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The complicated structure of fMRI signals and asso-
ciated noise sources make it difficult to assess the
validity of various steps involved in the statistical
analysis of brain activation. Most methods used for
fMRI analysis assume that observations are indepen-
dent and that the noise can be treated as white gauss-
ian noise. These assumptions are usually not true but
it is difficult to assess how severely these assumptions
are violated and what are their practical conse-
quences. In this study a direct comparison is made
between the power of various analytical methods used
to detect activations, without reference to estimates of
statistical significance. The statistics used in fMRI are
treated as metrics designed to detect activations and
are not interpreted probabilistically. The receiver op-
erator characteristic (ROC) method is used to compare
the efficacy of various steps in calculating an activa-
tion map in the study of a single subject based on
optimizing the ratio of the number of detected activa-
tions to the number of false-positive findings. The main
findings are as follows: Preprocessing. The removal of
intensity drifts and high-pass filtering applied on the
voxel time-course level is beneficial to the efficacy of
analysis. Temporal normalization of the global image
intensity, smoothing in the temporal domain, and low-
pass filtering do not improve power of analysis. Choices
of statistics. the cross-correlation coefficient and
t-statistic, as well as nonparametric Mann-Whitney
statistics, prove to be the most effective and are similar
in performance, by our criterion. Task design. the
proper design of task protocols is shown to be crucial.
In an alternating block design the optimal block length
is be approximately 18 s. Spatial clustering. an initial
spatial smoothing of images is more efficient than
cluster filtering of the statistical parametric activation

maps. o©1999 Academic Press

1. INTRODUCTION
Functional neuroimaging is usually based on the

premise that the differences between images of the
brain obtained in different mental or functional states
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can reveal the differential involvement of various brain
structures in particular activities. One leading tech-
nique in neuroimaging is functional magnetic reso-
nance imaging (fMRI) (Ogawa et al., 1993), which has
become very popular due to the wide availability of
suitable instrumentation, superior performance over
previous techniques, and its relative ease of use. How-
ever, although in concept the implementation of fMRI is
straightforward, there remain several important issues
regarding the analysis of fMRI data that remain unre-
solved. For example there is little consensus on the
proper methods of statistical analysis that should be
used, and this makes it difficult to compare and evalu-
ate results between the growing number of sites work-
ing with fMRI. The weakness of fMRI signals recorded
in studies of complex cognitive functions, and the
arbitrariness of the choice of data analytic strategies,
raises concerns that published results may become
significantly skewed to fit the expectation of the neuro-
science community—that is, the results of statistical
analyses which conform to expectations are more likely
to be believed, accepted for publication, and quoted.
Attempts to establish the best available statistical
procedures are important not only to increase the
power of the technique but also to limit the experimen-
tal freedom in the choice of processing strategies and
thereby eliminate bias in selecting those that detect the
“right activations.”

The statistical problems faced in fMRI may seem at
first sight to be relatively simple, so that it should be
possible to derive optimal processing techniques on a
theoretical basis. However, there is little agreement
between statisticians working in this field upon the
choice of the best strategy. The main reason for this is
that fMRI signals are in reality quite complex in their
structures. For example, they include various nonuni-
form sources of noise and artifact that cannot be easily
described and accounted for in general statistical mod-
els. The observations are not independent, either in
time or in space. Attempts at statistical analyses of
fMRI data from first principles usually rely on several
simplifying assumptions that are difficult to establish
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and are usually not satisfied. The importance of devia-
tions from such theoretical models is poorly under-
stood. Simple analysis of the rate of false-positive
activations found in practice shows that such models do
not correctly predict the significance of observations.
For this reason, even if a satisfactory statistical theory
can be constructed, it will have to pass a test of
experimental confirmation before being widely applied.

We propose an alternative practical approach to the
evaluation of fMRI processing methods by making
comparisons between different techniques of analysis
using the receiver operator characteristic (ROC) method
(Skudlarski et al., 1997). Using data obtained in a real
fMRI study, we create data sets in which activation foci
are artificially added so that their intensity and spatial
extent are known. We then apply various methods of
data analysis to this set of images and measure how
accurately each method can recognize the presence and
locations of activations. This enables us to compare the
accuracy of outcome of each analysis with the known
distribution of artificially added activations. We have
previously used (Constable et al., 1995) this approach
to compare different implementations of t-statistical
tests.

In this paper we look at various other statistical
measures used in fMRI analysis but consider here only
their performance for detecting activations, without
attempting to assign any probabilistic interpretations
to the significance of the results. We compare them
using a single criterion—the ability to detect most of
the real activations while minimizing the detection of
false activations.

ROC analysis was adopted for this purpose (Con-
stable et al.,, 1995) and has been used by others
(Forman and Cohen, 1995; Sorenson, 1995; Xiong et al.,
1996) for similar purposes but mostly to validate par-
ticular approaches used in fMRI, and usually using
computer simulated data sets with noise of a specific
stochastic nature. However, we believe this approach
can be misleading. The general validity of a particular
method based on a theory that assumes noise of certain
characteristics cannot be established by applying it to a
data set with noise with precisely those properties. In
our approach to simulation we use actual data from
real fMRI experiments, which should therefore more
closely match the noise encountered in practice. We
then add artificial activations that realistically simu-
late typical fMRI activations.

The goal of this paper is to provide an objective way of
choosing optimal methods and parameters in fMRI
analysis to increase its power and reduce subjective
elements that otherwise influence the results obtained.
We consider all the steps that are typically involved in
the analysis of fMRI data of a single subject.

We begin with a description of our implementation of
the ROC technique and define criteria for assessing the
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efficacy of processing steps. This technique is then
applied to compare different methods that can be
chosen in subsequent steps of the fMRI analysis. The
efficacy of several preprocessing steps such as temporal
normalization, drift subtraction, and frequency filter-
ing are analyzed. Next the efficacy of different statisti-
cal methods that can be used to create statistical
parametric maps (SPM) from data obtained during
single imaging runs are compared. The design of the
study, the size, the number, and the patterns of blocks
of activation and control tasks are found to be crucial
and are further analyzed. Different methods of using
the spatial correlation of expected activations, such as
cluster filtering of statistical maps, smoothing of the
raw images, and smoothing of final maps, are com-
pared. Finally, methods of creating one composite re-
sult SPM for a study of a single subject consisting of
multiple separate imaging runs are considered. Two of
the above simulations (comparison of statistics used for
creating single SPM and the effects of the temporal
normalization) were performed additionally on differ-
ent data sets using two methods of motion correction,
yielding results very similar to those obtained without
motion correction. Appendices describe in detail the
methods used for linear drift removal (Appendix A) and
spatial multifiltering (Appendix B). Finally, Appendix
C presents some statistical measures obtained from the
data sets we investigated. This may be useful to
compare our results with results obtained on other
data.

2. METHODS

2.1. ROC Method

The application of ROC methods to the analysis of
fMRI processing techniques was introduced by Con-
stable et al. (1995). It has been used extensively as a
tool for objective comparisons of various strategies
(Skudlarski et al., 1995; Friston et al., 1996; Xiong et
al., 1996). The basic premise of this method relies on
adding artificial activations to a set of raw images and
applying each method being studied to this altered data
set. For the proper application of ROC methods the
MRI images should contain noise and artifacts represen-
tative of fMRI data obtained in practice (a feature that
is sometimes neglected (Sorenson and Wang, 1996;
Xiong et al., 1996)). The locations and intensities of
detected activations can then be compared to the
known pattern of the added activations to thereby
measure the accuracy of detection. The relationship
between the true-positive ratio (proportion of correctly
detected activations to all added activations) and the
false-positive ratio (proportion of pixels that were incor-
rectly recognized as active in all pixels without added
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activations) describes the power of the technique. If the
detection procedure has a parameter that controls its
sensitivity then by adjusting that criterion (usually the
threshold level) the resultant curve shows the relation-
ship between the proportion of true-positive and the
proportion of false-positive activations. The precise
shape of the ROC curve depends on the characteristics
of the probability distributions of the signals and noise
and the degree to which they overlap, but does not
make assumptions about these distributions.

