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Abstract: An important challenge in the design and analysis of event-related or single-trial functional
magnetic resonance imaging (fMRI) experiments is to optimize statistical efficiency, i.e., the accuracy with
which the event-related hemodynamic response to different stimuli can be estimated for a given amount of
imaging time. Several studies have suggested that using a fixed inter-stimulus-interval (ISI) of at least 15
sec results in optimal statistical efficiency or power and that using shorter ISIs results in a severe loss of
power. In contrast, recent studies have demonstrated the feasibility of using ISIs as short as 500 ms while
still maintaining considerable efficiency or power. Here, we attempt to resolve this apparent contradiction
by a quantitative analysis of the relative efficiency afforded by different event-related experimental
designs. This analysis shows that statistical efficiency falls off dramatically as the ISI gets sufficiently short,
if the ISI is kept fixed for all trials. However, if the ISI is properly jittered or randomized from trial to trial,
the efficiency improves monotonically with decreasing mean ISI. Importantly, the efficiency afforded by
such variable ISI designs can be more than 10 times greater than that which can be achieved by fixed ISI
designs. These results further demonstrate the feasibility of using identical experimental designs with
fMRI and electro-/magnetoencephalography (EEG/MEG) without sacrificing statistical power or effi-
ciency of either technique, thereby facilitating comparison and integration across imaging modalities.
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INTRODUCTION

Event-related experimental designs have become
increasingly popular in fMRI research in recent years
[Buckner et al., 1996, 1998; Burock et al., 1998; Clark et
al., 1998; Dale and Buckner, 1997; Friston et al., 1998;
Josephs et al., 1997; McCarthy et al., 1997; Wagner et
al., 1998; Zarahn et al., 1997]. In contrast to more
traditional blocked designs, where multiple trials of a

particular condition are grouped together in blocks,
event-related designs allow different trials or stimuli to
be presented in arbitrary sequences, thus eliminating
potential confounds, such as habituation, anticipation,
set, or other strategy effects [Rosen et al., 1998].

A significant challenge in designing and analyzing
event-related fMRI experiments is how to optimize the
accuracy of the estimated event-related responses. It
has been widely argued, based on empirical as well as
theoretical evidence, that using ISIs of at least 15 sec is
optimal and that using shorter ISIs results in a severe
reduction in statistical power [Cox and Bandettini,
1998; Hutton et al., 1998]. However, numerous studies
have shown highly reliable event-related fMRI re-
sponse estimates using ISIs as short as seconds or less
[see, e.g., Buckner et al., 1998; Burock et al., 1998; Clark
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et al., 1998; Dale and Buckner, 1997; Wagner et al.,
1998]. The explanation for this apparent contradiction
is that the expected accuracy (or efficiency) of event-
related fMRI response estimates is not fully deter-
mined by the mean ISI. In fact, the efficiency critically
depends on the entire distribution of ISIs. As shown
below, a substantial improvement in efficiency can be
achieved by using a variable ISI design, relative to a
fixed ISI design with the same mean ISI.

METHODS

Linear model

In the following, we assume a linear time-invariant
model for the observed fMRI response [Boynton et al.,
1996; Dale and Buckner, 1997; Friston et al., 1994].
According to this model, the response to an arbitrary
sequence of stimuli or events is equal to the summa-
tion of the responses to each of the individual events.
More formally, the fMRI signal y(t) at a particular voxel
is given by

y(t) 5 x(t) p h(t) 1 n(t), (1)

where the event sequence x(t) is a sum of time-shifted
delta functions, centered at the onset of each event, h(t)
is the (unknown) hemodynamic response (HDR) to
each individual event, n(t) represents additive noise,
and * is the convolution operator. More generally, if
there are more than one type of event or condition with
different HDRs, equation (1) generalizes to

y(t) 5 x1(t) p h1(t) 1 x2(t) p h2(t)

1 · · · 1 xNc
(t) p hNc

(t) 1 n(t), (2)

where Nc is the number of different event types, xi(t) is
the event sequence for event type i, and hi(t) is the
HDR for event type i.

