuous

processes).

The relationship between eigenimages, spatial modes and functional topography
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   There is a pleasing and complementary relationship between functional topography

defined using the scaling transformation and the use of the eigenvector solution of the

functional connectivity matrix to identify spatial modes (e.g. Friedrich et al 1991, Friston

1993).  In the latter approach the data are considered as K points in an n-dimensional

space.  These points define a trajectory in a space who dimensions are voxels.  The

principal axes (eigenvectors) of the distribution traced out by the trajectory correspond to

the spatial modes embedded within the data.  An image of these eigenvectors is called an

eigenimage.  Eigenimages, or spatial modes represent a simple and powerful way of

mapping function into anatomical space.

   In defining a functional space one considers the data as n points in an K-dimensional

space.  The principal axes (eigenvectors) of this distribution are used to rotate the points to

reveal the greatest structure in their interrelationships. A subspace of the rotated points

represents a mapping of anatomy into a functional space.

   As with eigenimages the functional spaces created using classical scaling will change

fundamentally with different brain states and are, as a consequence, experiment and time-

dependent.

   There is a parallel between the present work, using functional connectivity and that of

Young (1992) who used a meta-analysis of anatomical connectivity and nonmetric

multidimensional scaling.  This analysis allowed the authors to comment on the segregation

of dorsal and ventral processing streams and reconvergence in the DLPFC and the superior

temporal area.  Although we have chosen to illustrate the technique with an (important)

example of abnormal functional topography in schizophrenia, there are clearly many

applications to normal functional anatomy.  It would be interesting to examine the issues

addressed by Young (1992) to provide a complementary functional perspective.  The
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technique applied in this paper uses metric multidimensional scaling as opposed to

nonmetric scaling used by Young (1992).  There have been some concerns expressed about

the application of nonmetric scaling to connectivity data (Simmen et al 1994; Young et al

1994).  These concerns are avoided with metric scaling.  In this sense the current

application of metric scaling could prove very useful in resolving important questions about

large scale connectivity and functional organization in the brain.

    At the present time it is not easy to make statistical inferences about the topographic

features or changes in these features obtained with multidimensional scaling (Chatfield and

Collins 1980); however this does not detract from the proposed application as a powerful

descriptive approach to neuroimaging data
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Table 1

Location of anatomical regions in stereotaxic space (Talairach and Tournoux

1988)

name location x,y,z {mm}  Putative Brodmann's Area  Colour

Mediodorsal Thalamus   0 -12 4 blue

Left DLPFC -48 32 12 46 red

Broca's area -58 16 24 44 red

Anterior cingulate -12 24 24 32 green

Posterior cingulate -8 -48 24 32 green

superior temporal gyrus [+/-]56 8 4 21 red

posterior middle temporal gyrus [+/-]54 -56 0 22 blue

Regions chosen for the analysis of the 12-condition word generation study of normal

subjects.  All voxels that reached criteria following ANCOVA and fell within 20mm of the

above location constituted a 'region'.  See Figure 2 (left) for a graphical presentation of this

anatomical parcellation.
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Table 2

Location of anatomical regions in stereotaxic space (Talairach and Tournoux

1988)

name location x,y,z {mm}  Putative Brodmann's Area  Colour

Left DLPFC -48 36 12 46 red

Broca's area -58 16 24 44 red

Medial PFC -12 46 24 9 red

superior temporal gyrus -56 -8 4 22 green

posterior middle temporal gyrus -40 -58 -8 21 blue

   Regions chosen for the analysis of the 6-condition word generation study of normal

subjects and schizophrenic patients.  All voxels that reached criteria following ANCOVA

and fell within 20mm of the above location constituted a 'region'.  See Figure 4 (left) for a

graphical presentation.
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Legends for Figures

Figure 1

Experimentally introduced variance.

Left:  Statistical parametric map (SPM) of the F ratio following an ANCOVA of the 6

subject, 12 condition verbal fluency study.  The display format is standard and provides

three views of the brain in the stereotactic space of Talairach and Tournoux (1988) (from

the back, from the right and from the top).

Right:  Eigenvalues (singular values squared) of the functional connectivity matrix

reflecting the relative amounts of variance accounted for by the 11 dimensions of the

functional space.  Only two eigenvalues are greater than unity and to all intents and

purposes the space defined by classical scaling can be considered two-dimensional.

Figure 2

Scaling analysis of the functional topography of intrinsic word generation in normal

subjects.

Top:  Anatomical regions categorized according to their colour.  The location of these

regions and their designation are given in table 1.  Bottom: Regions plotted in a functional

space following the scaling transformation.  In this space the proximity relationships reflect

the functional connectivity between regions.  The colour of each voxel corresponds to the

anatomical region it belongs to. The brightness reflects the local density of points

corresponding to voxels in anatomical space.  This density was estimated by binning the

number of voxels in 0.02 'boxes' and smoothing with a Gaussian kernel of full width at

half maximum of 3 boxes.  Each colour was scaled to its maximum brightness.

Figure 3

Functional attribution  of the functional space.
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Left: Eigenvectors of the distribution of points in the functional space i.e. eigenvectors of

MMT.  These eigenvectors (or singular vectors) are unit vectors that define a direction in

functional space.  The attribution of this direction or dimension depends on relating this

vector to the tasks employed during the activation.  The first eigenvector (top) is clearly

related to the difference between word generation (even-numbered conditions) and word

shadowing (odd-numbered scans).  This difference is the intentional or intrinsic generation

of word representations.  The second eigenvector (bottom) corresponds to some largely

monotonic time effect we have labelled attentional

Right: The eigenimages corresponding to the first two eigenvectors of the functional

connectivity matrix.  These eigenimages (or spatial modes) are the eigenvectors of MTM.

The eigenimages are displayed as a maximum intensity projection in standard SPM format.

The colour scale is arbitrary and each SPM is scaled to its maximum.

Figure 4

The functional topography of normal subjects and schizophrenic patients

Left:  Anatomical regions detailed in table 2.

Right:  The first two eigenvectors of the distribution in the functional space showing that

the first (top) vector is associated with the difference between the first and last conditions

(intrinsic word generations) and the middle two conditions (word shadowing).  The second

vector (below) corresponds to a monotonic time effect.

Figure 5

The functional topography of normal subjects and schizophrenic patients

Top right:  Functional space of the normal group demonstrating the marked prefronto-

temporal axis which characterizes normal functional connectivity.

Top right: The equivalent space for the poor group of schizophrenic subjects in which all

the temporal regions have migrated from the left hand pole to the bottom right quadrant. 
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This corresponds to a loss and reversal of normal negative prefronto-temporal functional

connectivity.

Bottom left: Functional space for the odd group.

Bottom right: Functional space for the unimpaired group


