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Abstract. We infer local relations of influence between networked en-
tities from data on outcomes and assess the value of temporally richer
data by characterizing the speed of learning when knowing the set of en-
tities who take a particular action, versus when knowing the order that
the entities take an action. We propose a parametric model of influence
which captures directed pairwise interactions, formulate different varia-
tions of the learning problem, and provide theoretical guarantees for cor-
rect learning based on sets and sequences. The asymptotic gain of having
access to richer temporal data for the speed of learning is thus quantified
in terms of the gap between the derived asymptotic requirements under
different data modes. Experiments on real data on mobile app installa-
tions quantify the improvement due to the availability of richer temporal
data, and show that our maximum likelihood methodology recovers the
underlying network well.

Keywords: Network inference, influence, social network, ordered/unordered
data, mobile apps

1 Introduction

Consumers adopting a new product (Kempe, Kleinberg, and Tardos, 2003); an
epidemic spreading across a population (Newman, 2002); a sovereign debt crisis
hitting several countries (Glover and Richards-Shubik, 2013); a cellular process
during which the expression of a gene affects the expression of other genes (Song,
Kolar, and Xing, 2009); an article trending in the blogosphere (Lerman and
Ghosh, 2010), a topic trending on an online social network (Zhou, Bandari,
Kong, Qian, and Roychowdhury, 2010), computer malware spreading across a
network (Kephart and White, 1991); all of these are temporal processes governed
by local interactions of networked entities, which influence one another. Due
to the increasing capability of data acquisition technologies, rich data on the
outcomes of such processes are oftentimes available (possibly with time stamps),
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yet the underlying network of local interactions is hidden. In this work, we infer
who influences whom in a network of interacting entities based on data of their
actions/decisions, and quantify the gain of learning based on sequences of actions
versus sets of actions. We answer the following question: how much faster can
we learn influences with access to increasingly informative temporal data (sets
versus sequences)?

Motivation. Clearly, having access to richer temporal information allows, in
general, for faster and more accurate learning. Nevertheless, in some contexts,
the temporally poor data mode of sets could provide almost all the information
needed for learning, or at least suffice to learn key network relations. In addition,
collecting, organizing, storing, and processing temporally richer data may require
more effort and more cost. In some contexts, data on times of actions, or even
sequences of actions, is noisy and unreliable; for example, the time marking of
epilepsy seizure events is done by physicians on an empirical basis and is not
exact. In some other contexts, having access to time stamps or sequences of
actions is almost impossible. For example, in the context of retailing, data exist
on sets of purchased items per customer (and are easily obtained by scanning
the barcodes at checkout); however, no data exist on the order in which the
items a customer checked out were picked up from the shelf (and obtaining such
data would be practically hard). In this light, the question of quantifying the
gain of learning with increasingly informative temporal data, and understanding
in what scenarios learning with temporally poor data modes is good enough, is
highly relevant in various contexts.

Background and related literature. Untangling and quantifying local in-
fluences in a principled manner, based on observed outcomes, is a challenging
task, as there are many different confounding factors that may lead to seem-
ingly similar phenomena. In recent work, inference of causal relationships has
been possible from multivariate time-series data (Lozano and Sindhwani, 2010;
Materassi and Salapaka, 2012; Kolar, Song, Ahmed, and Xing, 2010). Solutions
for the influence discovery problem have been proposed, which, similarly to this
work, treat time explicitly as a continuous random variable and infer the net-
work through cascade data, e.g., Du, Song, Smola, and Yuan (2012); Myers
and Leskovec (2010); Gomez-Rodriguez, Leskovec, and Krause (2010); Gomez-
Rodriguez, Balduzzi, and Schölkopf (2011). However, the focus of our work is
not just to infer the underlying network, but rather to quantify the gain in speed
of learning, due to having access to richer temporal information.

