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The complicated structure of fMRI signals and asso-
iated noise sources make it difficult to assess the
alidity of various steps involved in the statistical
nalysis of brain activation. Most methods used for
MRI analysis assume that observations are indepen-
ent and that the noise can be treated as white gauss-

an noise. These assumptions are usually not true but
t is difficult to assess how severely these assumptions
re violated and what are their practical conse-
uences. In this study a direct comparison is made
etween the power of various analytical methods used
o detect activations, without reference to estimates of
tatistical significance. The statistics used in fMRI are
reated as metrics designed to detect activations and
re not interpreted probabilistically. The receiver op-
rator characteristic (ROC) method is used to compare
he efficacy of various steps in calculating an activa-
ion map in the study of a single subject based on
ptimizing the ratio of the number of detected activa-
ions to the number of false-positive findings. The main
ndings are as follows: Preprocessing. The removal of

ntensity drifts and high-pass filtering applied on the
oxel time-course level is beneficial to the efficacy of
nalysis. Temporal normalization of the global image
ntensity, smoothing in the temporal domain, and low-
ass filtering do not improve power of analysis. Choices
f statistics. the cross-correlation coefficient and
-statistic, as well as nonparametric Mann–Whitney
tatistics, prove to be the most effective and are similar
n performance, by our criterion. Task design. the
roper design of task protocols is shown to be crucial.
n an alternating block design the optimal block length
s be approximately 18 s. Spatial clustering. an initial
patial smoothing of images is more efficient than
luster filtering of the statistical parametric activation
aps. r 1999 Academic Press

1. INTRODUCTION

Functional neuroimaging is usually based on the
remise that the differences between images of the

rain obtained in different mental or functional states s

311
an reveal the differential involvement of various brain
tructures in particular activities. One leading tech-
ique in neuroimaging is functional magnetic reso-
ance imaging (fMRI) (Ogawa et al., 1993), which has
ecome very popular due to the wide availability of
uitable instrumentation, superior performance over
revious techniques, and its relative ease of use. How-
ver, although in concept the implementation of fMRI is
traightforward, there remain several important issues
egarding the analysis of fMRI data that remain unre-
olved. For example there is little consensus on the
roper methods of statistical analysis that should be
sed, and this makes it difficult to compare and evalu-
te results between the growing number of sites work-
ng with fMRI. The weakness of fMRI signals recorded
n studies of complex cognitive functions, and the
rbitrariness of the choice of data analytic strategies,
aises concerns that published results may become
ignificantly skewed to fit the expectation of the neuro-
cience community—that is, the results of statistical
nalyses which conform to expectations are more likely
o be believed, accepted for publication, and quoted.
ttempts to establish the best available statistical
rocedures are important not only to increase the
ower of the technique but also to limit the experimen-
al freedom in the choice of processing strategies and
hereby eliminate bias in selecting those that detect the
‘right activations.’’

The statistical problems faced in fMRI may seem at
rst sight to be relatively simple, so that it should be
ossible to derive optimal processing techniques on a
heoretical basis. However, there is little agreement
etween statisticians working in this field upon the
hoice of the best strategy. The main reason for this is
hat fMRI signals are in reality quite complex in their
tructures. For example, they include various nonuni-
orm sources of noise and artifact that cannot be easily
escribed and accounted for in general statistical mod-
ls. The observations are not independent, either in
ime or in space. Attempts at statistical analyses of
MRI data from first principles usually rely on several

implifying assumptions that are difficult to establish

1053-8119/99 $30.00
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312 SKUDLARSKI, CONSTABLE, AND GORE
nd are usually not satisfied. The importance of devia-
ions from such theoretical models is poorly under-
tood. Simple analysis of the rate of false-positive
ctivations found in practice shows that such models do
ot correctly predict the significance of observations.
or this reason, even if a satisfactory statistical theory
an be constructed, it will have to pass a test of
xperimental confirmation before being widely applied.
We propose an alternative practical approach to the

valuation of fMRI processing methods by making
omparisons between different techniques of analysis
sing the receiver operator characteristic (ROC) method
Skudlarski et al., 1997). Using data obtained in a real
MRI study, we create data sets in which activation foci
re artificially added so that their intensity and spatial
xtent are known. We then apply various methods of
ata analysis to this set of images and measure how
ccurately each method can recognize the presence and
ocations of activations. This enables us to compare the
ccuracy of outcome of each analysis with the known
istribution of artificially added activations. We have
reviously used (Constable et al., 1995) this approach
o compare different implementations of t-statistical
ests.

In this paper we look at various other statistical
easures used in fMRI analysis but consider here only

heir performance for detecting activations, without
ttempting to assign any probabilistic interpretations
o the significance of the results. We compare them
sing a single criterion—the ability to detect most of
he real activations while minimizing the detection of
alse activations.

ROC analysis was adopted for this purpose (Con-
table et al., 1995) and has been used by others
Forman and Cohen, 1995; Sorenson, 1995; Xiong et al.,
996) for similar purposes but mostly to validate par-
icular approaches used in fMRI, and usually using
omputer simulated data sets with noise of a specific
tochastic nature. However, we believe this approach
an be misleading. The general validity of a particular
ethod based on a theory that assumes noise of certain

haracteristics cannot be established by applying it to a
ata set with noise with precisely those properties. In
ur approach to simulation we use actual data from
eal fMRI experiments, which should therefore more
losely match the noise encountered in practice. We
hen add artificial activations that realistically simu-
ate typical fMRI activations.

The goal of this paper is to provide an objective way of
hoosing optimal methods and parameters in fMRI
nalysis to increase its power and reduce subjective
lements that otherwise influence the results obtained.
e consider all the steps that are typically involved in

he analysis of fMRI data of a single subject.
We begin with a description of our implementation of
he ROC technique and define criteria for assessing the r
fficacy of processing steps. This technique is then
pplied to compare different methods that can be
hosen in subsequent steps of the fMRI analysis. The
fficacy of several preprocessing steps such as temporal
ormalization, drift subtraction, and frequency filter-

ng are analyzed. Next the efficacy of different statisti-
al methods that can be used to create statistical
arametric maps (SPM) from data obtained during
ingle imaging runs are compared. The design of the
tudy, the size, the number, and the patterns of blocks
f activation and control tasks are found to be crucial
nd are further analyzed. Different methods of using
he spatial correlation of expected activations, such as
luster filtering of statistical maps, smoothing of the
aw images, and smoothing of final maps, are com-
ared. Finally, methods of creating one composite re-
ult SPM for a study of a single subject consisting of
ultiple separate imaging runs are considered. Two of

he above simulations (comparison of statistics used for
reating single SPM and the effects of the temporal
ormalization) were performed additionally on differ-
nt data sets using two methods of motion correction,
ielding results very similar to those obtained without
otion correction. Appendices describe in detail the
ethods used for linear drift removal (Appendix A) and

patial multifiltering (Appendix B). Finally, Appendix
presents some statistical measures obtained from the

ata sets we investigated. This may be useful to
ompare our results with results obtained on other
ata.

2. METHODS

.1. ROC Method

The application of ROC methods to the analysis of
MRI processing techniques was introduced by Con-
table et al. (1995). It has been used extensively as a
ool for objective comparisons of various strategies
Skudlarski et al., 1995; Friston et al., 1996; Xiong et
l., 1996). The basic premise of this method relies on
dding artificial activations to a set of raw images and
pplying each method being studied to this altered data
et. For the proper application of ROC methods the
RI images should contain noise and artifacts represen-

ative of fMRI data obtained in practice (a feature that
s sometimes neglected (Sorenson and Wang, 1996;
iong et al., 1996)). The locations and intensities of
etected activations can then be compared to the
nown pattern of the added activations to thereby
easure the accuracy of detection. The relationship

etween the true-positive ratio (proportion of correctly
etected activations to all added activations) and the
alse-positive ratio (proportion of pixels that were incor-

ectly recognized as active in all pixels without added



a
d
s
t
s
p
s
o
a
m

c
e
t
R
1
R
f
c
b

s
l
s
f
s
i
m
i
e
s
‘
w
a
a
f
s
c
e
o
o

w
o
c
c
u
t
0
s
c
i

313STATISTICAL METHODS IN fMRI
ctivations) describes the power of the technique. If the
etection procedure has a parameter that controls its
ensitivity then by adjusting that criterion (usually the
hreshold level) the resultant curve shows the relation-
hip between the proportion of true-positive and the
roportion of false-positive activations. The precise
hape of the ROC curve depends on the characteristics
f the probability distributions of the signals and noise
nd the degree to which they overlap, but does not
ake assumptions about these distributions.
2.1.1. Obtaining single ‘‘value of merit’’ from the ROC

urve. In a situation when many different aspects of
ach detection algorithm are compared, it is desirable
o produce a single quantitative figure of merit for each
OC curve. Several methods have been proposed (Metz,
978; Swets, 1988), including the integral of the full
OC curve and its best operating point (point furthest

rom the diagonal). In this paper the mean of the ROC
urve over the limited range of false-positive ratio
etween 0 and 0.1 is used as such a measure. This