Note that the fMRI signal is not sampled continu-
ously in time, but rather at discrete intervals deter-
mined by the repetition rate (TR). Thus if we assume
that the hemodynamic response functions have a finite
duration (THDR) and can be represented adequately by
a piecewise constant function with a discretization
interval of DTHDR, the continuous-time equation (2) can
be converted into the following discrete-time matrix
model for the fMRI signal

y 5 X1h1 1 X2h2 1 · · · 1 XNc
hNc

1 n, (3)

where y is a vector of fMRI samples with dimension

Ntp (the number of discrete time-points or samples),
and hi is a discrete-time vector representation of the
continuous-time hemodynamic response hi(t) with Nh 5
THDR/DTHDR elements. Xi is known as a stimulus
convolution matrix (SCM), a matrix operator represen-
tation of the time-discretized convolution with the
event sequence xi(t). The elements of the Ntp by Nh

matrix Xi are given by

xi(n,m)
5 e

(n21)TR1(m21)DTHDR

(n21)TR1mDTHDR
xi(t) dt, (4)

where xi(n,m)
is the element at the nth row and mth

column of Xi, and xi(t) is again the continuous-time
event sequence for event type i. Note that the discreti-
zation interval DTHDR for the HDR can be shorter than
the fMRI sampling interval (TR), thus making it pos-
sible to represent the HDRs with a finer temporal
resolution than that of the raw fMRI measurements.

Equation (3) can be further consolidated in matrix
notation as

y 5 Xh 1 n, (5)

where the design matrix X 5 [X1X2 . . . XNc
] is a horizon-

tal concatenation of the SCMs for the individual event
types, and h is the vertical concatenation of the
individual HDRs. X has dimensions Ntp by Nch, where
Nch 5 NcNh is the total number of hemodynamic
parameters to be estimated (i.e., across all event types
and lags).

Unbiased estimation

If we assume that the noise process is zero mean and
Gaussian with covariance matrix Cn, an efficient un-
biased estimate for the HDRs is provided by the
maximum likelihood (ML) solution ĥML given by

ĥML 5 (XTCn
21X)21XTCn

21y (6)

The ML estimator for a linear model with Gaussian
noise is optimal in the sense that it has the smallest
variance among all unbiased estimators of the re-
sponse. Since the noise covariance matrix Cn may vary
considerably across voxels, experimental runs, and
subjects, one cannot assume a particular form a priori
[Purdon and Weisskoff, 1998]. It is, therefore, desirable
to estimate the noise statistics from the same data used
to estimate the hemodynamic responses themselves. A
promising method for obtaining accurate parameter-
ized estimates of Cn is by fitting the residual errors
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given by ey 5 y 2 XĥOLS, where ĥOLS 5 (XTX)21XTy is
the ordinary least-squares estimate of the HDR, as a
first-order autoregressive process plus white noise
[Burock, 1998; also Burock and Dale submitted]. This
noise estimate can then be used to obtain more efficient
HDR estimates and to obtain more accurate p-values
for statistical parametric mapping.

Selective averaging

Note that this linear estimation approach is closely
related to the selective averaging method described in
Dale and Buckner [1997]. Under the assumption of
temporally uncorrelated noise (i.e., Cn 5 s2I), the maxi-
mum likelihood estimate in equation (6) reduces to the
ordinary least-squares estimate ĥOLS 5 (XTX)21XTy.
This expression can be factored into a ‘‘selective sum-
ming’’ term XTy, which sums up the recorded fMRI
signal at different lags time-locked to every event of a
certain type, and an ‘‘overlap correction’’ term (XTX)21,
which normalizes for the number of events of each
type and corrects for potential overlap in the estimated
timecourses due to preceding or succeeding events
[see, e.g., Hansen, 1983; Woldorff, 1993]. Thus, the method
of selective averaging with overlap correction is equiva-
lent to ordinary least-squares estimation. However, al-
though the resulting HDR estimates are unbiased, they are
less efficient than the maximum likelihood estimates,
given the high degree of temporal correlation of typical
fMRI noise [Purdon and Weisskoff, 1998; Burock, 1998].