Most closely related to this work are Amin, Heidari, and Kearns (2014);
Abrahao, Chierichetti, Kleinberg, and Panconesi (2013); Netrapalli and Sanghavi
(2012); Daneshmand, Gomez-Rodriguez, Song, and Schoelkopf (2014), which all
derive sample/trace complexity results for the network inference problem. Amin
et al. (2014), but also Gripon and Rabbat (2013), share with us the question of
reconstructing a graph from traces defined as sets of unordered nodes. Similarly
to Abrahao et al. (2013), we assume exponentially distributed infection times.
Nevertheless, our scope differs from the works mentioned above, as we wish
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to compare explicitly the speed of learning when having access to datasets with
times or sequences of actions, versus just sets of actions. Furthermore, the models
assumed by the works mentioned above differ from the model we study, mainly
in that we allow for self-induced infections (not just in the initial seeding), which
makes the inference problem harder.

Another strand of recent research has focused on learning graphical models
(which subsumes the question of identifying the connectivity in a network), either
allowing for latent variables (e.g., Chandrasekaran, Parrilo, and Willsky, 2012;
Choi, Tan, Anandkumar, and Willsky, 2011) or not (e.g., Anandkumar, Tan,
Huang, and Willsky, 2012). Instead of proposing and learning a general graphical
model, we focus on a simple parametric model that can capture the sequence
and timing of actions naturally, without the descriptive burden of a standard
graphical model.

Of relevance is also Shah and Zaman (2011), in which knowledge of both the
graph and the set of infected nodes is used to infer the original source of an
infection. In contrast, and somewhat conversely, we use knowledge of the set,
order, or times of infections to infer the graph.

Last, economists have addressed the problem of identification in social inter-
actions (e.g., Manski, 1993; Brock and Durlauf, 2001; Blume, Brock, Durlauf,
and Ioannides, 2011; Bramoullé, Djebbari, and Fortin, 2009; Durlauf and Ioan-
nides, 2010) focusing on determining aggregate effects of influence in a group;
they classify social interactions into an endogenous effect, which is the effect
of group members’ behaviors on individual behavior; an exogenous (contextual)
effect, which is the effect of group members’ observable characteristics on indi-
vidual behavior; and a correlated effect, which is the effect of group members’
unobservable characteristics on individual behavior. In sharp contrast, our ap-
proach identifies influence at the individual, rather than the aggregate, level.

Overview. The overarching theme of our work is to quantify the gain in speed
of learning of parametric models of influence, due to having access to richer tem-
poral information. We seek to compare the speed of learning under three different
cases of available data: (i) the data provides merely the set of agents/entities who
took an action; (ii) the data provides the (ordered) sequence of agents/entities
who took an action, but not the times; and (iii) the data provides the times
of the actions. It is clear that learning is no slower with times than it is with
sequences, and no slower with sequences than with sets; yet, what can we say
about how much faster learning is with times than with sequences, and with
sequences than with sets? This is, to the best of our knowledge, a comparison
that has not been studied systematically before.1 In this paper2, we focus on the
comparison between learning with sets and learning with sequences.

We propose a parametric model of influence which captures directed pair-
wise interactions and provide theoretical guarantees on the sample complexity

1 Netrapalli and Sanghavi (2012) find such a comparison highly relevant.
2 Most of the material in this paper is presented in the Ph.D. thesis of Zoumpoulis

(2014).
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for correct learning with sets and sequences. Our results characterize the suffi-
cient and necessary scaling of the number of i.i.d. samples required for correct
learning. The asymptotic gain of having access to richer temporal data à propos
of the speed of learning is thus quantified in terms of the gap between the de-
rived asymptotic requirements under different data modes. We first assume prior
knowledge of a “super graph” that includes all the candidate edges, and we infer
which edges of the super graph truly exist; restricting to each edge having either
very large or no influence, we provide sufficient and necessary conditions on the
graph topology for learnability, and we come up with upper and lower bounds for
the minimum number of i.i.d. samples required to learn the correct hypothesis
for the star topology, for different variations of the learning problem: learning
one edge or learning all the edges, under different prior knowledge over the hy-
potheses, under different scaling of the horizon rate, and learning with sets or
with sequences. We then study more general networks and relax the assumption
that each edge carries an influence rate that is either very large or zero; we pro-
vide a learning algorithm and theoretical guarantees on the sample complexity
for correct learning in the hard problem of telling between the complete graph
and the complete graph that is missing one edge.