FIG. 1. The left panel presents two representative ROC curves. T
hile the dotted line was obtained using the neighborhood filter. Act
btained with the neighborhood filter, although obviously better in
onsidered inferior if the integral of the whole curve is used as a meas
urve as a function of intensity of activation. The dotted curve was o
sing only 0–0.1 region as used in this paper. This relation helps to int
hem to an equivalent change in the contrast to noise ratio (CNR). In t
.01 is roughly equivalent to a 4% increase in CNR. The limited ROC i
tatistically significant difference in the ROC power, as defined here,
hange is necessary to gain significant change in the ROC power usin

n a study so that the estimated error is larger than in the later results.
omehow arbitrary value of 0.1 was chosen as an upper
imit for the false-positive ratio that is used in the fMRI
tudies. By limiting this integral to low (but realistic)
alse-positive rates (high thresholds only) we limit the
cope of our analysis to the cases that are of primary
nterest in fMRI, when the ratio of false activations is

uch smaller than the ratio of real activations. The
mportance of this limit is obvious when analyzing the
fficiency of some cluster filtering techniques as repre-
ented on the left panel of Fig. 1. In one case a
‘neighborhood filter’’ pixel is considered active only

hen a certain number of its closest neighbors are
ctive as well. In this approach pixels on the border of
ctivated regions will not be treated as activated even
or an extremely low threshold level. In such circum-
tances, the true-positive ratio will be always signifi-
antly smaller than one. This may offset the high
fficiency of such a filter in the more interesting regime
f a more realistic and higher threshold. As the thresh-
ld is changed the ROC curves of different techniques

solid line was obtained using t-statistics without spatial processing
ions were added in large (25 voxel) foci. The curves cross. The curve
low false-positive regime (the working regime of fMRI), would be
of accuracy. The right panel presents the mean measure of the ROC
ined from the whole ROC curve while the solid curve was obtained
ret the differences in ROC power of various techniques by translating
ange of intensities used in this paper, an increase of ROC measure by
gral proves to be more sensitive to the intensity of added activation. A

be observed for 30% change of strength of activation, while a 100%
e full ROC integral. In this simulation we used only one imaging run
he
ivat
the
ure
bta
erp
he r
nte
can

g th
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314 SKUDLARSKI, CONSTABLE, AND GORE
ay cross and it is important to choose the one that is
igher in the regime that is most relevant for practical
MRI applications: that of low false-positive ratios. In
ddition we find that our criterion for judging ROC
urves performs better than using the entire ROC
urve integral as can be seen in Fig. 1 (right panel). The
ean ROC score is plotted there as a function of the

ntensity of the added activation. Using the whole ROC
ntegral we need to change the intensity of the added
ctivation by more than a factor of 2 to find a significant
larger than estimated error) change in the ROC score.
ur limited integral of 0–0.1 regime is sensitive to

hanges in the added activation intensity of 30%.
Because the ROC curves contribute to our analysis

nly through their integral our results are essentially
quivalent to a conventional power analysis that is
veraged for a range of Type-I error levels (alpha
etween 0 and 0.1). This averaging is performed for two
easons. This makes our results less dependent on a
articular alpha level, which can be chosen differently
or various studies. Depending on the study size (in
erms of the number of subjects and imaging series and
he required final significance) the required alpha level
or the analysis of individual series may vary widely.
he other more pragmatic reason is that this averaging
tabilizes the results of random error in our simula-
ions and thus produces a more precise estimate of the
elative power of different methods of analysis.
In the examples that follow, all of the results for the

ower of different techniques will be given in terms of
he parameter P, the mean value of the ROC curve over
he region in which the false-positive ratio lies between
and 0.1. This P value is always between 0 and 1. The

atter would reflect a perfect technique that recognized
ll true activations without returning any false-
ositive findings. For a completely random method
guessing as a way of detecting activations) P 5 0.05.
he right panel of Fig. 1 presents the values of P as a

unction of the intensity of added activations. This
urve (calculated using t-value as the activation detec-
ion tool) can be used later to interpret the significance
f gains in the statistical power of different statistical
ethods. An increase of 0.01 in the ROC score is seen to

e roughly equivalent to an increase in the signal
ontrast by 4%, or the same reduction of the noise.
aking into account the fact that the error in the ROC
core (see below) varies between 0.005 and 0.1 we can
tate that we are able to detect gains in the power to
etect activations equivalent to an increase in the ratio
etween noise- and stimulus-dependent change of sig-
al intensity of 2–4%.
2.1.2. Simulation activations. The activations we

dded were defined as sinusoidally varying in time at
arious frequencies. We believe that this procedure
rovides data sets with known artificial activations

hat are similar to true fMRI data sets. The onset and b
ecrease of fMRI signal with activation produce signals
hat may resemble sine waves. The amplitude of added
ctivations was varied between 0.3 and 3% of the image
ntensity, equivalent to a range of 0.1 to 1 of the
tandard deviation of the signal intensity for individual
ixels. This is a range common for fMRI activations in
ognitive tasks, which are generally weaker than sen-
ory-motor activations that are more robust and easier
o detect. The results were stable with respect to the
ntensity of activations in this range and the results
resented later were obtained for a single intensity of
.5% (amplitude of signal difference between peak On
nd Off conditions equal to 0.5 of the average noise
tandard deviation).
Except for the simulation for temporal normaliza-

ion, the synthesized activation signal was added to
0% of pixels. Activated pixels were grouped in ran-
omly spaced clusters of about 10 pixels (the size of
lusters was varied in the analysis of spatial smoothing/
lustering algorithms). The high number of activated
ixels was chosen to increase the power of our analysis.
owever, in the analysis of the effects of time normaliza-

ion using the whole image intensity, when a large
umber of activations may distort the results, a smaller
umber of activated pixels (1, 2, and 4%) was used.
One problem with our procedure is that activations

re added in the same positions in the image, rather
hat in the same position in the brain. This means that
he effect of motion in masking activations is omitted.
his may lead to underestimation of the statistical
ower of techniques that are significantly better in
reating motion. Our approach is thus not applicable to
nalyzing the performance of motion correction algo-
ithms. Since the motion correction may affect the
elative merits of various techniques, we also present
ome results calculated with and without motion correc-
ion. These results cannot be used to directly compare
he power of analysis with and without motion correc-
ion but they show that motion correction does not
ignificantly change the results of our analysis.
2.1.3. Analysis of accuracy of detection rather than

stimate of significance. It must be emphasized that
n this paper we do not address the issue of calculating
he statistical significance of activations that are de-
ected. We concentrate on finding the most powerful
trategy and do not attempt to estimate the absolute
ignificance of its results. Such calculations are to this
ate highly problematic in fMRI due to the complicated
nd variable nature of the noise. Our approach allows
s to compare the losses and gains in the statistical
ower produced by isolated steps of the data analysis.
his can be done with far less stringent (and thus more
ealistic) assumptions about the characteristics of the
ignal and noise distributions than those necessary to
stimate the statistical significance of findings. We

elieve that currently the best method for estimating
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315STATISTICAL METHODS IN fMRI
he statistical significance of fMRI findings in order to
stimate P values of activations is obtained by careful
andomization of actual MRI images used in the same
tudy, the so called ‘‘bootstrap technique’’ (Arndt et al.,
996; Bullmore et al., 1996; Skudlarski and Gore,
996).
It should be noted that due to several violations of

ommon statistical assumptions (mainly the assump-
ions of independence in both space and time domains)
he values of t-statistics that we calculate should not be
irectly interpreted to have their typical statistical
eaning. We use this and other ‘‘statistics’’ merely as
easures that reflect in some way the intensity of

ctivations. Our study is devoted only to finding which
easure is the best at detecting true activations in the

resence of the noise.

.2. Imaging

We used images taken from 8 subjects from an fMRI
tudy of attention (Peterson et al., 1997) in which runs
f 128 images/slice were taken while subjects per-
ormed the Stroop task. In this study, the four periods of
ctive condition were interleaved with four periods of
est in each imaging series. We have chosen slices from
he superior regions of the brain that did not produce
ignificant reproducible activations in those tasks. The
attern of artificially contrived activations was always
ifferent from the pattern of real activity so that any
mages containing real activations were assigned to
oth the ‘‘active’’ and the ‘‘control’’ group. Before adding
ctivations, the sets of images assigned to be ‘‘acti-
ated’’ were not statistically different from those as-
igned as ‘‘control.’’ We have chosen to use these data
nstead of a series of blank images taken with the
ubject resting in the magnet because our experience
Skudlarski et al., 1995) shows that data sets taken
uring the performance of a real fMRI study differ
ignificantly in the amount of variance from data sets
aken while subjects are resting during the entire
maging series. Most probably this difference can be
ttributed to differences in the amount of microscopic
otion—that is motion smaller than 0.3 mm (less than

ne tenth of the pixel size).
Each study was performed on a GE 1.5 T Signa MR

nit equipped with echo planar imaging (EPI) (Ad-
anced NMR, Wilmington, MA). The imaging param-
ters were as follows: a 5 60°; echo time, TE 5 45 ms;
epetition time, TR 5 1500 ms; field of view, FOV 5 40 p
0 cm; slice thickness, 8 mm; matrix size, 128 p 64; and
ex 5 1. Analyzed studies were screened for motion by
nalysis of the center of mass: no gross (larger than 0.5
ixel) movements were observed, and no motion correc-
ion was performed, as every motion correction proce-
ure available changes significantly the structure of

ignal and its spectral distribution. In the last section a
e present results recalculated for a study analyzed
ith two methods of motion correction.