Hemodynamic basis functions

The methods described thus far make no assump-
tions about the exact shape or functional form of the
HDRs. It should be noted, however, that it is relatively
straightforward to incorporate prior knowledge about
possible HDR shapes as a bias in the linear estimation
framework outlined above. If we assume that the
HDRs for all event types and at all locations in the
brain are fully contained in an Np-dimensional linear
sub-space L of RNh, then, any HDR hi can be parameter-
ized uniquely as hi 5 Lpi, where L is an Nh-by-Np-
dimensional matrix whose columns form an ortho-
normal basis for the sub-space L, and where the
elements of pi (parameters) are the projection of hi onto
the corresponding basis vectors. Substituting this pa-
rameterized expression for hi into equations (3), (4)
and (5), we get the following expression for the
maximum likelihood estimate of p, the vertical concat-
enation of the parameter vectors pi for each event type:

p̂ML 5 (LTXTCn
21XL)21LTXTCn

21y. (7)

The resulting biased maximum likelihood estimate for
the HDRs is given by

ĥBML 5 Lp̂ML 5 L(LTXTCn
21XL)21 LTXTCn

21y. (8)

An advantage of such biased estimates is that they
are generally more efficient than unbiased ones, espe-
cially if the dimensionality Np of the subspace is much
lower than the dimensionality Nh of the embedding
space (i.e., fewer unknowns). However, the accuracy of
the resulting estimates critically depends on the appro-
priate bias. Unless the actual event-related response to
every event type, in every voxel, in every subject lies
entirely within the specified subspace, the resulting
estimates will be distorted. Great care should, there-
fore, be taken to ensure that the choice of basis
functions spans the space of all possible HDRs for a
given experiment.

Efficiency

As noted above, the maximum likelihood estimator
has the smallest variance (or, equivalently, greatest
efficiency) among all unbiased estimators of the HDR.
The estimator efficiency, which can be seen as a
measure of the expected accuracy of the estimator, is
typically defined as the reciprocal of estimator vari-
ance. More formally, we define the estimator efficiency
E as

E 5 7\h 2 ĥ \2821, (9)

where 7·8 denotes the expectation operator. Substituting
the maximum likelihood estimator ĥML defined in
equation (6) into equation (9), we get the following
expression for the efficiency of maximally efficient
unbiased estimator:

E 5 7 \h 2 (XTCn
21X)21XTCn

21y \ 2821. (10)

Further, combining equations (5) and (10) and simplify-
ing, we get

E 5 7 \ (XTCn
21X)21XTCn

21n \2821. (11)

Finally, recalling that n is a zero mean Gaussian
random variable with covariance matrix Cn, we get the
following expression for the efficiency of the unbiased
maximum likelihood estimator ĥML:

E 5
1

trace((XTCn
21X)21)

. (12)
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By a similar argument, we find that the efficiency of the
biased maximum likelihood estimator ĥBML is given by

E 5
1

trace(L(LTXTCn
21XL)21LT )

. (13)

Observe that the efficiency of the unbiased maxi-
mum likelihood estimator depends only on the experi-
mental design, as encoded in the X matrix, and the
noise covariance, as encoded in the Cn matrix. Thus the
estimator efficiency is entirely independent of the
actual hemodynamic response (this is, in fact, the case
for any unbiased estimator). The efficiency of the
biased maximum likelihood estimator additionally
depends on the assumed HDR subspace, as encoded in
the L matrix.

Note that the only relevant factors genuinely under
the experimenter’s control are the sequence and timing
of the events (i.e., the X matrix), as the noise covariance
structure and the HDR subspace are largely governed
by the imaging process and the hemodynamic physiol-
ogy of the subject. An important challenge in event-
related fMRI research is thus to determine which
experimental designs result in the greatest expected
estimation accuracy, given certain constraints such as
total imaging time, and minimum interstimulus inter-
val (ISI). The estimator efficiency measure E defined
above provides an objective criterion for evaluating
and optimizing the relative expected accuracy af-
forded by different experimental designs.

RESULTS AND DISCUSSION

We have previously shown that accurate estimates
of the HDRs from different event types can be obtained
using event-related fMRI with very rapid presentation,
as long as the interstimulus interval is randomized
(according to an exponential distribution), rather than
kept constant [Burock et al., 1998]. However, others
have argued that greater estimation efficiency or statis-
tical power is achieved by using considerably longer
ISIs [Cox and Bandettini, 1998; Hutton et al., 1998].
Here, we investigate the effect on estimator efficiency
of varying the mean interstimulus interval in fixed and
variable ISI designs. Figure 1 shows the efficiency
measure E for the maximum likelihood HDR estimate
for a single-event type or condition as a function of
mean ISI, for both variable ISI designs (solid line) and
fixed ISI designs (dashed line). For very long mean ISIs
(e.g. .20s), variable and fixed ISI designs result in very
similar efficiency measures. However, for shorter mean
ISIs, the efficiency of variable ISI designs increases

dramatically, whereas the efficiency of fixed ISI designs
decreases.