2.1.1. Obtaining single “value of merit” from the ROC
curve. In a situation when many different aspects of
each detection algorithm are compared, it is desirable
to produce a single quantitative figure of merit for each
ROC curve. Several methods have been proposed (Metz,
1978; Swets, 1988), including the integral of the full
ROC curve and its best operating point (point furthest
from the diagonal). In this paper the mean of the ROC
curve over the limited range of false-positive ratio
between 0 and 0.1 is used as such a measure. This
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somehow arbitrary value of 0.1 was chosen as an upper
limit for the false-positive ratio that is used in the fMRI
studies. By limiting this integral to low (but realistic)
false-positive rates (high thresholds only) we limit the
scope of our analysis to the cases that are of primary
interest in fMRI, when the ratio of false activations is
much smaller than the ratio of real activations. The
importance of this limit is obvious when analyzing the
efficiency of some cluster filtering techniques as repre-
sented on the left panel of Fig. 1. In one case a
“neighborhood filter” pixel is considered active only
when a certain number of its closest neighbors are
active as well. In this approach pixels on the border of
activated regions will not be treated as activated even
for an extremely low threshold level. In such circum-
stances, the true-positive ratio will be always signifi-
cantly smaller than one. This may offset the high
efficiency of such a filter in the more interesting regime
of a more realistic and higher threshold. As the thresh-
old is changed the ROC curves of different techniques
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The left panel presents two representative ROC curves. The solid line was obtained using t-statistics without spatial processing

while the dotted line was obtained using the neighborhood filter. Activations were added in large (25 voxel) foci. The curves cross. The curve
obtained with the neighborhood filter, although obviously better in the low false-positive regime (the working regime of fMRI), would be
considered inferior if the integral of the whole curve is used as a measure of accuracy. The right panel presents the mean measure of the ROC
curve as a function of intensity of activation. The dotted curve was obtained from the whole ROC curve while the solid curve was obtained
using only 0-0.1 region as used in this paper. This relation helps to interpret the differences in ROC power of various techniques by translating
them to an equivalent change in the contrast to noise ratio (CNR). In the range of intensities used in this paper, an increase of ROC measure by
0.01is roughly equivalent to a 4% increase in CNR. The limited ROC integral proves to be more sensitive to the intensity of added activation. A
statistically significant difference in the ROC power, as defined here, can be observed for 30% change of strength of activation, while a 100%
change is necessary to gain significant change in the ROC power using the full ROC integral. In this simulation we used only one imaging run

in a study so that the estimated error is larger than in the later results.
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may cross and it is important to choose the one that is
higher in the regime that is most relevant for practical
fMRI applications: that of low false-positive ratios. In
addition we find that our criterion for judging ROC
curves performs better than using the entire ROC
curve integral as can be seen in Fig. 1 (right panel). The
mean ROC score is plotted there as a function of the
intensity of the added activation. Using the whole ROC
integral we need to change the intensity of the added
activation by more than a factor of 2 to find a significant
(larger than estimated error) change in the ROC score.
Our limited integral of 0-0.1 regime is sensitive to
changes in the added activation intensity of 30%.

Because the ROC curves contribute to our analysis
only through their integral our results are essentially
equivalent to a conventional power analysis that is
averaged for a range of Type-l error levels (alpha
between 0 and 0.1). This averaging is performed for two
reasons. This makes our results less dependent on a
particular alpha level, which can be chosen differently
for various studies. Depending on the study size (in
terms of the number of subjects and imaging series and
the required final significance) the required alpha level
for the analysis of individual series may vary widely.
The other more pragmatic reason is that this averaging
stabilizes the results of random error in our simula-
tions and thus produces a more precise estimate of the
relative power of different methods of analysis.

In the examples that follow, all of the results for the
power of different techniques will be given in terms of
the parameter P, the mean value of the ROC curve over
the region in which the false-positive ratio lies between
0 and 0.1. This P value is always between 0 and 1. The
latter would reflect a perfect technique that recognized
all true activations without returning any false-
positive findings. For a completely random method
(guessing as a way of detecting activations) P = 0.05.
The right panel of Fig. 1 presents the values of P as a
function of the intensity of added activations. This
curve (calculated using t-value as the activation detec-
tion tool) can be used later to interpret the significance
of gains in the statistical power of different statistical
methods. An increase of 0.01 in the ROC score is seen to
be roughly equivalent to an increase in the signal
contrast by 4%, or the same reduction of the noise.
Taking into account the fact that the error in the ROC
score (see below) varies between 0.005 and 0.1 we can
state that we are able to detect gains in the power to
detect activations equivalent to an increase in the ratio
between noise- and stimulus-dependent change of sig-
nal intensity of 2—4%.

2.1.2. Simulation activations. The activations we
added were defined as sinusoidally varying in time at
various frequencies. We believe that this procedure
provides data sets with known artificial activations
that are similar to true fMRI data sets. The onset and
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decrease of fMRI signal with activation produce signals
that may resemble sine waves. The amplitude of added
activations was varied between 0.3 and 3% of the image
intensity, equivalent to a range of 0.1 to 1 of the
standard deviation of the signal intensity for individual
pixels. This is a range common for fMRI activations in
cognitive tasks, which are generally weaker than sen-
sory-motor activations that are more robust and easier
to detect. The results were stable with respect to the
intensity of activations in this range and the results
presented later were obtained for a single intensity of
1.5% (amplitude of signal difference between peak On
and Off conditions equal to 0.5 of the average noise
standard deviation).

Except for the simulation for temporal normaliza-
tion, the synthesized activation signal was added to
10% of pixels. Activated pixels were grouped in ran-
domly spaced clusters of about 10 pixels (the size of
clusters was varied in the analysis of spatial smoothing/
clustering algorithms). The high number of activated
pixels was chosen to increase the power of our analysis.
However, in the analysis of the effects of time normaliza-
tion using the whole image intensity, when a large
number of activations may distort the results, a smaller
number of activated pixels (1, 2, and 4%) was used.

One problem with our procedure is that activations
are added in the same positions in the image, rather
that in the same position in the brain. This means that
the effect of motion in masking activations is omitted.
This may lead to underestimation of the statistical
power of techniques that are significantly better in
treating motion. Our approach is thus not applicable to
analyzing the performance of motion correction algo-
rithms. Since the motion correction may affect the
relative merits of various techniques, we also present
some results calculated with and without motion correc-
tion. These results cannot be used to directly compare
the power of analysis with and without motion correc-
tion but they show that motion correction does not
significantly change the results of our analysis.

2.1.3. Analysis of accuracy of detection rather than
estimate of significance. It must be emphasized that
in this paper we do not address the issue of calculating
the statistical significance of activations that are de-
tected. We concentrate on finding the most powerful
strategy and do not attempt to estimate the absolute
significance of its results. Such calculations are to this
date highly problematic in fMRI due to the complicated
and variable nature of the noise. Our approach allows
us to compare the losses and gains in the statistical
power produced by isolated steps of the data analysis.
This can be done with far less stringent (and thus more
realistic) assumptions about the characteristics of the
signal and noise distributions than those necessary to
estimate the statistical significance of findings. We
believe that currently the best method for estimating
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the statistical significance of fMRI findings in order to
estimate P values of activations is obtained by careful
randomization of actual MRI images used in the same
study, the so called “bootstrap technique” (Arndt et al.,
1996; Bullmore et al., 1996; Skudlarski and Gore,
1996).

It should be noted that due to several violations of
common statistical assumptions (mainly the assump-
tions of independence in both space and time domains)
the values of t-statistics that we calculate should not be
directly interpreted to have their typical statistical
meaning. We use this and other “statistics” merely as
measures that reflect in some way the intensity of
activations. Our study is devoted only to finding which
measure is the best at detecting true activations in the
presence of the noise.

2.2. Imaging

We used images taken from 8 subjects from an fMRI
study of attention (Peterson et al., 1997) in which runs
of 128 images/slice were taken while subjects per-
formed the Stroop task. In this study, the four periods of
active condition were interleaved with four periods of
rest in each imaging series. We have chosen slices from
the superior regions of the brain that did not produce
significant reproducible activations in those tasks. The
pattern of artificially contrived activations was always
different from the pattern of real activity so that any
images containing real activations were assigned to
both the “active” and the “control” group. Before adding
activations, the sets of images assigned to be “acti-
vated” were not statistically different from those as-
signed as “control.” We have chosen to use these data
instead of a series of blank images taken with the
subject resting in the magnet because our experience
(Skudlarski et al., 1995) shows that data sets taken
during the performance of a real fMRI study differ
significantly in the amount of variance from data sets
taken while subjects are resting during the entire
imaging series. Most probably this difference can be
attributed to differences in the amount of microscopic
motion—that is motion smaller than 0.3 mm (less than
one tenth of the pixel size).

Each study was performed on a GE 1.5 T Sigha MR
unit equipped with echo planar imaging (EPI) (Ad-
vanced NMR, Wilmington, MA). The imaging param-
eters were as follows: « = 60°; echo time, TE = 45 ms;
repetition time, TR = 1500 ms; field of view, FOV = 40 *
20 cm; slice thickness, 8 mm; matrix size, 128 * 64; and
Nex = 1. Analyzed studies were screened for motion by
analysis of the center of mass: no gross (larger than 0.5
pixel) movements were observed, and no motion correc-
tion was performed, as every motion correction proce-
dure available changes significantly the structure of
signal and its spectral distribution. In the last section
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we present results recalculated for a study analyzed
with two methods of motion correction.