.3. Model Scheme of Data Analysis

In a typical study such as the one considered here the
ubject is imaged in several identical imaging runs
here four runs). During each imaging series two tasks
A, B) are interleaved at various frequencies between 1
AB), 1.5 (ABA), and up to 10 on/off cycles per imaging
eries. The data analysis is performed as follows (the
etails of each of these steps will be discussed below):

●Data is preprocessed using spatial smoothing, drift
limination, temporal normalization or temporal filter-
ng (with a high-pass filter).

●For each imaging series one statistical parametric
ap (SPM) is created.
●The SPMs from identical series from the same

ubjects are combined into one SPM representative for
his subject.

●Activation maps are thresholded and cluster fil-
ered.

●t-Value was used as activation measure unless it
as specifically noted.

3. PREPROCESSING IN THE TIME DOMAIN

.1. Time Normalization

Since the intensity of the MRI images may change
uring an imaging run it is common to employ time
ormalization to eliminate variance due to changes in
he global intensity. In this procedure the overall
ntensity of every image is multiplied by a factor that
stimates the scanner instability. Such a normalization
s justified if the variation of global intensity is due to
ome global mechanism and is uniform across the
hole image, but can produce deleterious effects if the
pparent change in the mean intensity comes from
ocalized variations. The potential advantage of this
rocedure is to eliminate one source of possible arti-
acts. There are two possible disadvantages: real activa-
ions may affect the intensity of the whole image (and
hus may be decreased through normalization), or the
stimate of noise (such as one used in calculating
-statistics) will be distorted by the selective removal of
art of the variance.
3.1.1. Methods for time normalization compared.
e have compared three methods of performing time

ormalization using three different normalizing coeffi-
ients. We consider the mean intensity of the whole
mage and the mean intensity within the brain (this
ill exclude possible artifacts outside of the brain from
ffecting the normalization parameters). In the third

pproach we calculate the histogram of intensity within
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316 SKUDLARSKI, CONSTABLE, AND GORE
n image, fit its central part with a gaussian, and then
nd the position of its peak. For each of these methods
f determining the normalizing parameters each image
ntensity is divided by this parameter so that the
ppropriate estimate of mean intensity is constant
fter normalization. This normalization is performed
eparately for each slice, so that changes of intensity in
ne slice do not affect the intensity of the others. One
ossible sensitive issue is the extent of activation: if a
trongly activated area is large (such as in the case of
isual stimulation) it can affect the mean intensity of
he whole image. In such a case the normalizing
rocedure will reduce the real effect. To safeguard
gainst this possibility in our simulation we considered
, 2, 4, or 8% of pixels to be activated. This fraction is
mportant because the time normalization procedure is
ased on the assumption that activation changes the
lobal image intensity only slightly. The larger the
ctivated area, the less likely time normalization will
e appropriate, because the effect of stimulus is likely
o be present in the measure used for the temporal
ormalization. If no global sources of noise are present
he activation covering x% of the image will decrease its
ntensity by x% in result of temporal normalization.

3.1.2. Time normalization does not improve accuracy
f detection. The results for the realistic yet conserva-
ive 4% case are presented in Table 1. One can see that
ormalization based on the mean intensity of the whole

mage or mean intensity of the brain significantly
ecreases the power of the analysis, whereas the more
ophisticated histogram fitting technique gives results
hat seem to be slightly worse but are not significantly
ifferent than with no time normalization. Only for the

TABLE 1

Freq 5 1.5
(ABA)

Freq 5 3.5
(ABABABA)

Freq 5 7.5
(ABABABAB-
ABABABA)

-stat 0.29 6 0.012 0.42 6 0.012 0.52 6 0.012
aired t-stat 0.16 6 0.009 0.31 6 0.009 0.53 6 0.009
kewed t-stat 0.28 6 0.012 0.42 6 0.012 0.54 6 0.012
oxcar correlation 0.29 6 0.011 0.42 6 0.012 0.52 6 0.012
xact correlation 0.33 6 0.013 0.45 6 0.014 0.54 6 0.014
ercentage difference 0.17 6 0.014 0.27 6 0.015 0.44 6 0.014
kewed percentage
difference 0.19 6 0.014 0.28 6 0.013 0.39 6 0.015

ourier 0.15 6 0.015 0.26 6 0.016 0.30 6 0.014
ann–Whitney 0.29 6 0.013 0.42 6 0.012 0.52 6 0.014

plit-2 t-stat 0.2 6 0.03 0.39 6 0.01 0.505 6 0.01
plit-3 t-stat 0.13 6 0.03 0.37 6 0.01 0.49 6 0.01
plit-4 t-stat 0.12 6 0.02 0.29 6 0.01 0.41 6 0.01

Note. The ROC measured power of various statistics applied for
hree different study designs, with various lengths of individual
timulus presentations. The t-statistics, Mann–Whitney, and correla-
ion methods prove to be best and very similar in their effectiveness.
he effect of frequency of task switching is clearly visible—faster task
cwitching helps us eliminate strong low frequency noise.
ase when 2% of the pixels are activated, in which the
rea activated is smaller the time normalization im-
roved efficiency, but this difference was not statisti-
ally significant. For 1% of added activations the esti-
ated error of analysis was even higher and the (not

tatistically significant) advantage of time normaliza-
ion minuscule. Thus we can establish an upper limit
or the possible gain due to the temporal normalization.
ven if temporal normalization is helpful for detecting

ocalized activations (covering less that 4% of analyzed
rain tissue), it may increase the power to detect
ctivations by the equivalent of no more than a 2%
ncrease of signal to noise ratio. We therefore conclude
hat temporal normalization of the global image inten-
ity should not be performed. The time normalization
as also not helpful when combined with the removal
f the low frequency drift discussed in the following
ection. The results of our measurements of efficacy for
arious stimulation frequencies, presented in Fig. 2,
uggest that the fMRI studies used in our work do
xhibit linear drifts. The fact that time normalization
as not helpful can be most likely explained by postu-

ating that the drift was not uniform across a whole
mage. If the drift was created by variations in the B0
eld uniformity this would be visible as minute linear
otions in the imaging plane that in turn cause

onuniform intensity drifts that depend on the local
radient in the image intensity.
Our experience with large numbers of subjects ana-

yzed in semiautomatic fashion shows that some stud-
es show some unusually strong shifts in the global
mage intensity. In such cases use of time normaliza-
ion may save otherwise unusable data. However, our
revious results show that it would be unwise to apply
ime-normalization as a general procedure—the aver-
ge time course of overall image intensity should be
onitored (this can be easily done together with motion

nd ghost artifact analysis) to alert for unusual drift
rtifacts and to allow for the time normalization to be
pplied selectively.

.2. Removal of Low Frequency
Drift/High-Pass Filtering

An alternative technique of preprocessing in the
emporal domain to eliminate artifactual low frequency
rifts is treat each voxel time course individually
without assuming, as in the previous case of time
ormalization, that the low frequency noise of every
ixel has an identical global time course) (Biswal et al.,
996). The rationale for this technique is based on the
bservation that the power of the fMRI noise (in the
ime domain) is concentrated at the low frequency end
f the spectrum, and as long as the expected response
as a high temporal frequency, the low frequency
omponents of the spectrum can be filtered out. Of

ourse this method can be used only for experimental
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317STATISTICAL METHODS IN fMRI
esigns that include several switches between task/
ontrol conditions within each imaging run. The advan-
age of this procedure is the possibility of selective
limination of some noise without removing genuine
MRI signal. A disadvantage is that this procedure may
kew the distribution of data points and this may lead
o an underestimation of the data variance and in the
ossibility of removing part of the true signal. Similar
esults can be obtained using a high pass filter that
ttenuates the low frequency part of the spectrum. The
lter parameters should be chosen so that they remove
s much of the unwanted low frequency changes as
ossible without affecting signal variation at the fre-
uency of the stimulus.
In this simulation we assumed activation occurred at
frequency of 3.5 cycles for the 128 image long series

ABABABA design). We compared a high pass filter
ith methods of drift subtraction in which the linear,
uadratic, or cubic component of each voxel time-course
as fit and subtracted. For high-pass filtering we
pplied Butterworth filters with cutoff frequencies be-
ween 0.7 and 0.2 of the stimulus frequency. Table 1
resents samples of our results. The linear drift re-
oval increases efficiency, the removal of the quadratic

olynomial makes a further improvement, but the
ubic polynomial does not help any more. The best
verall result is obtained by use of high pass Butter-
orth filtering at the frequency of 0.35 of the stimulus

requency. Combining the technique of the time normal-
zation with the quadratic (or high-pass filter) drift
emoval does not further increase the ROC power.