We also evaluate learning with sets and sequences experimentally. Given real
data on outcomes, we learn the parametric influence model by maximum like-
lihood estimation. The value of learning with data of richer temporal detail is
quantified, and our methodology is shown to recover the underlying network
structure well. The real data come from observations of mobile app installations
of users, along with data on their communications and social relations.

2 The Model

A product becomes available at time t = 0 and each of n+ 1 agents may adopt
it or not. (In this paper the word “product” is used throughout, but could
be interchanged by any of the following: information, behavior, opinion, disease,
etc., depending on the context.) Agent i adopts it at a time that is exponentially
distributed with rate λi ≥ 0. After agent i adopts, the rate of adoption for all
other agents j 6= i increases by λij ≥ 0. The overall time horizon of the adoption
and infection process is modeled as an exponentially distributed random variable
with rate λhor. No adoptions are possible after the end of the horizon.3

We study the adoption decisions for a collection of products, assuming that
the parameters are static across products, and adoptions across products are
independent.4

3 The proposed cascade model suggests a recursive definition for the times of adoption
for each agent given a product c, which we denote {T i

c}n+1
i=1 . We define T i

c = ∞ if
agent i does not adopt product c.

4 Given product c, we consider the following three data modes:

– learning with sets of adoptions: the learner observes vector(
1{T1

c<∞}, . . . ,1{Tn+1
c <∞}

)
;
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3 Theoretical Guarantees for Learning Influence in
Networks with Zero/Infinity Edges

A directed5 graph G = (V, E) is a priori given and λij = 0 if edge (i, j) is not
in E . In this section, we provide theoretical guarantees for learning for the case
where each edge in E carries an influence rate of either zero or infinity, casting
the decision problem as a hypothesis testing problem. We restrict to influence
rates that are either zero or infinite in order to simplify the analysis and derive
crisp and insightful results. Given a graph G, lower and upper bounds for the
number of i.i.d. products required to learn the correct hypothesis can be sought
for different variations of the problem, according to the following axes:

– Learning one edge versus learning all edges: We pose two decision
problems: learning the influence rate λij between two specified agents i, j;
and learning all the influence rates λij , i 6= j.

– Different prior knowledge over the hypotheses: We study this question
in the Bayesian setting of assuming a prior on the hypotheses, in the worst
case over the hypotheses, as well as in the setting in which we know how
many edges carry infinite influence rate. In general, a high prior probability
of each edge carrying infinite influence rate, or knowing that a high number of
edges carry infinite influence rate, correspond to the case of dense graphs; a
low prior probability of each edge carrying infinite influence rate, or knowing
that a low number of edges carry infinite influence rate, correspond to the
case of sparse graphs, with few influence relations.

– Different data modes: We characterize the growth of the minimum num-
ber of i.i.d. products required for learning with respect to the number of
agents n, when the available data provides information on sets or sequences
of adoptions.

– Different scaling of the horizon rate with respect to the idiosyn-
cratic rates: We consider different scalings of λhor with respect to the
idiosyncratic rates λ1, . . . , λn. Small values of λhor correspond to large hori-
zon windows, during which many agents get to adopt; large values of λhor
correspond to small horizon windows, during which only few agents get to
adopt.

We first discuss conditions on the graph topology that guarantee learnability,
and then we carry out the proposed program for the star topology. The star
topology is one of the simplest non-trivial topologies, and is illustrative of the
difference in the sample complexity between learning scenarios with information
of different temporal detail.