2.3. Model Scheme of Data Analysis

In a typical study such as the one considered here the
subject is imaged in several identical imaging runs
(here four runs). During each imaging series two tasks
(A, B) are interleaved at various frequencies between 1
(AB), 1.5 (ABA), and up to 10 on/off cycles per imaging
series. The data analysis is performed as follows (the
details of each of these steps will be discussed below):

eData is preprocessed using spatial smoothing, drift
elimination, temporal normalization or temporal filter-
ing (with a high-pass filter).

e®For each imaging series one statistical parametric
map (SPM) is created.

®The SPMs from identical series from the same
subjects are combined into one SPM representative for
this subject.

e®Activation maps are thresholded and cluster fil-
tered.

eot-Value was used as activation measure unless it
was specifically noted.

3. PREPROCESSING IN THE TIME DOMAIN

3.1. Time Normalization

Since the intensity of the MRI images may change
during an imaging run it is common to employ time
normalization to eliminate variance due to changes in
the global intensity. In this procedure the overall
intensity of every image is multiplied by a factor that
estimates the scanner instability. Such a normalization
is justified if the variation of global intensity is due to
some global mechanism and is uniform across the
whole image, but can produce deleterious effects if the
apparent change in the mean intensity comes from
localized variations. The potential advantage of this
procedure is to eliminate one source of possible arti-
facts. There are two possible disadvantages: real activa-
tions may affect the intensity of the whole image (and
thus may be decreased through normalization), or the
estimate of noise (such as one used in calculating
t-statistics) will be distorted by the selective removal of
part of the variance.

3.1.1. Methods for time normalization compared.
We have compared three methods of performing time
normalization using three different normalizing coeffi-
cients. We consider the mean intensity of the whole
image and the mean intensity within the brain (this
will exclude possible artifacts outside of the brain from
affecting the normalization parameters). In the third
approach we calculate the histogram of intensity within
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an image, fit its central part with a gaussian, and then
find the position of its peak. For each of these methods
of determining the normalizing parameters each image
intensity is divided by this parameter so that the
appropriate estimate of mean intensity is constant
after normalization. This normalization is performed
separately for each slice, so that changes of intensity in
one slice do not affect the intensity of the others. One
possible sensitive issue is the extent of activation: if a
strongly activated area is large (such as in the case of
visual stimulation) it can affect the mean intensity of
the whole image. In such a case the normalizing
procedure will reduce the real effect. To safeguard
against this possibility in our simulation we considered
1, 2, 4, or 8% of pixels to be activated. This fraction is
important because the time normalization procedure is
based on the assumption that activation changes the
global image intensity only slightly. The larger the
activated area, the less likely time normalization will
be appropriate, because the effect of stimulus is likely
to be present in the measure used for the temporal
normalization. If no global sources of noise are present
the activation covering x% of the image will decrease its
intensity by x% in result of temporal normalization.
3.1.2. Time normalization does not improve accuracy
of detection. The results for the realistic yet conserva-
tive 4% case are presented in Table 1. One can see that
normalization based on the mean intensity of the whole
image or mean intensity of the brain significantly
decreases the power of the analysis, whereas the more
sophisticated histogram fitting technique gives results
that seem to be slightly worse but are not significantly
different than with no time normalization. Only for the

TABLE 1

Freq=7.5
Freq = 1.5 Freq =35 (ABABABAB-

(ABA) (ABABABA) ABABABA)
t-stat 0.29 = 0.012 0.42 £0.012 0.52 =0.012
Paired t-stat 0.16 = 0.009 0.31 +0.009 0.53 = 0.009
Skewed t-stat 0.28 = 0.012 0.42 £0.012 0.54 =0.012
Boxcar correlation 0.29 = 0.011 0.42 =0.012 0.52 = 0.012
Exact correlation 0.33 £0.013 0.45*0.014 054 =0.014
Percentage difference 0.17 = 0.014 0.27 £0.015 0.44 = 0.014

Skewed percentage

difference 0.19 + 0.014 0.28 +£0.013 0.39 = 0.015
Fourier 0.15+0.015 0.26 =0.016 0.30 = 0.014
Mann-Whitney 0.29 + 0.013 0.42 +0.012 0.52 = 0.014

Split-2 t-stat 0.2+0.03 0.39+0.01 0.505=*0.01

Split-3 t-stat 0.13 £ 0.03 0.37 +£0.01 0.49 + 0.01

Split-4 t-stat 0.12 +0.02 0.29 +0.01 0.41 = 0.01

Note. The ROC measured power of various statistics applied for
three different study designs, with various lengths of individual
stimulus presentations. The t-statistics, Mann-Whitney, and correla-
tion methods prove to be best and very similar in their effectiveness.
The effect of frequency of task switching is clearly visible—faster task
switching helps us eliminate strong low frequency noise.
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case when 2% of the pixels are activated, in which the
area activated is smaller the time normalization im-
proved efficiency, but this difference was not statisti-
cally significant. For 1% of added activations the esti-
mated error of analysis was even higher and the (not
statistically significant) advantage of time normaliza-
tion minuscule. Thus we can establish an upper limit
for the possible gain due to the temporal normalization.
Even if temporal normalization is helpful for detecting
localized activations (covering less that 4% of analyzed
brain tissue), it may increase the power to detect
activations by the equivalent of no more than a 2%
increase of signal to noise ratio. We therefore conclude
that temporal normalization of the global image inten-
sity should not be performed. The time normalization
was also not helpful when combined with the removal
of the low frequency drift discussed in the following
section. The results of our measurements of efficacy for
various stimulation frequencies, presented in Fig. 2,
suggest that the fMRI studies used in our work do
exhibit linear drifts. The fact that time normalization
was not helpful can be most likely explained by postu-
lating that the drift was not uniform across a whole
image. If the drift was created by variations in the B,
field uniformity this would be visible as minute linear
motions in the imaging plane that in turn cause
nonuniform intensity drifts that depend on the local
gradient in the image intensity.

Our experience with large numbers of subjects ana-
lyzed in semiautomatic fashion shows that some stud-
ies show some unusually strong shifts in the global
image intensity. In such cases use of time normaliza-
tion may save otherwise unusable data. However, our
previous results show that it would be unwise to apply
time-normalization as a general procedure—the aver-
age time course of overall image intensity should be
monitored (this can be easily done together with motion
and ghost artifact analysis) to alert for unusual drift
artifacts and to allow for the time normalization to be
applied selectively.

3.2. Removal of Low Frequency
Drift/High-Pass Filtering

An alternative technique of preprocessing in the
temporal domain to eliminate artifactual low frequency
drifts is treat each voxel time course individually
(without assuming, as in the previous case of time
normalization, that the low frequency noise of every
pixel has an identical global time course) (Biswal et al.,
1996). The rationale for this technique is based on the
observation that the power of the fMRI noise (in the
time domain) is concentrated at the low frequency end
of the spectrum, and as long as the expected response
has a high temporal frequency, the low frequency
components of the spectrum can be filtered out. Of
course this method can be used only for experimental
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designs that include several switches between task/
control conditions within each imaging run. The advan-
tage of this procedure is the possibility of selective
elimination of some noise without removing genuine
fMRI signal. A disadvantage is that this procedure may
skew the distribution of data points and this may lead
to an underestimation of the data variance and in the
possibility of removing part of the true signal. Similar
results can be obtained using a high pass filter that
attenuates the low frequency part of the spectrum. The
filter parameters should be chosen so that they remove
as much of the unwanted low frequency changes as
possible without affecting signal variation at the fre-
quency of the stimulus.

In this simulation we assumed activation occurred at
a frequency of 3.5 cycles for the 128 image long series
(ABABABA design). We compared a high pass filter
with methods of drift subtraction in which the linear,
quadratic, or cubic component of each voxel time-course
was fit and subtracted. For high-pass filtering we
applied Butterworth filters with cutoff frequencies be-
tween 0.7 and 0.2 of the stimulus frequency. Table 1
presents samples of our results. The linear drift re-
moval increases efficiency, the removal of the quadratic
polynomial makes a further improvement, but the
cubic polynomial does not help any more. The best
overall result is obtained by use of high pass Butter-
worth filtering at the frequency of 0.35 of the stimulus
frequency. Combining the technique of the time normal-
ization with the quadratic (or high-pass filter) drift
removal does not further increase the ROC power.