.3. Smoothing in the Temporal Domain

Some groups (Frackowiak et al., 1997) recommend
moothing in the temporal domain with a filter whose
idth is defined by the width of the hemodynamical

esponse curve. We have compared the efficiency of
hree different statistics (t-statistics, cross-correlation
ith the activation time-course and Mann–Whitney

tatistic) for three different frequencies of added signal
sing temporal smoothing of different widths.
3.3.1. Smoothing in temporal domain decreases effi-

iency of analysis. The results for the cross-correla-
ion analysis are presented in Table 2. We can see that
emporal smoothing drastically decreases the power to
etect activations. The greater the smoothing the larger
he loss in ROC power. The nonparametric Mann–

hitney statistic is least affected by temporal smooth-
ng but it is still degraded by the use of temporal
moothing. The numerical values of the statistical
easures used (t-values, correlation parameters or
ann–Whitney parameter), even if calculated with

orrection for the decreased effective number of degrees
f freedom, were largely increased by the temporal
moothing because the variance decreased. However,

hey were increased for both active and, even more, for c
nactive pixels and thus the power to detect real
ctivations dropped. This was probably due to the fact
hat the estimate of noise used by each of those
tatistics was degraded by the use of smoothing. We
onclude that temporal smoothing is not only not
eneficial in detecting activations, but it may also lead
o gross overestimation of the significance of fMRI
ndings.
3.3.2. Temporal correlation in the time domain is

esponsible for the failure of temporal smoothing. The
esults of simulations showing that temporal smooth-
ng decreases the power of analysis comes as a surprise
ince it contradicts previous views and thus requires a
ore complete analysis. Temporal smoothing can be

eneficial for detecting signal buried in white noise that
as been convoluted with a known response function

as justified for example by the ‘‘matched filter theo-
em’’ (Frackowiak et al., 1997)), but it clearly dimin-
shes our ability to distinguish between real and false-
ositive activations in the fMRI study. This further
nforces our view that the direct analysis of fMRI data
e.g., based on the randomization, bootstrap technique)
annot be substituted by theoretical predictions based
n simplifying assumptions about noise structure. To
nd out precisely which violation of statistical assump-
ions is responsible for this effect, we performed a
imilar analysis with scanner noise replaced by white,
ncorrelated gaussian noise. In such a model temporal
moothing proved to be beneficial. However, if this
oise was altered to introduce a slight temporal autocor-
elation (it was smoothed in the time domain before
dding activations) the benefit of temporal smoothing
isappeared and the analysis without any smoothing
roved to be superior. Thus we conclude that it is the
orrelation present between consecutive MRI images
hat is responsible for this effect. To ensure that this

TABLE 2

Freq 5 3.5
(ABABABA)

no motion corr.

Freq 5 7.5
(ABABABABABABABA)

no motion correction

o temp. smooth. 0.42 6 0.01 0.58 6 0.01
WHM 5 1.5 image 0.38 6 0.01 0.54 6 0.01
WHM 5 3 images 0.30 6 0.01 0.44 6 0.01
WHM 5 6 images 0.23 6 0.01 0.35 6 0.01

Note. The power of cross-correlation with the exact time course of
ctivations, and nonparametric methods are compared with temporal
moothing of three different widths: 1.5, 3, and 6 images and with no
emporal smoothing. Simulation was performed with three different
requencies of activation patters, 3.5 and 7.5 task pairs in the
maging run. In all cases the temporal smoothing significantly
ecreases the power to detect activations measured by the integral of
he ROC curve. The same simulation for t-statistics and Mann–

hitney statistics shows similar behavior, but the Mann–Whitney
tatistics is less sensitive to temporal smoothing.
orrelation was not introduced by movement effects we
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318 SKUDLARSKI, CONSTABLE, AND GORE
erformed the same analysis with motion correction.
he details of this analysis are presented in section 8.
esults for the analysis of temporal smoothing are
resented in Table 6. The motion correction performed
ith and without movement decorrelation does not

hange the relative efficiency of analysis with and
ithout temporal smoothing.
For completeness we included a low pass filter (at

requencies of 2 and 5 times the stimulus frequency)
nto our analysis but the results in these cases, as seen
n Table 1, still show no benefit for temporal smoothing.

.4. Summary

Temporal normalization on the whole image level
oes not increase the power of fMRI analysis, suggest-
ng that image intensity variations have a nonuniform
patial structure and cannot be removed or even de-
reased by application of a global correction. On the
ther hand temporal detrending of individual voxel
ime-courses is highly beneficial—the best method ap-
ears to be high-pass filtering with a cut off frequency
f about 0.35 of the stimulus switching frequency, but it
s only marginally better than removal of quadratic
rift components from the signal. Temporal smoothing
nd low pass filtering decrease the ability to detect real
ctivations. These results suggest that better metrics
statistics) should be developed that incorporate the
emporal correlation present in the fMRI signal in error
stimations. Clearly the functions that incorporate
ome sort of error estimation (such as t-statistics and
ann–Whitney statistics) are superior to those that

ely on the signal change only (e.g., percentage of
ifference in the mean signal intensity), but functions
hose variance estimate would remain unbiased by the

emporal correlation’s present in data should perform
ven better.

4. STATISTICS: CALCULATION OF SPMS

4.1. Description Here we compare the power of
ifferent analytic techniques to create SPMs from a
ingle imaging series. We compare the following:

●t-statistics
●paired t-statistics
●skewed t-statistics (with correction for linear drift)
●time-course correlation (using the block task/

ontrol function as a correlate)
●time-course correlation (using the actual sinusoidal

ctivation curve as a correlate)
●Fourier spectral analysis
●simple subtraction
●subtraction with correction for the linear drift

●nonparametric Mann–Whitney tests. w
The main advantage of the time-correlation method
s that it allows the possibility of incorporating our
nowledge of the precise pattern of the signal change

nto the data analysis. We may then search not only for
he signal increase or decrease, but also for changes
hat can be expected from our knowledge of the hemody-
amical and neuronal response. To quantify this advan-
age the time-correlation approach was analyzed in two
ays; via correlation with a boxcar function and by

orrelation to the actual sinusoidal variation of the
dded activations. The first method is very similar to
sing a t-statistic (since in the t-test we assume con-
tant level of activations), while the second is used to
nd the upper bound for the gain obtained by incorpo-
ating the proper time-course of activation. Here we
orrelate the fMRI signal time course to the exact shape
f the activation added—which is more than can be
oped for in any real experiment since our knowledge of
he hemodynamic response in various parts of the brain
s only approximate. Our implementation of the Fou-
ier method measures the power of the signal compo-
ent at the frequency of the stimulus divided by the
ean signal power in the wide frequency band sur-

ounding this frequency as a measure of activation. We
ave also compared the split/2, split/3, and split/4
-statistics (Constable et al., 1995). These statistics
ivide the data set into 2, 3, or 4 equal blocks, calculate
-statistics for each block separately, and return the
mallest value. In effect they require that for a given
hreshold a specified number of blocks reaches this
hreshold. This can be seen as a form of internal
eplication approach. All of these techniques were
pplied with three different frequencies of the stimulus
1.5, 3.5, 7.5 task/control periods within an imaging run
f constant length and imaging time).
In Appendix A we present the details of the ‘‘skew

orrected’’ version of the t-statistic. In this approach the
est is applied to compare the mean intensities of
mages in Task and Control states but is not affected by
he effect of any uniform drift present in the data.

.2. Results

Table 3 presents the mean ROC power (P) for each of
he tests. For all statistics, the higher the frequency of
he task switching, the greater the power of the method.
his is due to the fact that most of the noise in fMRI
ata lies in a low frequency range. In section 5 below
he implications of this for optimal task design will be
urther discussed.

The Fourier method and simple subtraction (with or
ithout drift correction) performed significantly worse

han the other techniques. The paired t-statistic per-
ormed poorly when the task and control presentation

as low frequency (image pairs are far apart and thus
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319STATISTICAL METHODS IN fMRI
ot really correlated) but is one of the best methods for
ast switching paradigms. Split t-statistics perform
orse than regular t-statistics—the more splits the
orse the performance. This may seem to be contradic-

ory to the results of our previous work (Constable et
l., 1995) that found the split-4 method to be one of the
est techniques, but the explanation is simple. Split-
ing data into subgroups and performing t-statistics
eparately is justified only if there is a significant
dditional variance between those groups. This hap-
ens when data are collected in separate individual
eries and then combined together as was the case with
onstable et al. (1995). In this situation, variations
etween imaging runs are significantly larger than
ithin runs and split statistics are still useful, as will
e shown in Section 7. In the simulation presented in
able 3 we consider data taken during one imaging run,
nd there is no justification for splitting them into
ubseries.
The skew correction does not improve the power of

-statistics. This is the case because our study design
B . . . A (frequency of 1.5, 3.5, and 7.5 per imaging
eries) is not susceptible to the effect of linear drift.
nly if this design cannot be used (e.g., pharmacologi-

al studies when the effects of the drug wash away too
lowly) should the skew correction be applied, as shown
n Section 3 and on Fig. 2.