– learning with sequences of adoptions: the learner observes vector
(
R1

c , . . . , R
n+1
c

)
,

where Ri
c denotes the rank of T i

c in {T j
c }n+1

j=1 . If T i
c =∞, define Ri

c =∞.

– learning with times of adoptions: the learner observes vector
(
T 1
c , . . . , T

n+1
c

)
.

5 We allow bi-directed edges.
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3.1 Conditions on Topology for Learnability

We say that a graph is learnable if there exists an algorithm that learns all
edges with probability of error that decays to zero in the limit of many samples.
We show what graphs are learnable when learning with sets, assuming all edges
carry influence zero or infinity. Adopting a Bayesian approach, we assume that
if an edge exists in the sets of edges E of graph G, then the edge carries infinite
influence with probability q, 0 < q < 1, and zero influence with probability
1 − q. We also assume that the realization of each edge is independent of the
realizations of all other edges. Last, we assume all idiosyncratic rates and the
horizon rate to be equal to some λ > 0, which can be known or unknown.

Proposition 1. When learning with sets, if the graph G has distinct nodes i, j, h
such that

(i) (i, j) ∈ E, and
(ii) there exists a directed path from i to j through h,

then the graph is not learnable.6 If such triplet of distinct nodes does not exist,
then the graph G is learnable, using O(n2 log n) products. In particular, any
polytree7 is learnable with sets, using O(n2 log n) products.

3.2 Learning Influence in the Star Network

We consider the hypothesis testing problem in which each of n agents influence
agent n+ 1 either with rate zero or infinity. (A rate of λi,n+1 =∞ signifies that
agent n + 1 adopts right when agent i adopts.) Each of agents 1, . . . , n adopts
with rate λ > 0, which can be known or unknown, while agent n + 1 does not
adopt unless she is triggered to. There is no influence from agent n + 1 to any
of the agents 1, . . . , n, or from any of the agents 1, . . . , n to any of the agents
1, . . . , n. Figure 1 illustrates this model.

We consider two settings for the horizon rate: the setting in which the horizon
rate is equal to the agents’ idiosyncratic rate of adoption, that is, λhor = λ, and
the setting λhor = nλ. We pose two decision problems: learning the influence
rate between a specified agent i and agent n + 1; and learning all the influence
rates λ1,n+1, . . . , λn,n+1. We study the Bayesian setting of assuming a prior on
the hypotheses, the setting of the worst case over the hypotheses, as well as
the setting in which we know how many agents have infinite influence rate and
how many have zero influence. We characterize the growth of the minimum
number of i.i.d. products required for learning with respect to n, both when the
available data provides information on sets of adopters, and when the available
data provides information on sequences of adopters. (Of course, knowledge of
times of adoptions will not induce a gain over knowledge of sequences, because of
our assumption that the influence rates are either zero or infinite, and λn+1 = 0.)

6 All proofs are relegated to the Appendix.
7 A polytree is a directed acyclic graph (DAG) whose underlying undirected graph is

a tree.



Learning Influence Networks 7

Fig. 1. The hypothesis testing problem: what influence does each link carry to the star
agent (n+ 1): infinite or zero?

The Bayesian setting
In the Bayesian setting, we assume that the influence rate on each link is infinite,
with probability p, and zero, with probability 1−p, and that the selection of the
rate for each link is independent of the selection for other links.

The case p = 1/2. We assume that the influence rate on each link will be
zero or infinite with equal probability. Table 1 summarizes the results on the
necessary and sufficient number of i.i.d. products for learning.

Table 1. Matching lower and upper bounds for the minimum number of i.i.d. products
required to learn the influence model in terms of n, in the Bayesian setting when
p = 1/2, for the two cases of learning the influence between one agent and the star
agent and of learning the influence between all agents and the star agent, and for the
two cases of learning based on sets of adoptions or sequences of adoptions.

λhor = λ λhor = nλ
Sets Sequences Sets Sequences

Learn one Θ(n2) Θ(n) Θ(n) Θ(n)
Learn all Θ(n2 logn) Θ(n logn) Θ(n logn) Θ(n logn)
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For example, for the case when λhor = λ, we have the following sample
complexity results8.