3.3. Smoothing in the Temporal Domain

Some groups (Frackowiak et al., 1997) recommend
smoothing in the temporal domain with a filter whose
width is defined by the width of the hemodynamical
response curve. We have compared the efficiency of
three different statistics (t-statistics, cross-correlation
with the activation time-course and Mann-Whitney
statistic) for three different frequencies of added signal
using temporal smoothing of different widths.

3.3.1. Smoothing in temporal domain decreases effi-
ciency of analysis. The results for the cross-correla-
tion analysis are presented in Table 2. We can see that
temporal smoothing drastically decreases the power to
detect activations. The greater the smoothing the larger
the loss in ROC power. The nonparametric Mann-—
Whitney statistic is least affected by temporal smooth-
ing but it is still degraded by the use of temporal
smoothing. The numerical values of the statistical
measures used (t-values, correlation parameters or
Mann-Whitney parameter), even if calculated with
correction for the decreased effective number of degrees
of freedom, were largely increased by the temporal
smoothing because the variance decreased. However,
they were increased for both active and, even more, for
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TABLE 2
Freq = 3.5 Freq =75
(ABABABA) (ABABABABABABABA)
no motion corr. no motion correction

No temp. smooth. 0.42 £ 0.01 0.58 £ 0.01
FWHM = 1.5 image 0.38 £ 0.01 0.54 = 0.01
FWHM = 3 images 0.30 = 0.01 0.44 = 0.01
FWHM = 6 images 0.23 £ 0.01 0.35 £ 0.01

Note. The power of cross-correlation with the exact time course of
activations, and nonparametric methods are compared with temporal
smoothing of three different widths: 1.5, 3, and 6 images and with no
temporal smoothing. Simulation was performed with three different
frequencies of activation patters, 3.5 and 7.5 task pairs in the
imaging run. In all cases the temporal smoothing significantly
decreases the power to detect activations measured by the integral of
the ROC curve. The same simulation for t-statistics and Mann-
Whitney statistics shows similar behavior, but the Mann—-Whitney
statistics is less sensitive to temporal smoothing.

inactive pixels and thus the power to detect real
activations dropped. This was probably due to the fact
that the estimate of noise used by each of those
statistics was degraded by the use of smoothing. We
conclude that temporal smoothing is not only not
beneficial in detecting activations, but it may also lead
to gross overestimation of the significance of fMRI
findings.

3.3.2. Temporal correlation in the time domain is
responsible for the failure of temporal smoothing. The
results of simulations showing that temporal smooth-
ing decreases the power of analysis comes as a surprise
since it contradicts previous views and thus requires a
more complete analysis. Temporal smoothing can be
beneficial for detecting signal buried in white noise that
has been convoluted with a known response function
(as justified for example by the “matched filter theo-
rem” (Frackowiak et al., 1997)), but it clearly dimin-
ishes our ability to distinguish between real and false-
positive activations in the fMRI study. This further
enforces our view that the direct analysis of fMRI data
(e.g., based on the randomization, bootstrap technique)
cannot be substituted by theoretical predictions based
on simplifying assumptions about noise structure. To
find out precisely which violation of statistical assump-
tions is responsible for this effect, we performed a
similar analysis with scanner noise replaced by white,
uncorrelated gaussian noise. In such a model temporal
smoothing proved to be beneficial. However, if this
noise was altered to introduce a slight temporal autocor-
relation (it was smoothed in the time domain before
adding activations) the benefit of temporal smoothing
disappeared and the analysis without any smoothing
proved to be superior. Thus we conclude that it is the
correlation present between consecutive MRI images
that is responsible for this effect. To ensure that this
correlation was not introduced by movement effects we
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performed the same analysis with motion correction.
The details of this analysis are presented in section 8.
Results for the analysis of temporal smoothing are
presented in Table 6. The motion correction performed
with and without movement decorrelation does not
change the relative efficiency of analysis with and
without temporal smoothing.

For completeness we included a low pass filter (at
frequencies of 2 and 5 times the stimulus frequency)
into our analysis but the results in these cases, as seen
in Table 1, still show no benefit for temporal smoothing.

3.4. Summary

Temporal normalization on the whole image level
does not increase the power of fMRI analysis, suggest-
ing that image intensity variations have a nonuniform
spatial structure and cannot be removed or even de-
creased by application of a global correction. On the
other hand temporal detrending of individual voxel
time-courses is highly beneficial—the best method ap-
pears to be high-pass filtering with a cut off frequency
of about 0.35 of the stimulus switching frequency, but it
is only marginally better than removal of quadratic
drift components from the signal. Temporal smoothing
and low pass filtering decrease the ability to detect real
activations. These results suggest that better metrics
(statistics) should be developed that incorporate the
temporal correlation present in the fMRI signal in error
estimations. Clearly the functions that incorporate
some sort of error estimation (such as t-statistics and
Mann-Whitney statistics) are superior to those that
rely on the signal change only (e.g., percentage of
difference in the mean signal intensity), but functions
whose variance estimate would remain unbiased by the
temporal correlation’s present in data should perform
even better.

4. STATISTICS: CALCULATION OF SPMS

4.1. Description Here we compare the power of
different analytic techniques to create SPMs from a
single imaging series. We compare the following:

et-statistics

epaired t-statistics

eoskewed t-statistics (with correction for linear drift)

etime-course correlation (using the block task/
control function as a correlate)

etime-course correlation (using the actual sinusoidal
activation curve as a correlate)

eFourier spectral analysis

esimple subtraction

esubtraction with correction for the linear drift
enonparametric Mann—Whitney tests.
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The main advantage of the time-correlation method
is that it allows the possibility of incorporating our
knowledge of the precise pattern of the signal change
into the data analysis. We may then search not only for
the signal increase or decrease, but also for changes
that can be expected from our knowledge of the hemody-
namical and neuronal response. To quantify this advan-
tage the time-correlation approach was analyzed in two
ways; via correlation with a boxcar function and by
correlation to the actual sinusoidal variation of the
added activations. The first method is very similar to
using a t-statistic (since in the t-test we assume con-
stant level of activations), while the second is used to
find the upper bound for the gain obtained by incorpo-
rating the proper time-course of activation. Here we
correlate the fMRI signal time course to the exact shape
of the activation added—which is more than can be
hoped for in any real experiment since our knowledge of
the hemodynamic response in various parts of the brain
is only approximate. Our implementation of the Fou-
rier method measures the power of the signal compo-
nent at the frequency of the stimulus divided by the
mean signal power in the wide frequency band sur-
rounding this frequency as a measure of activation. We
have also compared the split/2, split/3, and split/4
t-statistics (Constable et al., 1995). These statistics
divide the data set into 2, 3, or 4 equal blocks, calculate
t-statistics for each block separately, and return the
smallest value. In effect they require that for a given
threshold a specified number of blocks reaches this
threshold. This can be seen as a form of internal
replication approach. All of these techniques were
applied with three different frequencies of the stimulus
(1.5, 3.5, 7.5 task/control periods within an imaging run
of constant length and imaging time).

In Appendix A we present the details of the “skew
corrected” version of the t-statistic. In this approach the
test is applied to compare the mean intensities of
images in Task and Control states but is not affected by
the effect of any uniform drift present in the data.

4.2. Results

Table 3 presents the mean ROC power (P) for each of
the tests. For all statistics, the higher the frequency of
the task switching, the greater the power of the method.
This is due to the fact that most of the noise in fMRI
data lies in a low frequency range. In section 5 below
the implications of this for optimal task design will be
further discussed.

The Fourier method and simple subtraction (with or
without drift correction) performed significantly worse
than the other techniques. The paired t-statistic per-
formed poorly when the task and control presentation
was low frequency (image pairs are far apart and thus
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TABLE 3

0.424 *= 0.005
0.403 = 0.006

No preprocessing
Time norm. (whole image mean)

Time norm. (brain mean) 0.402 =+ 0.006
Time norm. (histogram peak) 0.416 = 0.006
Linear term subtracted 0.425 =+ 0.005
Quad. term subtracted 0.434 + 0.005
Cubic term subtracted 0.434 * 0.005
Linear term subt. (with time norm.) 0.402 = 0.006

0.413 = 0.005
0.412 = 0.005

Quad. term subt. (with time norm.)

Cubic term subt. (with time norm.)