The cross-correlation, t-statistic, and Mann–Whitney

TABLE 3

o preprocessing 0.424 6 0.005
ime norm. (whole image mean) 0.403 6 0.006
ime norm. (brain mean) 0.402 6 0.006
ime norm. (histogram peak) 0.416 6 0.006
inear term subtracted 0.425 6 0.005
uad. term subtracted 0.434 6 0.005
ubic term subtracted 0.434 6 0.005
inear term subt. (with time norm.) 0.402 6 0.006
uad. term subt. (with time norm.) 0.413 6 0.005
ubic term subt. (with time norm.) 0.412 6 0.005
igh-pass filter best cutoff frequency (frequency

f 0.35 of stimulus frequency) 0.435 6 0.005
igh-pass filter (frequency of 0.25 of stimulus

requency) 0.422 6 0.006
igh-pass filter (frequency of 0.7 of stimulus fre-
uency) 0.412 6 .006
ow-pass frequency filter (frequency of 2 of
timulus frequency) 0.403 6 0.007
ow-pass frequency filter (frequency of 5 of
timulus frequency) 0.414 6 0.008

Note. Comparisons of various methods of preprocessing the time
ourse of voxel intensity. In this example activation was added to 4%
f brain pixels. Time normalization based on normalization of the
hole image intensity proves not to be efficient. High pass filtering

ignificantly improves the analysis but caution has to be applied with
he choice of the cutoff frequency. The removal of the quadratic
stimate of image drift has similar effect in enhancing the power of
nalysis.
o not differ in performance significantly. Using the i
xact time course of the added activation does increase
he power of the correlation method but only by a small
argin.

.3. Summary

The cross-correlation method is very similar in power
o the t-statistic and Mann–Whitney method and these
ll are significantly better than using percentage differ-
nce measures and the Fourier method.
Cross-correlation to a boxcar function is as good as

imple t-statistics, while cross correlation to the exact
esponse function gives a slight but statistically signifi-
ant increase in the statistical power.
The use of skew corrected t-statistics is not helpful

or this study design, which begins and ends with the
ame task (AB . . . A). We will see later (Section 5.3 and
ig. 2) that it is justified in the even (AB . . . AB)
esigns.
Paired t-statistics perform poorly when the stimulus

eriod is long (in this case pairs of images are distant in
ime), while it approaches the power of regular
-statistics at high task/control switching frequency (in
his case the paired images are close in time and paired
-statistics gains because it disregards the long scale
ignal variations).
Split statistics should not be used for data collected

uring one imaging run. Methods for combining the
ata collected in separate imaging series will be dis-
ussed in Section 7.
The most striking effect noticeable in Table 3 is that

he effect of task design and the frequency of stimulus
lternation are much more important than the effect of
he choice of statistics used. This trend occurs with all
tatistical methods. We analyze this effect more pre-
isely in the following section.

5. TASK DESIGN—FREQUENCY
AND PHASE UNCERTAINTY

.1. Description

Comparisons of the statistical power obtained at
ifferent stimulus frequencies confirm the well known
Weiskoff et al., 1993) fact that in fMRI it is the low
requency signal variations that generate most of the
alse activations, so it is useful to switch task/control
timulus conditions frequently. This assumes however
hat the fMRI response is in phase with the stimulus. If
he phase delay of the measured BOLD response is
nown it can be accounted for using correlation (by
onvoluting the target wave form with the hemodynami-
al response function) and t-statistic (by reassigning
ome images between tasks and/or dropping some

mages at the transition between tasks) analysis. How-
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320 SKUDLARSKI, CONSTABLE, AND GORE
ver, problems may arise when this delay is nonuni-
orm within the brain or when it is unknown (for
xample, due to any additional significant delay in the
erformance of more complex cognitive tasks) (Alperin
t al., 1996). In cases when that phase is unknown the
igher the frequency of the task/control changes, the
igger the error due to the phase mismatch between
timulus and response. Our simulation was designed to
nderstand the consequences of phase delays in tasks
f different frequencies and to find an optimal study
esign by striking a balance between these two oppos-
ng factors.

In our simulation we compared the statistical power
btained for frequencies of the task stimulus presenta-
ion between 1.5 and 10, and for various lengths of the
maging series (between 32 and 128 images) with an
naccounted phase shift between 0 and 5 images (0–7.5
). Our goal was to find the optimal frequency for
ifferent degrees of the phase uncertainty. The simula-

FIG. 2. The ROC power of analysis is presented here as a funct
phase mismatches) between the introduced signal and observed (e
-statistics, the solid line presents the cross correlation with the sinuso
ourier power spectrum method that (in our implementation) is inde
R (1500 ms in our study) the efficiency peaks at 3–4 periods per 12

ength is analyzed on Fig. 3. The solid curve presenting results obta
alue of frequency. This represents the uneven (AB . . . A) study des
orrelation analysis and normal t-statistics (not shown here) prove
-statistics (described in the Appendix A) is not sensitive to linear dri
esign, this advantage disappears in the balanced study design mak
tudies used in our simulation were exhibiting significant intensi
ignificantly better for data from studies with integer frequency of tas
hat is more susceptible for the temporal drift artifacts.
ion was performed using two methods: the skewed t
-statistic and by correlation to the actual sinusoidal
timulus time-course. These were also compared to the
ower of the Fourier method (which performs weakly
hen there is no phase error, but is insensitive to such a
hase shift). Of course, phase can be taken into account
n the Fourier analysis but in this case we are inter-
sted in a method that is not affected by erroneous
ssumptions about phase.

.2. Results

Figure 2 presents the power of the ROC analysis for
arious task frequencies in which the added signal
esponse is delayed in relation to the ‘‘expected’’ signal
esponse.
The dotted line presents results obtained using the

kew-corrected t-statistics, while the solid line was
btained by correlation to the actual sinusoidal activa-
ion curve. The dashed-dotted line shows the results of

of the task/control stimulus switching frequency for various shifts
cted) fMRI response. The dotted line presents the skew-corrected
l reference function. The dashed dotted line presents the power of the
dent of the response phase. For a response uncertainty larger than 1

age long imaging series. The response for imaging runs of various
using correlation method is exhibiting spikes for every noninteger

that is much less sensitive to the presence of the linear drift. Both
be much better for this balanced study design. The skew-corrected
nd thus performs much better for the unbalanced (AB . . . AB) study
it less sensitive to the presence of linear drift. This proves that the
drift. While skewed t-statistics perform generally worse they are
witching. Those points represent the uneven (AB . . . AB) task design
ion
xpe
ida

pen
8 im
ined
ign
to
ft a
es
ty
k s
he phase insensitive Fourier method. The results
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321STATISTICAL METHODS IN fMRI
resented in this plot were obtained using an imaging
un of 128 images. Without the phase error the power
urve saturates at about 5 cycles (18 s and 12 images
or task). With the added phase error the power curves
till increase at low frequency but then peak and
ecline as the task periods become so short that the
hase error starts to interfere with accuracy.
Even if the phase uncertainty is as large as 4.5 s (3

mages), the best frequency lies between 3 and 4 cycles
30–22 s per task presentation); while 4–6 cycles (15–20

for each task presentation) seems to be generally
ppropriate for studies with phase uncertainty bigger
han 2 s. The Fourier method (whose main advantage is
ts insensitivity to phase) still performs significantly
orse (unless the response error is larger than 5 s with

ask blocks shorter than 10 s).
On the two panels of Fig. 3 we present the results of

dditional simulations performed for various lengths of
maging series of 32, 64, 96, or 128 images. The ROC
ower is plotted as a function of frequency (left panel)
r as a function of the length of each single task
ondition (right panel). Both panels present curves
btained with a response delay of two images (3 s) (solid
ine) and no response delay (dotted line). For various

FIG. 3. The ROC power for various task switching paradigms and
ith 2 image (3 s) delays between the expected and the added signal r
euronal responses. The left panel presents the data as a function of
he results as a function of task switching frequency. For various len
ask presentation length rather than the task switching frequency. F
18 s). This is a good assumption for complex cognitive studies. The o
etter accuracy—possible in sensory-motor tasks when the response

ccuracy better than 1 s.
engths of imaging series the maximum power of the
nalysis can be found at different frequencies, but
lways at the same task length of about 12 images
18 s). This seems to be a desirable length for each task
resentation for cognitive studies. This optimal length
ay, however, be much shorter for sensory-motor stud-

es in which virtually all the response delay is due to
he hemodynamical response and this can be estimated
ith accuracy better than 3 s (Frahm et al., 1992).