Proposition 2. To ensure correct learning of λ1,n+1, . . . , λn,n+1 with probability
1 − δ based on sets of adopting agents, it is sufficient for the number of i.i.d.
products to be O(n2 log n

δ ), and necessary for the number of i.i.d. products to
be Ω(n2 log n). To ensure correct learning of λ1,n+1, . . . , λn,n+1 with probability
1 − δ based on sequences of adoptions, it is sufficient for the number of i.i.d.
products to be O(n log n

δ ), and necessary for the number of i.i.d. products to be
Ω(n log n).

The case p = 1/n. We assume that the influence rate on each link will be
infinite with probability p = 1/n. (In this case, the expected number of agents
who can influence agent n + 1 is Θ(1).) Table 2 summarizes the results on the
necessary and sufficient number of i.i.d. products for learning.

Table 2. Matching lower and upper bounds for the minimum number of i.i.d. products
required to learn the influence model, in terms of n, in the Bayesian setting when
p = 1/n, when learning the influence between all agents and the star agent, for the two
cases of learning based on sets of adoptions or sequences of adoptions. Notice that no
products are needed to learn just one influence rate; an estimator can just guess that
λi,n+1 = 0.

λhor = λ λhor = nλ
Sets Sequences Sets Sequences

Learn all Θ(logn) Θ(1) Θ(n) Θ(n)

The worst-case setting
In the worst-case setting, we assume that each of the influence rates λ1,n+1, . . . , λn,n+1

can be either zero or infinity, but we assume no prior over the hypotheses. We
provide upper and lower bounds for the minimum number of i.i.d. products re-
quired to learn the correct hypothesis assuming that the influence rates on the
links are such that the minimum number of i.i.d. products required for learn-
ing is maximized (the worst possible). Table 3 summarizes the results on the
necessary and sufficient number of i.i.d. products for learning.

The worst-case setting with known scaling of agents with influence
rate infinity to agent n+ 1
We denote the number of agents with influence rate infinity to agent n+ 1 by `.

8 For the sake of brevity, we refrain from providing propositions or proofs for the rest
of our results in this section, which are compactly stated in the tables.
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Table 3. Matching lower and upper bounds for the minimum number of i.i.d. products
required to learn the influence model in terms of n, in the worst-case setting, for the
two cases of learning the influence between one agent and the star agent and of learning
the influence between all agents and the star agent, and for the two cases of learning
based on sets of adoptions or sequences of adoptions.

λhor = λ λhor = nλ
Sets Sequences Sets Sequences

Learn one Θ(n2) Θ(n) Θ(n) Θ(n)
Learn all Θ(n2 logn) Θ(n logn) Θ(n logn) Θ(n logn)

Table 4 summarizes the results on the necessary and sufficient number of i.i.d.
products for learning.

Table 4. Matching lower and upper bounds for the minimum number of i.i.d. products
required to learn the influence model in terms of n, in the worst-case setting when the
scaling of agents ` with influence rate infinity to agent n+1 is known, for the two cases
of learning based on sets of adoptions or sequences of adoptions.

λhor = λ λhor = nλ
Sets Sequences Sets Sequences

` = 1 Θ(logn) Θ(1) Θ(n) Θ(n)
` = αn, α ∈ (0, 1) Θ(n2 logn) Θ(n logn) Θ(n logn) Θ(n logn)
` = n− 1 Θ(n2) Θ(n) Θ(n) Θ(n)