High-pass filter best cutoff frequency (frequency
of 0.35 of stimulus frequency)

High-pass filter (frequency of 0.25 of stimulus

0.435 = 0.005

frequency) 0.422 *= 0.006
High-pass filter (frequency of 0.7 of stimulus fre-

quency) 0.412 = .006
Low-pass frequency filter (frequency of 2 of

stimulus frequency) 0.403 = 0.007
Low-pass frequency filter (frequency of 5 of

stimulus frequency) 0.414 = 0.008

Note. Comparisons of various methods of preprocessing the time
course of voxel intensity. In this example activation was added to 4%
of brain pixels. Time normalization based on normalization of the
whole image intensity proves not to be efficient. High pass filtering
significantly improves the analysis but caution has to be applied with
the choice of the cutoff frequency. The removal of the quadratic
estimate of image drift has similar effect in enhancing the power of
analysis.

not really correlated) but is one of the best methods for
fast switching paradigms. Split t-statistics perform
worse than regular t-statistics—the more splits the
worse the performance. This may seem to be contradic-
tory to the results of our previous work (Constable et
al., 1995) that found the split-4 method to be one of the
best techniques, but the explanation is simple. Split-
ting data into subgroups and performing t-statistics
separately is justified only if there is a significant
additional variance between those groups. This hap-
pens when data are collected in separate individual
series and then combined together as was the case with
Constable et al. (1995). In this situation, variations
between imaging runs are significantly larger than
within runs and split statistics are still useful, as will
be shown in Section 7. In the simulation presented in
Table 3 we consider data taken during one imaging run,
and there is no justification for splitting them into
subseries.

The skew correction does not improve the power of
t-statistics. This is the case because our study design
AB ... A (frequency of 1.5, 3.5, and 7.5 per imaging
series) is not susceptible to the effect of linear drift.
Only if this design cannot be used (e.g., pharmacologi-
cal studies when the effects of the drug wash away too
slowly) should the skew correction be applied, as shown
in Section 3 and on Fig. 2.

The cross-correlation, t-statistic, and Mann—-Whitney
do not differ in performance significantly. Using the
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exact time course of the added activation does increase
the power of the correlation method but only by a small
margin.

4.3. Summary

The cross-correlation method is very similar in power
to the t-statistic and Mann—-Whitney method and these
all are significantly better than using percentage differ-
ence measures and the Fourier method.

Cross-correlation to a boxcar function is as good as
simple t-statistics, while cross correlation to the exact
response function gives a slight but statistically signifi-
cant increase in the statistical power.

The use of skew corrected t-statistics is not helpful
for this study design, which begins and ends with the
same task (AB . .. A). We will see later (Section 5.3 and
Fig. 2) that it is justified in the even (AB...AB)
designs.

Paired t-statistics perform poorly when the stimulus
period is long (in this case pairs of images are distant in
time), while it approaches the power of regular
t-statistics at high task/control switching frequency (in
this case the paired images are close in time and paired
t-statistics gains because it disregards the long scale
signal variations).

Split statistics should not be used for data collected
during one imaging run. Methods for combining the
data collected in separate imaging series will be dis-
cussed in Section 7.

The most striking effect noticeable in Table 3 is that
the effect of task design and the frequency of stimulus
alternation are much more important than the effect of
the choice of statistics used. This trend occurs with all
statistical methods. We analyze this effect more pre-
cisely in the following section.

5. TASK DESIGN—FREQUENCY
AND PHASE UNCERTAINTY

5.1. Description

Comparisons of the statistical power obtained at
different stimulus frequencies confirm the well known
(Weiskoff et al., 1993) fact that in fMRI it is the low
frequency signal variations that generate most of the
false activations, so it is useful to switch task/control
stimulus conditions frequently. This assumes however
that the fMRI response is in phase with the stimulus. If
the phase delay of the measured BOLD response is
known it can be accounted for using correlation (by
convoluting the target wave form with the hemodynami-
cal response function) and t-statistic (by reassigning
some images between tasks and/or dropping some
images at the transition between tasks) analysis. How-
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FIG. 2. The ROC power of analysis is presented here as a function of the task/control stimulus switching frequency for various shifts
(phase mismatches) between the introduced signal and observed (expected) fMRI response. The dotted line presents the skew-corrected
t-statistics, the solid line presents the cross correlation with the sinusoidal reference function. The dashed dotted line presents the power of the
Fourier power spectrum method that (in our implementation) is independent of the response phase. For a response uncertainty larger than 1
TR (1500 ms in our study) the efficiency peaks at 3—4 periods per 128 image long imaging series. The response for imaging runs of various
length is analyzed on Fig. 3. The solid curve presenting results obtained using correlation method is exhibiting spikes for every noninteger
value of frequency. This represents the uneven (AB . .. A) study design that is much less sensitive to the presence of the linear drift. Both
correlation analysis and normal t-statistics (not shown here) prove to be much better for this balanced study design. The skew-corrected
t-statistics (described in the Appendix A) is not sensitive to linear drift and thus performs much better for the unbalanced (AB . . . AB) study
design, this advantage disappears in the balanced study design makes it less sensitive to the presence of linear drift. This proves that the
studies used in our simulation were exhibiting significant intensity drift. While skewed t-statistics perform generally worse they are
significantly better for data from studies with integer frequency of task switching. Those points represent the uneven (AB . . . AB) task design
that is more susceptible for the temporal drift artifacts.

ever, problems may arise when this delay is nonuni- t-statistic and by correlation to the actual sinusoidal

form within the brain or when it is unknown (for stimulus time-course. These were also compared to the

example, due to any additional significant delay in the power of the Fourier method (which performs weakly

performance of more complex cognitive tasks) (Alperin  when there is no phase error, but is insensitive to such a

et al., 1996). In cases when that phase is unknown the phase shift). Of course, phase can be taken into account

higher the frequency of the task/control changes, the in the Fourier analysis but in this case we are inter-

bigger the error due to the phase mismatch between ested in a method that is not affected by erroneous

stimulus and response. Our simulation was designed to  assumptions about phase.

understand the consequences of phase delays in tasks

of different frequencies and to find an optimal study 52 Results

design by striking a balance between these two oppos-

ing factors. Figure 2 presents the power of the ROC analysis for
In our simulation we compared the statistical power various task frequencies in which the added signal

obtained for frequencies of the task stimulus presenta- response is delayed in relation to the “expected” signal

tion between 1.5 and 10, and for various lengths of the response.

imaging series (between 32 and 128 images) with an The dotted line presents results obtained using the

unaccounted phase shift between 0 and 5 images (0-7.5 skew-corrected t-statistics, while the solid line was

s). Our goal was to find the optimal frequency for obtained by correlation to the actual sinusoidal activa-

different degrees of the phase uncertainty. The simula- tion curve. The dashed-dotted line shows the results of

tion was performed using two methods: the skewed the phase insensitive Fourier method. The results
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presented in this plot were obtained using an imaging
run of 128 images. Without the phase error the power
curve saturates at about 5 cycles (18 s and 12 images
for task). With the added phase error the power curves
still increase at low frequency but then peak and
decline as the task periods become so short that the
phase error starts to interfere with accuracy.

Even if the phase uncertainty is as large as 4.5 s (3
images), the best frequency lies between 3 and 4 cycles
(30—-22 s per task presentation); while 4-6 cycles (15-20
s for each task presentation) seems to be generally
appropriate for studies with phase uncertainty bigger
than 2 s. The Fourier method (whose main advantage is
its insensitivity to phase) still performs significantly
worse (unless the response error is larger than 5 s with
task blocks shorter than 10 s).

On the two panels of Fig. 3 we present the results of
additional simulations performed for various lengths of
imaging series of 32, 64, 96, or 128 images. The ROC
power is plotted as a function of frequency (left panel)
or as a function of the length of each single task
condition (right panel). Both panels present curves
obtained with a response delay of two images (3 s) (solid
line) and no response delay (dotted line). For various

0.5+

0.4

ROC power
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lengths of imaging series the maximum power of the
analysis can be found at different frequencies, but
always at the same task length of about 12 images
(18 s). This seems to be a desirable length for each task
presentation for cognitive studies. This optimal length
may, however, be much shorter for sensory-motor stud-
ies in which virtually all the response delay is due to
the hemodynamical response and this can be estimated
with accuracy better than 3 s (Frahm et al., 1992).

5.3. Summary

The optimal length of one task block is independent
of the length of the imaging run and is about 18 s (12
images at TR = 1500 ms). This value was assuming
that the response uncertainty is relatively large (3 s).
In simpler sensory motor tasks this delay may be
estimated better and the optimal block lengths will
then be shorter. To eliminate linear drift artifacts it is
important to begin and end each imaging run with the
same task (AB...A) design. For imaging runs with
more than five task blocks it is even beneficial to drop
the last task block to obtain this uneven design.