.3. Summary

The optimal length of one task block is independent
f the length of the imaging run and is about 18 s (12
mages at TR 5 1500 ms). This value was assuming
hat the response uncertainty is relatively large (3 s).
n simpler sensory motor tasks this delay may be
stimated better and the optimal block lengths will
hen be shorter. To eliminate linear drift artifacts it is
mportant to begin and end each imaging run with the
ame task (AB . . . A) design. For imaging runs with
ore than five task blocks it is even beneficial to drop

he last task block to obtain this uneven design.

ious lengths of imaging series is presented. Solid lines were obtained
onse. The dotted curve assume exact knowledge of hemodynamic and
length of each task presentation period, while the right panel shows
s of imaging series, the peak efficiency proves to be a function of the
phase uncertainty of 3 s the optimal task length is about 12 images
al task length will be shorter if the response can be estimated with

y is only of hemodynamical origin and thus can me modeled with an
var
esp
the
gth
or a
ptim
dela
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322 SKUDLARSKI, CONSTABLE, AND GORE
6. SPATIAL DOMAIN CORRELATION

.1. Description

It is generally believed that for a wide range of
ognitive studies activation observed using fMRI occurs
ver relatively large cortical volumes and is not con-
ned to individual voxels. This assumption leads to the
se of a processing strategy that will detect preferen-
ially such large volumes. The analytical method that
liminates the possibility of observing small activation
oci enables us to lower the threshold of activation
etection without allowing too many false activations
o be present. This reasoning is based on the assump-
ion that white noise produced by MRI devices has no
patial correlation. The use of an implied large spatial
orrelation in the ‘‘real’’ activations can be made using
luster filtering of activation maps or by spatially
moothing individual images or final SPMs.
The advantages of the use of spatial correlation to

ncrease the power of detection of large activation foci
as been discussed extensively (Worsley et al., 1992;
riston et al., 1994; Forman and Cohen, 1995; Poline et
l., 1995; Skudlarski et al., 1995; Xiong and Jia-Hong
ao, 1995). It is widely believed that both cluster

echniques and smoothing of the images are beneficial
or detecting sizable activations and should be applied
o fMRI data. In this work for the first time we directly
ompare the efficiency of both techniques, applying
hem to real fMRI data.

6.1.1. Methods compared. We analyze the efficiency
f four methods of using the spatial correlations be-
ween activations: (1) spatial smoothing applied to the
aw data before the creation of activation maps; (2)
patial smoothing applied to the statistical map; (3)
luster filters applied to the thresholded activation
ap. In a cluster filter of size N only activation foci

arger than the assigned cluster size are left in the
hresholded SPM; all active pixels that do not belong to

contiguous cluster of N pixels are dropped out; (4)
eighborhood filters applied to the thresholded activa-
ion maps, leaving only voxels that have a sufficient
umber of active neighbors. For each active pixel, its
ctive neighbors are counted: counting 2 for each wall
eighbor and 1 for each corner, and only if this score is

arger or equal than a chosen filter parameter N, is the
ixel treated as active.
The simulation was performed with different distribu-

ions of artificially added activations. We consider
ctivation foci of various sizes (radius ranging between
and 4 pixels) and spatial smoothing with gaussian

lters of width FWHM (0.6 . . . 3) pixel. Smoothing with
median filter gave results analogous to the gaussian
lter of width 1.5 and is not included in the results

resented. T
We additionally consider a combination of the above
escribed procedures. The multifiltering analysis based
n the proposal of Poline and Mazoyer (1994) was
pplied to the raw data. In our implementation (de-
cribed in Appendix B) we calculate statistical maps
rom both the raw data set and the initially smoothed
ata set. Those statistical maps are later averaged to
reate the final map. Since a spatial filter is applied to
he data and averaging is performed on the level of
PMs this procedure differs significantly from using a
patial filter of different widths. SPMs calculated from
he smoothed data are able to pick up large areas of
elatively weak activations while the unsmoothed SPM
s sensitive to isolated strong foci; averaging those

aps lets us observe both kinds of activations with
ignificant power.

.2. Results

Figures 4 and 5 present the results of applying four
ifferent analytical methods, each with varying smooth-
ng/filtering parameters. Figure 4 presents methods
ased on gaussian smoothing of images (left panel) or
PMs (right panel). Figure 5 presents two kinds of
lters applied to the thresholded SPM: cluster filter

left panel), and use of the neighborhood filter (in the
ight panel). In Fig. 4 the multifiltering approach is
lso presented by open circles.
Both gaussian smoothing techniques proved to be

ignificantly better than cluster/neighborhood filtering.
The optimal width of the filter used for smoothing
as dependent on the size of the activation foci. This
ependence was much less profound with the use of the
ultifiltering approach.
The best SPMs (highest power measured by the ROC

urve) were obtained using the multifiltering tech-
ique: by adding two SPMs: one created from original
ata and the other from smoothed data. This method is
ost robust, providing a gain in power for a wide range

f activation sizes. Since the statistics are performed
eparately on filtered and unfiltered data, this method
s significantly different from smoothing data with any
ndividual filters and preserves the advantages of ‘‘both
orlds,’’ so that both significant isolated activations
nd large slightly activated regions are detected.
We find that while cluster filtering is beneficial for

arge activation regions, the multifiltering approach
imilar to one proposed by Poline and Mazoyer (1994)
utperforms the other techniques.
The initial smoothing of the data or our multifiltering

echnique can be combined with clustering or smooth-
ng of the final t-maps. We have found that the combina-
ion of filtering of data and SPMs does not improve the
esults compared to either technique used individually.

he multifiltering technique seems to perform best and
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323STATISTICAL METHODS IN fMRI
s not further improved by adding cluster filtering on
op of it and is least sensitive to filtering of the SPMs.

The estimate of detectability here was based only on
he integral of the ROC curve and thus considers only
he number of true and false positive findings, not their
istributions. The SPM maps obtained with cluster
ltering are ‘‘smoother,’’ with less isolated activations,
hich may make them ‘‘more believable,’’ but this

ubjective factor should not be taken into account.

.3. Summary

The smoothing of raw MRI images with a gaussian
lter of FWHM between 1 and 2 pixels (3–6 mm) proves
o be better than any version of cluster filtering of the
nal SPM. Adding SPMs obtained from smoothed data
nd SPM obtained from unsmoothed data is the best
pproach, especially if activation foci of various sizes
re present. Smoothing of the final SPMs with the same
aussian filter is nearly as good as smoothing of the
mages, but the benefits of multifiltering are more

FIG. 4. Two methods of eliminating isolated activation foci (and
resented. The left panel presents ROC power obtained while the raw
as calculated when the SPMs were smoothed. The four curves pr
ctivation size parameters describe (in units of pixel size) the radi
ultifiltering (SPMs calculated with and without smoothing were

echniques are slightly worse when applied to large activation foci, b
resent.
ignificant if the individual images are smoothed. s
7. COMBINATIONS OF DATA
FROM INDIVIDUAL RUNS

.1. Description

In a typical fMRI study the same task paradigm is
epeated over several imaging series. As we have
hown earlier (Constable et al., 1995) instead of perform-
ng statistics on the whole data set it is often beneficial
o divide the imaging set into multiple subsets, perform
tatistics on each subset separately, and to later com-
ine the results from each subset. This procedure is
ffective because the intraseries variance is lower than
he interseries variance. Thus, it is justified to perform
tatistics on each imaging run separately so that the
ime-course analysis performed with t-statistics, corre-
ation analysis, or other means is not impaired by
lobal changes of intensity between separate imaging
uns. Here we wish to find the best way of combining
ata obtained from subsets. In each study we have four
maging series, each of which gives an individual SPM.

e create the combined SPM by taking the largest,

s increasing our power to detect spatially extended activations) are
I images are smoothed prior to statistical processing. The right panel
t results obtained with various sizes of activation foci added. The

of the added activation clusters. Dotted lines were obtained using
ed together). Both methods have comparable power. Multifiltering
they are definitely superior if activation foci of various sizes maybe
thu
MR
esen
us
add
ut
econd, third largest, or the smallest of the t-values in
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324 SKUDLARSKI, CONSTABLE, AND GORE
he individual maps (this is what was called 1/4, 2/4,
/4, 4/4 in Constable, et al. (1995)). These maps are
ompared with the mean, and median of those maps
nd with a map calculated by running t-statistics on
he whole data set (not divided between series) and
ith the average ROC power obtained from using only
ne imaging series. If the presentation of the paradigm
as exactly identical in all series one can combine

eries by averaging the raw data before calculating
tatistics and calculated statistics for one averaged
eries only. This data reduction step makes sense
ecause the larger variance between data series should
ot influence our estimate of noise in measuring the
ifference between On and Off images taken within the
ame run. The effects of different splittings of the whole
ata set (split/2 or split/3) are also presented.