Note that the efficiency of a variable ISI design with
a mean ISI of 1 sec is more than 10 times the efficiency
of a design with a mean ISI of 20 sec. In other words,
one would have to scan .10 times as long (or,
alternatively, average 10 times as many subjects) in
order to achieve the same estimation accuracy at a
mean ISI of 20 sec vs. 1 sec.

It should be noted that since the event sequences in
the randomized ISI designs are generated by a stochas-
tic process, the resulting efficiency measures are them-
selves random variables. This is illustrated in Figure 2,
which shows the minimum, maximum, and mean
efficiency measure for 10,000 randomly generated
designs, assuming four different event types.

As in the one-event-type case shown in Figure 1, the
efficiency of variable ISI designs increases with decreas-
ing mean ISI. However, for any particular mean ISI,
there is a considerable range of efficiencies. In particu-
lar, for long mean ISIs, some of the randomly gener-
ated designs result in extremely low efficiency mea-
sures. Thus in order to ensure consistently high
estimation accuracy for finite-length experiments, one
should avoid relying on the asymptotic properties of
the stochastic generating process. A significant improve-

Figure 1.
Relative efficiency of variable and fixed ISI experimental designs is
shown as a function of mean ISI. For very long mean ISIs (e.g.
.20s), variable and fixed ISI designs result in very similar efficiency
measures. For shorter mean ISIs, the efficiency of variable ISI
designs increases dramatically, whereas the efficiency of fixed ISI
designs decreases. Note that the exact value of the efficiency
measure E depends on the noise variance at a particular pixel, and
thus the relative efficiency measure plotted here is in arbitrary
units. The following parameters were used in the simulations:
TR 5 2s, THDR 5 20s, DTHDR 5 2s, Ntp 5 128, Nc 5 1, Nh 5 10.

r Dale r

r 112 r



ment typically can be achieved by generating a large
number of candidate experimental designs using a
stochastic process, and then selecting the one affording
the greatest estimator efficiency.

CONCLUSION

We have described a general framework for obtain-
ing efficient estimates of event-related hemodynamic
responses using fMRI. In contrast with most existing
methods, which assume temporally uncorrelated
(white) noise, the current approach allows for an
arbitrary temporal covariance structure. Furthermore,
efficient unbiased estimates can be obtained for the
HDRs with a finer discretization interval (i.e., greater
temporal resolution) than the sampling interval (TR) of
the fMRI data, provided that the timing of the event
sequences is properly randomized. Efficient biased
estimates of the HDRs can be obtained, in the presence
of temporally correlated noise, by restricting the esti-
mated HDRs to a prespecified linear subspace (e.g.,
defined by a set of basis functions).

Explicit expressions are derived for the relative
efficiency of an arbitrary event-related experimental

design, for both unbiased and biased estimators. This
efficiency measure provides an objective criterion for
comparing the relative merits of different estimators
and experimental designs. A particularly valuable
application of this measure is in the optimization of the
timing and sequencing of different events, given spe-
cific constraints such as minimum ISI, sampling rate
(TR), HDR discretization interval (DTHDR), and total
imaging time.

The simulation results presented here clearly demon-
strate the advantage of using randomized rather than
fixed ISI designs in fMRI experiments. Whereas the
efficiency of randomized ISI designs increases mono-
tonically with shorter mean ISI, the efficiency of fixed
ISI designs falls off dramatically. These simulations, of
course, assume that the system can be modeled as
linear time-invariant at arbitrarily long or short ISIs. In
practice, it is likely that nonlinearities in the underly-
ing neuronal response (due to, e.g., habituation or
refractoryness) become pronounced at very short ISIs.
Since such non-linear effects are likely to lead to
distortions in the estimated HDRs, they may therefore,
set a practical limit on the minimal ISIs. This practical
lower limit is likely to depend somewhat on the
specific sensory or cognitive phenomena of interest,
since different brain areas are likely to exhibit different
degrees of nonlinear behavior. Such neuronal nonlin-
earities should, of course, also affect other, more direct
correlates of neuronal electrical activity such as EEG
and MEG. Thus, it may be possible directly to verify
the validity of the assumptions of linearity and time-
invariance of the neuronal response by comparing the
selectively averaged EEG and/or MEG responses for
different ISI ranges for a given experimental design.
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