ROC power
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FI1G. 3. The ROC power for various task switching paradigms and various lengths of imaging series is presented. Solid lines were obtained
with 2 image (3 s) delays between the expected and the added signal response. The dotted curve assume exact knowledge of hemodynamic and
neuronal responses. The left panel presents the data as a function of the length of each task presentation period, while the right panel shows
the results as a function of task switching frequency. For various lengths of imaging series, the peak efficiency proves to be a function of the
task presentation length rather than the task switching frequency. For a phase uncertainty of 3 s the optimal task length is about 12 images
(18 s). This is a good assumption for complex cognitive studies. The optimal task length will be shorter if the response can be estimated with
better accuracy—possible in sensory-motor tasks when the response delay is only of hemodynamical origin and thus can me modeled with an
accuracy better than 1 s.
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6. SPATIAL DOMAIN CORRELATION

6.1. Description

It is generally believed that for a wide range of
cognitive studies activation observed using fMRI occurs
over relatively large cortical volumes and is not con-
fined to individual voxels. This assumption leads to the
use of a processing strategy that will detect preferen-
tially such large volumes. The analytical method that
eliminates the possibility of observing small activation
foci enables us to lower the threshold of activation
detection without allowing too many false activations
to be present. This reasoning is based on the assump-
tion that white noise produced by MRI devices has no
spatial correlation. The use of an implied large spatial
correlation in the “real” activations can be made using
cluster filtering of activation maps or by spatially
smoothing individual images or final SPMs.

The advantages of the use of spatial correlation to
increase the power of detection of large activation foci
has been discussed extensively (Worsley et al., 1992;
Friston et al., 1994; Forman and Cohen, 1995; Poline et
al., 1995; Skudlarski et al., 1995; Xiong and Jia-Hong
Gao, 1995). It is widely believed that both cluster
techniques and smoothing of the images are beneficial
for detecting sizable activations and should be applied
to fMRI data. In this work for the first time we directly
compare the efficiency of both techniques, applying
them to real fMRI data.

6.1.1. Methods compared. We analyze the efficiency
of four methods of using the spatial correlations be-
tween activations: (1) spatial smoothing applied to the
raw data before the creation of activation maps; (2)
spatial smoothing applied to the statistical map; (3)
cluster filters applied to the thresholded activation
map. In a cluster filter of size N only activation foci
larger than the assigned cluster size are left in the
thresholded SPM,; all active pixels that do not belong to
a contiguous cluster of N pixels are dropped out; (4)
neighborhood filters applied to the thresholded activa-
tion maps, leaving only voxels that have a sufficient
number of active neighbors. For each active pixel, its
active neighbors are counted: counting 2 for each wall
neighbor and 1 for each corner, and only if this score is
larger or equal than a chosen filter parameter N, is the
pixel treated as active.

The simulation was performed with different distribu-
tions of artificially added activations. We consider
activation foci of various sizes (radius ranging between
1 and 4 pixels) and spatial smoothing with gaussian
filters of width FWHM (0.6 . . . 3) pixel. Smoothing with
a median filter gave results analogous to the gaussian
filter of width 1.5 and is not included in the results
presented.
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We additionally consider a combination of the above
described procedures. The multifiltering analysis based
on the proposal of Poline and Mazoyer (1994) was
applied to the raw data. In our implementation (de-
scribed in Appendix B) we calculate statistical maps
from both the raw data set and the initially smoothed
data set. Those statistical maps are later averaged to
create the final map. Since a spatial filter is applied to
the data and averaging is performed on the level of
SPMs this procedure differs significantly from using a
spatial filter of different widths. SPMs calculated from
the smoothed data are able to pick up large areas of
relatively weak activations while the unsmoothed SPM
is sensitive to isolated strong foci; averaging those
maps lets us observe both kinds of activations with
significant power.

6.2. Results

Figures 4 and 5 present the results of applying four
different analytical methods, each with varying smooth-
ing/filtering parameters. Figure 4 presents methods
based on gaussian smoothing of images (left panel) or
SPMs (right panel). Figure 5 presents two kinds of
filters applied to the thresholded SPM: cluster filter
(left panel), and use of the neighborhood filter (in the
right panel). In Fig. 4 the multifiltering approach is
also presented by open circles.

Both gaussian smoothing techniques proved to be
significantly better than cluster/neighborhood filtering.

The optimal width of the filter used for smoothing
was dependent on the size of the activation foci. This
dependence was much less profound with the use of the
multifiltering approach.

The best SPMs (highest power measured by the ROC
curve) were obtained using the multifiltering tech-
nique: by adding two SPMs: one created from original
data and the other from smoothed data. This method is
most robust, providing a gain in power for a wide range
of activation sizes. Since the statistics are performed
separately on filtered and unfiltered data, this method
is significantly different from smoothing data with any
individual filters and preserves the advantages of “both
worlds,” so that both significant isolated activations
and large slightly activated regions are detected.

We find that while cluster filtering is beneficial for
large activation regions, the multifiltering approach
similar to one proposed by Poline and Mazoyer (1994)
outperforms the other techniques.

The initial smoothing of the data or our multifiltering
technique can be combined with clustering or smooth-
ing of the final t-maps. We have found that the combina-
tion of filtering of data and SPMs does not improve the
results compared to either technique used individually.
The multifiltering technique seems to perform best and
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FIG. 4. Two methods of eliminating isolated activation foci (and thus increasing our power to detect spatially extended activations) are
presented. The left panel presents ROC power obtained while the raw MRI images are smoothed prior to statistical processing. The right panel
was calculated when the SPMs were smoothed. The four curves present results obtained with various sizes of activation foci added. The
activation size parameters describe (in units of pixel size) the radius of the added activation clusters. Dotted lines were obtained using
multifiltering (SPMs calculated with and without smoothing were added together). Both methods have comparable power. Multifiltering
techniques are slightly worse when applied to large activation foci, but they are definitely superior if activation foci of various sizes maybe

present.

is not further improved by adding cluster filtering on
top of it and is least sensitive to filtering of the SPMs.
The estimate of detectability here was based only on
the integral of the ROC curve and thus considers only
the number of true and false positive findings, not their
distributions. The SPM maps obtained with cluster
filtering are “smoother,” with less isolated activations,
which may make them “more believable,” but this
subjective factor should not be taken into account.

6.3. Summary

The smoothing of raw MRI images with a gaussian
filter of FWHM between 1 and 2 pixels (3—6 mm) proves
to be better than any version of cluster filtering of the
final SPM. Adding SPMs obtained from smoothed data
and SPM obtained from unsmoothed data is the best
approach, especially if activation foci of various sizes
are present. Smoothing of the final SPMs with the same
gaussian filter is nearly as good as smoothing of the
images, but the benefits of multifiltering are more
significant if the individual images are smoothed.

7. COMBINATIONS OF DATA
FROM INDIVIDUAL RUNS

7.1. Description

In a typical fMRI study the same task paradigm is
repeated over several imaging series. As we have
shown earlier (Constable et al., 1995) instead of perform-
ing statistics on the whole data set it is often beneficial
to divide the imaging set into multiple subsets, perform
statistics on each subset separately, and to later com-
bine the results from each subset. This procedure is
effective because the intraseries variance is lower than
the interseries variance. Thus, it is justified to perform
statistics on each imaging run separately so that the
time-course analysis performed with t-statistics, corre-
lation analysis, or other means is not impaired by
global changes of intensity between separate imaging
runs. Here we wish to find the best way of combining
data obtained from subsets. In each study we have four
imaging series, each of which gives an individual SPM.
We create the combined SPM by taking the largest,
second, third largest, or the smallest of the t-values in
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FIG.5. Two methods of eliminating isolated activation foci (and thus increasing power to detect spatially extended activations by filtering
of thresholded SPMs) are presented. Simulations were performed with various sizes of activation clusters added. The activation size
parameters describe (in units of pixel size) the radius of added activation clusters. The cluster size (left panel) and neighbor sum (right) panel
used on the horizontal axis describe the filter parameter used—the higher number the more restrictive spatial filter was used. The ROC
powers obtained with the use of cluster filters (only active clusters composed than more than N voxels survive) are presented on the left panel;
the right panel presents results for the neighborhood filter (only active voxels with enough active neighbors—counting 2—for each wall
neighbor and 1 for corner—survive). The neighborhood filter proves to be better than the cluster filter for all sizes of activations, but both
methods are significantly worse than methods based on gaussian smoothing of images or SPMs presented on Fig. 6.

the individual maps (this is what was called 1/4, 2/4,
3/4, 4/4 in Constable, et al. (1995)). These maps are
compared with the mean, and median of those maps
and with a map calculated by running t-statistics on
the whole data set (not divided between series) and
with the average ROC power obtained from using only
one imaging series. If the presentation of the paradigm
was exactly identical in all series one can combine
series by averaging the raw data before calculating
statistics and calculated statistics for one averaged
series only. This data reduction step makes sense
because the larger variance between data series should
not influence our estimate of noise in measuring the
difference between On and Off images taken within the
same run. The effects of different splittings of the whole
data set (split/2 or split/3) are also presented.