.2. Results

Table 4 presents our results. The map calculated as
n SPM calculated from the averaged imaging series
roves to be best. This method has an disadvantage

FIG. 5. Two methods of eliminating isolated activation foci (and th
f thresholded SPMs) are presented. Simulations were performed
arameters describe (in units of pixel size) the radius of added activat
sed on the horizontal axis describe the filter parameter used—the
owers obtained with the use of cluster filters (only active clusters com
he right panel presents results for the neighborhood filter (only a
eighbor and 1 for corner—survive). The neighborhood filter proves
ethods are significantly worse than methods based on gaussian smo
us increasing power to detect spatially extended activations by filtering
with various sizes of activation clusters added. The activation size

ion clusters. The cluster size (left panel) and neighbor sum (right) panel
higher number the more restrictive spatial filter was used. The ROC
posed than more than N voxels survive) are presented on the left panel;

ctive voxels with enough active neighbors—counting 2—for each wall
to be better than the cluster filter for all sizes of activations, but both
othing of images or SPMs presented on Fig. 6.
hat it can be applied only if imaging series are i
TABLE 4

Freq 5 1.5
(ABA)

Freq 5 3.5
(ABABABA)

Freq 5 7.5
(ABABABAB-
ABABABA)

ax 0.354 6 0.007 0.475 6 0.007 0.535 6 0.007
nd 0.454 6 0.007 0.544 6 0.007 0.576 6 0.007
rd 0.443 6 0.007 0.540 6 0.007 0.574 6 0.007
in 0.347 6 0.007 0.507 6 0.007 0.566 6 0.007
ean 0.500 6 0.007 0.570 6 0.007 0.587 6 0.007
edian 0.483 6 0.007 0.560 6 0.007 0.582 6 0.007

veraged series 0.514 6 0.01 0.583 6 0.01 0.596 6 0.01
ll combined 0.319 6 0.007 0.475 6 0.007 0.553 6 0.007

ndividual series 0.293 6 0.007 0.420 6 0.007 0.500 6 0.007
plit-2 0.314 6 0.007 0.456 6 0.007 0.558 6 0.007

Split-3 0.293 6 0.007 0.426 6 0.007 0.549 6 0.007

Note. Comparison between the different methods of combining the
ata from several identical imaging series. The SPM obtained with
veraging data series proved to be best. If the imaging series are not
dentical and so they cannot be averaged, the mean of SPMs
alculated from individual series proved to be the second most
owerful method. It is significantly better than the conservative
pproach of using the lowest value, while both methods are better
han combining the data from different imaging series and calculat-

ng a single SPM.
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325STATISTICAL METHODS IN fMRI
dentical (the presentation of stimuli cannot be alter-
ated) and none of the involved series can have images
issing due to scanning artifacts or motion. The next

est method is the calculating the mean of SPMs
alculated separately for each of the imaging series.
his method has an advantage because the statistical

nterpretation of this mean t-statistic is independent of
he number of series averaged, which is important if in
onger experiments some imaging series have to be
iscarded due to motion or artifacts.
The t-statistic calculated for the whole (undivided)

ata set behaves worse than for any of the combination
ethods and only slightly better than the statistical

ower from a single imaging series. If one of the
ndividual SPMs is used as the final result, the t-value
hat is 2nd and 3rd value is significantly better than
ither the smallest or the largest. Different splittings of
he whole data set (split/2 or split/3 statistics) applied
o the whole data set are not efficient. This result
onfirms that data should be split into subsets only in
greement with the natural division of the experiment
to eliminate the additional variance due to change of
maging run).

.3. Summary

The data in the fMRI set should be analyzed in blocks
ontaining images taken during one imaging run only.
f imaging series are identical then the best method of
ombining images is to average the images from all the
maging series and then to calculate the SPM from
hose averaged images. If imaging series do differ in the
ength or order of task presentation, then individual

aps should be obtained from separate runs and
veraged to create the final SPM. The more conserva-
ive approach of taking the smallest value (requiring
he pixel to be active in every imaging run) is less
owerful in detecting activations. Another important
oint is that only mean maps calculated from studies
ith different numbers of imaging series are compa-

able.

8. MOTION CORRECTION

.1. Description

The full analysis of the various effects of motion
orrection methods is complicated enough to justify a
eparate study. However, since motion correction is
ow routinely applied in many fMRI studies we felt
ompelled to check if our results remain valid in a study
nalyzed with motion correction. We do not attempt to
ompare the efficiency of analysis with and without
otion correction, but we want to evaluate the power of

ome processing steps analyzed above that may be most

ensitive to motion correction. f
.2. Methods

We used two versions of motion correction algorithm
rom the SPM package: one including motion correction
nly and the other with additional decorrelation that
emoves the component of the signal correlated with
otion estimates. Activations were added after motion

orrection. This makes it difficult to compare directly
nalyses performed with and without motion correc-
ion, but nevertheless it should be helpful in comparing
he efficiency of different processing strategies used
ith the same motion correction approach. We applied

his technique to two of the simulations presented
bove: the efficiency of temporal normalization (pre-
ented in Section 3.3) and the comparison between
arious statistics (Section 4). Data analyzed here were
btained in a different study of olfactory processing
Fulbright et al., 1998). We used imaging series consist-
ng of 80 images, with activation added with a fre-
uency of 2.5 cycles per series (ABABA design). We
sed data from three subjects with six imaging series
btained from each subject.

.3. Results

Actual values of the ROC power obtained in this
imulation differ from those obtained in the main study
ut these differences can be attributed to changes in the
tudy design. Tables 5 and 6 summarizes our results.

Both simulations show that both techniques of mo-
ion correction do not change the relative efficiency of
he steps in the data analysis that we compared.

The relative powers of various statistics do not
hange significantly due to motion correction. The
light decrease in the efficiency of skew corrected
echniques suggests that the drift that is removed by
his technique is mostly caused by real or apparent
ovement of the subject head in the imaging plane.
he advantage of cross-correlation and Mann–Whitney

echniques seem to be enhanced by the motion correc-
ion with decorrelation.

9. CONCLUSIONS

This study shows that ROC based techniques can be
sed as an efficient method for estimating the relative
ffectiveness of various individual steps in fMRI data
nalysis. Based on the simulations reported, our spe-
ific recommendation for the fMRI processing strate-
ies can be summarized as follows:

●Time normalization does not in general increase
verall efficiency but it may possibly be useful in
ndividual cases to rescue certain flawed studies dis-
orted by significant intensity drift.

●Subtraction of the linear and quadratic components

rom the signal improves the effectiveness of data
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326 SKUDLARSKI, CONSTABLE, AND GORE
nalysis, and removal of higher order components is
ot more beneficial. High pass filtering with a cutoff
requency of 0.35 of the stimulus frequency is the most
fficient preprocessing filter in the time domain.
●Temporal smoothing does not improve our ability to

etect activations. The gain in the perceived signifi-
ance of activations (true positives) detected is over-
aken by an even larger increase in the analogous
tatistical measures for non activated pixels (false
ositives), and thus temporal smoothing not only does
ot improve the fMRI analysis but, if not corrected for,
ay lead to overestimation of the significance of fMRI
ndings.
●Cross-correlation, t-statistics, Mann–Whitney test

re all excellent statistics and yield comparable results.
kew correction is helpful only for even (highly suscep-
ible to drift) AB . . . AB study designs.

●Results improve as the frequency of task/control
witching between stimulus condition increases. Realis-
ically, taking into account the uncertainty of the exact
iming of the fMRI response, task switching with about
5–20 s per condition is advised.
●Gaussian smoothing of the raw fMRI images is

etter than cluster or neighborhood filtering of thresh-
lded statistical maps. Multifiltering (achieved by add-
ng maps obtained from filtered and unfiltered data)
an increase efficiency even more—especially if the
ctivation foci are of variable or unknown size.
●The data from identical but separate imaging runs

hould be analyzed by averaging analogous images
rom individual series. If series are not identical (some
mages are missing or task order has been changed)
hey should be analyzed separately and later combined
sing the mean of the individual SPMs. This is the most
owerful and the most convenient (especially if the
umber of usable runs varies between subjects) way of
ombining data obtained in a series of consecutive
maging runs from a single subject.

.1. Limits of validity of this study

All the simulations performed in this study were
erformed on the data obtained using the same 1.5 T
canner. Since the main purpose of this study is to
ssess methods of analysis using actual data with real
ignal and noise, our results may in principle be specific
o this scanner only. However, while some of the data
resented here may not be typical, the approach to
ssessing techniques using the ROC method and simu-
ated activations added to real data, is widely appli-
able.Appendix C provides several statistical character-
stics of data sets used in this study which may be
seful for others using different MRI systems to see if
ur results can be applied to the data from their studies.
The fact that motion was not realistically included
nto our simulations may result in underestimating the a
dvantages of some techniques that are especially good
n treating motion. The simulations performed using
wo methods of motion correction yielded results that
re very close to those obtained without motion correc-
ion, which builds our confidence that the recommenda-
ions given in this study should be valid if motion correc-
ion is being used. In an ideal simulation the activations
ould be added not in a fixed locations in an image but

n fixed locations in the brain and thus would move in
he image space with movement of the subjects.