7.2. Results

Table 4 presents our results. The map calculated as
an SPM calculated from the averaged imaging series
proves to be best. This method has an disadvantage
that it can be applied only if imaging series are

TABLE 4

Freq =75
Freq=1.5 Freq = 3.5 (ABABABAB-

(ABA) (ABABABA) ABABABA)
Max 0.354 = 0.007 0.475 = 0.007 0.535 *= 0.007
2nd 0.454 = 0.007 0.544 = 0.007 0.576 = 0.007
3rd 0.443 = 0.007 0.540 = 0.007 0.574 = 0.007
Min 0.347 = 0.007 0.507 = 0.007 0.566 = 0.007
Mean 0.500 = 0.007 0.570 = 0.007 0.587 *= 0.007
Median 0.483 = 0.007 0.560 = 0.007  0.582 = 0.007

Averaged series 0.514 = 0.01 0.583 = 0.01 0.596 = 0.01
All combined 0.319 = 0.007 0.475 = 0.007 0.553 *+ 0.007
Individual series  0.293 = 0.007  0.420 = 0.007  0.500 * 0.007
Split-2 0.314 = 0.007 0.456 = 0.007  0.558 = 0.007
Split-3 0.293 = 0.007 0.426 = 0.007  0.549 *= 0.007

Note. Comparison between the different methods of combining the
data from several identical imaging series. The SPM obtained with
averaging data series proved to be best. If the imaging series are not
identical and so they cannot be averaged, the mean of SPMs
calculated from individual series proved to be the second most
powerful method. It is significantly better than the conservative
approach of using the lowest value, while both methods are better
than combining the data from different imaging series and calculat-
ing a single SPM.
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identical (the presentation of stimuli cannot be alter-
nated) and none of the involved series can have images
missing due to scanning artifacts or motion. The next
best method is the calculating the mean of SPMs
calculated separately for each of the imaging series.
This method has an advantage because the statistical
interpretation of this mean t-statistic is independent of
the number of series averaged, which is important if in
longer experiments some imaging series have to be
discarded due to motion or artifacts.

The t-statistic calculated for the whole (undivided)
data set behaves worse than for any of the combination
methods and only slightly better than the statistical
power from a single imaging series. If one of the
individual SPMs is used as the final result, the t-value
that is 2nd and 3rd value is significantly better than
either the smallest or the largest. Different splittings of
the whole data set (split/2 or split/3 statistics) applied
to the whole data set are not efficient. This result
confirms that data should be split into subsets only in
agreement with the natural division of the experiment
(to eliminate the additional variance due to change of
imaging run).

7.3. Summary

The data in the fMRI set should be analyzed in blocks
containing images taken during one imaging run only.
If imaging series are identical then the best method of
combining images is to average the images from all the
imaging series and then to calculate the SPM from
those averaged images. If imaging series do differ in the
length or order of task presentation, then individual
maps should be obtained from separate runs and
averaged to create the final SPM. The more conserva-
tive approach of taking the smallest value (requiring
the pixel to be active in every imaging run) is less
powerful in detecting activations. Another important
point is that only mean maps calculated from studies
with different numbers of imaging series are compa-
rable.

8. MOTION CORRECTION

8.1. Description

The full analysis of the various effects of motion
correction methods is complicated enough to justify a
separate study. However, since motion correction is
now routinely applied in many fMRI studies we felt
compelled to check if our results remain valid in a study
analyzed with motion correction. We do not attempt to
compare the efficiency of analysis with and without
motion correction, but we want to evaluate the power of
some processing steps analyzed above that may be most
sensitive to motion correction.
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8.2. Methods

We used two versions of motion correction algorithm
from the SPM package: one including motion correction
only and the other with additional decorrelation that
removes the component of the signal correlated with
motion estimates. Activations were added after motion
correction. This makes it difficult to compare directly
analyses performed with and without motion correc-
tion, but nevertheless it should be helpful in comparing
the efficiency of different processing strategies used
with the same motion correction approach. We applied
this technique to two of the simulations presented
above: the efficiency of temporal normalization (pre-
sented in Section 3.3) and the comparison between
various statistics (Section 4). Data analyzed here were
obtained in a different study of olfactory processing
(Fulbrightetal., 1998). We used imaging series consist-
ing of 80 images, with activation added with a fre-
quency of 2.5 cycles per series (ABABA design). We
used data from three subjects with six imaging series
obtained from each subject.

8.3. Results

Actual values of the ROC power obtained in this
simulation differ from those obtained in the main study
but these differences can be attributed to changes in the
study design. Tables 5 and 6 summarizes our results.

Both simulations show that both techniques of mo-
tion correction do not change the relative efficiency of
the steps in the data analysis that we compared.

The relative powers of various statistics do not
change significantly due to motion correction. The
slight decrease in the efficiency of skew corrected
techniques suggests that the drift that is removed by
this technique is mostly caused by real or apparent
movement of the subject head in the imaging plane.
The advantage of cross-correlation and Mann—-Whitney
techniques seem to be enhanced by the motion correc-
tion with decorrelation.

9. CONCLUSIONS

This study shows that ROC based techniques can be
used as an efficient method for estimating the relative
effectiveness of various individual steps in fMRI data
analysis. Based on the simulations reported, our spe-
cific recommendation for the fMRI processing strate-
gies can be summarized as follows:

®Time normalization does not in general increase
overall efficiency but it may possibly be useful in
individual cases to rescue certain flawed studies dis-
torted by significant intensity drift.

eSubtraction of the linear and quadratic components
from the signal improves the effectiveness of data
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analysis, and removal of higher order components is
not more beneficial. High pass filtering with a cutoff
frequency of 0.35 of the stimulus frequency is the most
efficient preprocessing filter in the time domain.

eTemporal smoothing does not improve our ability to
detect activations. The gain in the perceived signifi-
cance of activations (true positives) detected is over-
taken by an even larger increase in the analogous
statistical measures for non activated pixels (false
positives), and thus temporal smoothing not only does
not improve the fMRI analysis but, if not corrected for,
may lead to overestimation of the significance of fMRI
findings.

eCross-correlation, t-statistics, Mann-Whitney test
are all excellent statistics and yield comparable results.
Skew correction is helpful only for even (highly suscep-
tible to drift) AB . . . AB study designs.

®Results improve as the frequency of task/control
switching between stimulus condition increases. Realis-
tically, taking into account the uncertainty of the exact
timing of the fMRI response, task switching with about
15-20 s per condition is advised.

e®Gaussian smoothing of the raw fMRI images is
better than cluster or neighborhood filtering of thresh-
olded statistical maps. Multifiltering (achieved by add-
ing maps obtained from filtered and unfiltered data)
can increase efficiency even more—especially if the
activation foci are of variable or unknown size.

®The data from identical but separate imaging runs
should be analyzed by averaging analogous images
from individual series. If series are not identical (some
images are missing or task order has been changed)
they should be analyzed separately and later combined
using the mean of the individual SPMs. This is the most
powerful and the most convenient (especially if the
number of usable runs varies between subjects) way of
combining data obtained in a series of consecutive
imaging runs from a single subject.

9.1. Limits of validity of this study

All the simulations performed in this study were
performed on the data obtained using the same 1.5 T
scanner. Since the main purpose of this study is to
assess methods of analysis using actual data with real
signal and noise, our results may in principle be specific
to this scanner only. However, while some of the data
presented here may not be typical, the approach to
assessing techniques using the ROC method and simu-
lated activations added to real data, is widely appli-
cable. Appendix C provides several statistical character-
istics of data sets used in this study which may be
useful for others using different MRI systems to see if
our results can be applied to the data from their studies.

The fact that motion was not realistically included
into our simulations may result in underestimating the
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advantages of some techniques that are especially good
in treating motion. The simulations performed using
two methods of motion correction yielded results that
are very close to those obtained without motion correc-
tion, which builds our confidence that the recommenda-
tions given in this study should be valid if motion correc-
tion is being used. In an ideal simulation the activations
would be added not in a fixed locations in an image but
in fixed locations in the brain and thus would move in
the image space with movement of the subjects.

10. APPENDIX A: CORRECTION FOR THE LINEAR
DRIFT IN THE DATA

Quite often fMRI data contain uniform linear drifts
with the intensities of certain voxels slowly rising or
falling during the whole imaging series. We believe that
one source of drift is an instability in the B, field. This
produce an apparent linear motion, which manifests
itself as an intensity drift proportional to the spatial
gradient of the signal. Our observations on a GE system
suggest that this drift is actually not linear but sinusoi-
dal with a period of several minutes.