10. APPENDIX A: CORRECTION FOR THE LINEAR
DRIFT IN THE DATA

Quite often fMRI data contain uniform linear drifts
ith the intensities of certain voxels slowly rising or

alling during the whole imaging series. We believe that
ne source of drift is an instability in the B0 field. This
roduce an apparent linear motion, which manifests
tself as an intensity drift proportional to the spatial
radient of the signal. Our observations on a GE system
uggest that this drift is actually not linear but sinusoi-
al with a period of several minutes.
Several groups (Bandettini et al., 1993) have added a

tep removing this drift into their analysis. In the
resence of activations, the drift has to be removed
eparately from the data obtained in each condition
nd this makes this process quite difficult and prone to
reate artifacts.
Our approach is to take the drift into account during

alculation of the SPM, replacing the t-value by a
kew-corrected t-value.
The calculation of t-value can be seen as fitting the

ime-course data by a step function:

f (t ) 5 auON(t ) 1 buOFF(t ),

where uON, uOFF are characteristic functions of the ON
nd OFF conditions. t-Values are calculated as (a–b)
ormalized by the deviation of the real time-course

rom this fitting function.
We replace this fit by a function that can take into

ccount the linear slope of the time course:

fSKEW(t ) 5 auON(t ) 1 buOFF(t ) 1 kt.

Our corrected value will be given by the difference
a–b) normalized by the deviation from this fit. Param-
ters a, b, k of the fit are calculated by the method of
east squares.

The same procedure can be applied to calculating the
kew corrected version of different SPMs such as
ercent (or absolute) difference of signal intensity.
igure 6 presents sample time-course and fits that are
sed while performing comparisons using t-statistics

nd or skew corrected t-statistics. In this case the
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327STATISTICAL METHODS IN fMRI
BAB activation was partially obscured by the linear
rift and so regular t-statistics return a t-value of 2.79,
hile the skew corrected version gives 7.36. The distri-
ution of t-values obtained without activations with or
ithout use of skew correction does not differ, so that

heir meanings are comparable.
Data presented in the Table 1 show that for this

alanced (AB . . . A) study design when each imaging
eries begins and ends with the same task the skew
orrection does not improve efficiency. However, it is
ery useful in an (AB . . . AB) design that is more prone
o artifacts due to the linear drift.

Figure 2 presents the comparison of the statistical
ower of analysis using skewed t-statistics with the
orrelation method, which due to the use of the exact
hape of the activation response curve is better than for

regular t-statistic. We notice that at each integer
requency (AB . . . AB design) the correlation method
as a significant drop in efficiency in comparison to the
alf integer frequency (AB . . . A design); for those
onditions the skew corrected t-statistic is significantly

FIG. 6. The mechanism of skew correction for the linear drift i
andom noise, linear drift and response to the On–Off task. The dat
howing how the linear drift can diminish the estimated response if
tudy started and end with the same task condition, so that linear d
kew corrected t-statistic increases the calculated t-value from 2.79
ctually hurt the data analysis by obscuring real activations or detect
s presented. The sample time course is presented as a combination of
a fits used with t-statistics and with the skew t-statistics are overlaid,
t-statistics are used. The difference would be virtually eliminated if the
rift would affect each state in the same way. In this example, the use of
to 7.36. Of course other scenarios in which the skew correction would
etter than other methods. These results prove that the h
TABLE 5

No motion
correction

Motion
corrected (no
decorrelation)

Motion
corrected (with
decorrelation)

-stat 0.362 6 0.01 0.361 6 0.01 0.365 6 0.01
kewed t-stat 0.361 6 0.01 0.357 6 0.01 0.360 6 0.01
oxcar correlation 0.365 6 0.01 0.361 6 0.01 0.365 6 0.01
xact correlation 0.387 6 0.01 0.389 6 0.01 0.395 6 0.01
ercentage difference 0.173 6 0.01 0.167 6 0.01 0.163 6 0.01
kewed percentage
difference 0.208 6 0.01 0.217 6 0.01 0.207 6 0.01
ann–Whitney 0.368 6 0.01 0.374 6 0.01 0.381 6 0.01

Note. Comparison between different statistics (as in Table 1)
erformed for data analyzed without motion correction, with motion
orrection, and with motion correction and decorrelation (using the
PM package for motion correction). Columns with ROC values
hould not be compared directly (see Section 8), but the relative
ower of statistics varies only slightly depending on the use of motion
orrection. The slight decrease in the power of skew corrected
echniques suggests that an important component of the intensity
rift is created by (real or apparent) motion. The advantages of
ross-correlation and Mann–Whitney techniques seem to be en-

anced by the motion correction with decorrelation.
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328 SKUDLARSKI, CONSTABLE, AND GORE
kew correction is a necessary step only if for some
eason we cannot balance our task design, but it is still
elpful for balanced study.

11. APPENDIX B: MULTIFILTERING TECHNIQUE
OF SPATIAL SMOOTHING

In our study we used a simple version of the multifil-
ering approach (Poline and Mazoyer, 1994). During
he data analysis we produce two versions of the data
et—raw images and images that were smoothed with

gaussian filter of an appropriate FWHM. As in
ormal gaussian filtering the width of this filter de-
ends on the size of the activation foci that we want to
nhance. Unlike the standard approach the analysis
till sustain some sensitivity to strong focal activations.
his smoothed data set is reduced in spatial resolution
y a factor of 2 for memory efficiency.
Each SPM is calculated on both data sets and the

esulting maps are later averaged (added) to create the
nal SPM, that can be thresholded and cluster filtered
o obtain an activation map at the desired significance/
ensitivity level. This technique differs significantly
rom regular spatial filtering with any form of filter.
he smoothed data set has significantly reduced vari-

TABLE 6

No motion
correction

Motion
corrected (no
decorrelation)

Motion
corrected (with
decorrelation)

o temp. smooth. 0.372 6 0.01 0.369 6 0.01 0.369 6 0.01
WHM 5 1.5 image 0.283 6 0.01 0.279 6 0.01 0.283 6 0.01
WHM 5 3 images 0.212 6 0.01 0.206 6 0.01 0.211 6 0.01
WHM 5 6 images 0.153 6 0.01 0.144 6 0.01 0.152 6 0.01

Note. Temporal smoothing of the fMRI data significantly decreases
ur power to detect activations, both with and without motion
orrection. This suggest that the temporal correlation responsible for
his effect (see Section 3.3) is not created by real or apparent motion.

TAB

Series
length Gra

Mean 64 151
128 152

Standard deviation 64 3
128 31.

Skewness 64 0.0
128 20.00

Kurtosis 64 2.9
128 2.9

Absolute value of estimated linear drift
64

128
0.1
0.0
nce so that even small changes in the intensity that
xtend far enough to survive filtering produce large
-values. Small localized activations that are smoothed
n the spatial filtering produce large t-values in the
onsmoothed data set so that both types of activations
an be seen in the final map.

12. APPENDIX C: SOME STATISTICAL
CHARACTERISTICS OF fMRI DATA SET USED

In this Appendix and Table 7, we present several
asic statistical characteristics of the fMRI data set
sed in this study. We calculated the mean intensity,
tandard deviation, skewness, and kurtosis and the
bsolute value of the estimated linear drift (slope k
arameter used in skew statistics in Appendix A). We
onsider small blocks of pixels located in four distinct
reas located in the gray matter (medial Superior
rontal Gyrus), white matter (corona radiata), Cerebro-
pinal Fluid (lateral ventricle), and outside the head. To
stimate better the effect of possible signal drift we
alculate those variables for a whole imaging series of
28 images and for subseries of the first 64 images. If
he noise can be characterized as white noise the length
f the series should not change those characteristics; if
here is more power in the low frequency part of the
pectrum (as in the case of the drift) the standard
eviation will increase with the length of the series.
Those numbers are provided mainly to allow compari-

ons between different scanners.
One can notice that the standard deviation always

ncreases for longer data series but this increase is
ost dramatic in the white matter and nearly nonexist-

nt in the outside air.
This, together with the highest value of the esti-
ated linear drift, suggest that the drift is more

pparent in the white matter than in gray matter. The
ifferences are smaller than the estimate of error but

7

atter White matter CSF Air

70 13106 70 20676 130 34.46 3
70 12886 70 20526 130 34.56 3
3 32.56 6 36.26 3 17.96 1
3 37.96 6 39.16 3 18.86 1
0.004 0.0216 0.01 0.0266 0.01 0.486 0.07
0.004 20.0236 0.01 0.0356 0.01 0.516 0.07
0.06 2.836 0.1 2.836 0.1 2.866 0.2
0.06 2.856 0.1 2.916 0.1 2.996 0.2
0.05
0.05

0.306 0.1
0.256 0.1

0.236 0.1
0.216 0.1

0.016 0.01
0.016 0.01
LE

y m

76
26

0.06
06

046
46

56
96

16
66
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329STATISTICAL METHODS IN fMRI
his error reflects mainly the variance between differ-
nt studies and imaging runs and not the differences
etween series of different length. More work is neces-
ary to understand this phenomenon precisely.
The estimated linear drift is larger for short data

eries, which suggests that it has a significant random
omponent, which is averaged out for longer series.
The skewness is very small for all regions except for

he outside air where the distribution of intensities is
aleigh rather than Gaussian, the intensity is always
ositive and thus it is skewed.
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