Several groups (Bandettini et al., 1993) have added a
step removing this drift into their analysis. In the
presence of activations, the drift has to be removed
separately from the data obtained in each condition
and this makes this process quite difficult and prone to
create artifacts.

Our approach is to take the drift into account during
calculation of the SPM, replacing the t-value by a
skew-corrected t-value.

The calculation of t-value can be seen as fitting the
time-course data by a step function:

f (t) = abon(t) + bOoee(t),

where 0oy, O0gr are characteristic functions of the ON
and OFF conditions. t-Values are calculated as (a—b)
normalized by the deviation of the real time-course
from this fitting function.

We replace this fit by a function that can take into
account the linear slope of the time course:

fskew(t) = abon(t) + bOoeg(t) + Kt

Our corrected value will be given by the difference
(a—b) normalized by the deviation from this fit. Param-
eters a, b, k of the fit are calculated by the method of
least squares.

The same procedure can be applied to calculating the
skew corrected version of different SPMs such as
percent (or absolute) difference of signal intensity.
Figure 6 presents sample time-course and fits that are
used while performing comparisons using t-statistics
and or skew corrected t-statistics. In this case the
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drift correction to t-statistics

o o t-stat fit

+ +  skew t-stat fit
activation

........... noise

t—stat = 2.79, t—stat skew = 7.36

FIG. 6. The mechanism of skew correction for the linear drift is presented. The sample time course is presented as a combination of
random noise, linear drift and response to the On-Off task. The data fits used with t-statistics and with the skew t-statistics are overlaid,
showing how the linear drift can diminish the estimated response if t-statistics are used. The difference would be virtually eliminated if the
study started and end with the same task condition, so that linear drift would affect each state in the same way. In this example, the use of
skew corrected t-statistic increases the calculated t-value from 2.79 to 7.36. Of course other scenarios in which the skew correction would
actually hurt the data analysis by obscuring real activations or detecting false activations can be easily designed.

ABAB activation was partially obscured by the linear
drift and so regular t-statistics return a t-value of 2.79,
while the skew corrected version gives 7.36. The distri-
bution of t-values obtained without activations with or
without use of skew correction does not differ, so that
their meanings are comparable.

Data presented in the Table 1 show that for this
balanced (AB ... A) study design when each imaging
series begins and ends with the same task the skew
correction does not improve efficiency. However, it is
very useful inan (AB . . . AB) design that is more prone
to artifacts due to the linear drift.

Figure 2 presents the comparison of the statistical
power of analysis using skewed t-statistics with the
correlation method, which due to the use of the exact
shape of the activation response curve is better than for
a regular t-statistic. We notice that at each integer
frequency (AB ... AB design) the correlation method
has a significant drop in efficiency in comparison to the
half integer frequency (AB...A design); for those
conditions the skew corrected t-statistic is significantly
better than other methods. These results prove that the

TABLE 5
Motion Motion
No motion  corrected (no corrected (with
correction  decorrelation) decorrelation)
t-stat 0.362 = 0.01 0.361 £0.01 0.365 +0.01
Skewed t-stat 0.361 = 0.01 0.357 £0.01 0.360 += 0.01
Boxcar correlation 0.365 £ 0.01 0.361 =£0.01 0.365 * 0.01
Exact correlation 0.387 =0.01 0.389 =0.01 0.395 = 0.01
Percentage difference 0.173 = 0.01 0.167 = 0.01  0.163 = 0.01
Skewed percentage
difference 0.208 £ 0.01 0.217 =£0.01 0.207 = 0.01
Mann-Whitney 0.368 = 0.01 0.374 £0.01 0.381 +0.01

Note. Comparison between different statistics (as in Table 1)
performed for data analyzed without motion correction, with motion
correction, and with motion correction and decorrelation (using the
SPM package for motion correction). Columns with ROC values
should not be compared directly (see Section 8), but the relative
power of statistics varies only slightly depending on the use of motion
correction. The slight decrease in the power of skew corrected
techniques suggests that an important component of the intensity
drift is created by (real or apparent) motion. The advantages of
cross-correlation and Mann-Whitney techniques seem to be en-
hanced by the motion correction with decorrelation.
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TABLE 6
Motion Motion

No motion corrected (no  corrected (with

correction  decorrelation) decorrelation)
No temp. smooth. 0.372 £0.01 0.369 =0.01 0.369 = 0.01
FWHM = 1.5image 0.283 =0.01 0.279 +0.01 0.283 £ 0.01
FWHM = 3images 0.212 =0.01 0.206 £ 0.01  0.211 = 0.01
FWHM = 6images 0.153 +=0.01 0.144 +0.01 0.152 +0.01

Note. Temporal smoothing of the fMRI data significantly decreases
our power to detect activations, both with and without motion
correction. This suggest that the temporal correlation responsible for
this effect (see Section 3.3) is not created by real or apparent motion.

skew correction is a necessary step only if for some
reason we cannot balance our task design, but it is still
helpful for balanced study.

11. APPENDIX B: MULTIFILTERING TECHNIQUE
OF SPATIAL SMOOTHING

In our study we used a simple version of the multifil-
tering approach (Poline and Mazoyer, 1994). During
the data analysis we produce two versions of the data
set—raw images and images that were smoothed with
a gaussian filter of an appropriate FWHM. As in
normal gaussian filtering the width of this filter de-
pends on the size of the activation foci that we want to
enhance. Unlike the standard approach the analysis
still sustain some sensitivity to strong focal activations.
This smoothed data set is reduced in spatial resolution
by a factor of 2 for memory efficiency.

Each SPM is calculated on both data sets and the
resulting maps are later averaged (added) to create the
final SPM, that can be thresholded and cluster filtered
to obtain an activation map at the desired significance/
sensitivity level. This technique differs significantly
from regular spatial filtering with any form of filter.
The smoothed data set has significantly reduced vari-
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ance so that even small changes in the intensity that
extend far enough to survive filtering produce large
t-values. Small localized activations that are smoothed
in the spatial filtering produce large t-values in the
nonsmoothed data set so that both types of activations
can be seen in the final map.

12. APPENDIX C: SOME STATISTICAL
CHARACTERISTICS OF fMRI DATA SET USED

In this Appendix and Table 7, we present several
basic statistical characteristics of the fMRI data set
used in this study. We calculated the mean intensity,
standard deviation, skewness, and kurtosis and the
absolute value of the estimated linear drift (slope k
parameter used in skew statistics in Appendix A). We
consider small blocks of pixels located in four distinct
areas located in the gray matter (medial Superior
Frontal Gyrus), white matter (corona radiata), Cerebro-
spinal Fluid (lateral ventricle), and outside the head. To
estimate better the effect of possible signal drift we
calculate those variables for a whole imaging series of
128 images and for subseries of the first 64 images. If
the noise can be characterized as white noise the length
of the series should not change those characteristics; if
there is more power in the low frequency part of the
spectrum (as in the case of the drift) the standard
deviation will increase with the length of the series.

Those numbers are provided mainly to allow compari-
sons between different scanners.

One can notice that the standard deviation always
increases for longer data series but this increase is
most dramatic in the white matter and nearly nonexist-
ent in the outside air.

This, together with the highest value of the esti-
mated linear drift, suggest that the drift is more
apparent in the white matter than in gray matter. The
differences are smaller than the estimate of error but

TABLE 7
Series
length Gray matter White matter CSF Air
Mean 64 1517 70 1310+ 70 2067+ 130 34.4+ 3
128 1522+ 70 1288+ 70 2052+ 130 345+ 3
Standard deviation 64 3063 325+ 6 36.2*+ 3 179+ 1
128 31.0+ 3 379+ 6 39.1+ 3 18.8+ 1
Skewness 64 0.004 0.004 0.021+ 0.01  0.026+ 0.01  0.48* 0.07
128 —0.004+= 0.004 —0.023*=0.01 0.035-0.01 0.51* 0.07
Kurtosis 64 2.95+ 0.06 2.83= 0.1 2.83+ 0.1 2.86+ 0.2
128 2.99+ 0.06 2.85+ 0.1 291+ 0.1 2.99+ 0.2
64 0.11+ 0.05 0.30+ 0.1 0.23+0.1 0.01+0.01
Absolute value of estimated linear drift 128 0.06 = 0.05 0.25+ 0.1 0.21+0.1 0.01+ 0.01
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this error reflects mainly the variance between differ-
ent studies and imaging runs and not the differences
between series of different length. More work is neces-
sary to understand this phenomenon precisely.

The estimated linear drift is larger for short data
series, which suggests that it has a significant random
component, which is averaged out for longer series.

The skewness is very small for all regions except for
the outside air where the distribution of intensities is
Raleigh rather than Gaussian, the intensity is always
positive and thus it is skewed.
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