3.3 Discussion

We characterize the scaling of the number of samples required for learning with
sets and sequences, thus theoretically quantifying the gain of learning with se-
quences over learning with sets in regard to the speed of learning. Our inference
algorithms look for signature events, and attain optimal sample complexity, as
long as the signature events are reasonably chosen. Depending on the setting,
learning with sets can take a multiplicative factor of Θ(n) more samples than
learning with sequences, when the horizon rate is moderate (i.e., as large as the
idiosyncratic rates of adoption). With much smaller horizon, learning with se-
quences has no gain asymptotically over learning with mere sets, across all the
settings we study; when the observation window (i.e., the horizon) is small, then
the sets of adoptions provide asymptotically all the information pertinent to
learning that sequences provide. The intuition behind this finding is that, with
smaller horizon, only a few adoptions take place; when only a few adoptions take
place, sequences do not convey much more information than sets do.
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4 Theoretical Guarantees for General Networks

In this section, we provide theoretical guarantees for more general networks
than the star topology, which was considered in Subsection 3.2, and we relax the
assumption that each edge carries an influence rate of either zero or infinity. In
particular, we focus on the question of deciding between the complete graph, and
the complete graph that is missing one directed edge, which we cast as a binary
hypothesis testing problem9. This is a hard hypothesis testing problem, in the
sense that the two hypotheses give rise to very similar outcomes. Because of its
nature, sample complexity results for this hard problem entail sample complexity
results for broader families of networks.

4.1 Learning Between the Complete Graph and the Complete
Graph that Is Missing One Edge

For ease of exposition, we assume that all from a collection of n agents have
the same idiosyncratic rate λ > 0, and that all directed edges carry the same
influence rate, which is equal to λ. λ can be known or unknown. We are learning
between two hypotheses for the underlying influence graph: the complete graph,
P1; and the complete graph minus the directed edge (i, j), P2.

An Algorithm for Learning
We propose a simple algorithm for deciding between the two hypotheses. The
sample complexity of our algorithm gives an upper bound for the number of i.i.d.
products required for learning. The algorithm is the following:

– We first choose an event of interest A in an appropriate manner.
– For each new product `, we define an indicator variable

I` =

{
1 if event A obtained in product `
0 otherwise

– After k i.i.d. products, we compute p̂ = 1
k

∑k
`=1 Ik.

– Choose the hypothesis with the smallest deviation from the empirical prob-
ability, |Pi(A)− p̂|, i = 1, 2.

By the concentration inequality

P (|p̂− E[I]| ≥ t) ≤ 2e−2kt
2

,

and setting 2e−2kt
2 ≤ δ, 0 < δ < 1, we obtain

k ≥
log
(
2
δ

)
2t2

.

9 Abrahao et al. (2013) study the same binary hypothesis testing problem.
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Therefore, setting t = 0.5 · |E1[I]− E2[I]| = 0.5 · |P1(A)− P2(A)|, the proposed
algorithm learns the true hypothesis correctly with probability at least 1− δ.

The sample complexity of the proposed learning algorithm is given effectively
by the inverse square of the distance |E1[I] − E2[I]| = |P1(A) − P2(A)|, which
scales with the number of agents n.

An alternative derivation of an upper bound is through obtaining a lower
bound on the Kullback-Leibler divergence between the two distributions P1, P2.
In particular, in a Neyman-Pearson setting, the best achievable exponent for the
probability of error of deciding in favor of the first hypothesis when the second
is true, given that the probability of deciding in favor of the second hypothesis
when the first is true is less than ε, is given by the negative Kullback-Leibler (KL)
divergence, −D(P1||P2). In turn, Pinsker’s inequality bounds the KL divergence
from below:

D(P1||P2) ≥ 1

2 log 2
||P1 − P2||21

=
1

2 log 2

(
2
(
P1(B)− P2(B)

))2
,

where B = {x : P1(x) > P2(x)}. Therefore, the larger is the event A of interest
in the algorithm proposed above, i.e., the closer it gets to the event B, the tighter
upper bound we achieve for the number of i.i.d. products required for learning.

Learning with Sequences

Proposition 3. To ensure correct learning of the true hypothesis with sequences,
it is sufficient for the number of i.i.d. products to be O(n2).

We now argue that there is a matching lower bound of Ω(n2) for learning
with sequences. Indeed, assuming we are learning based on not just sequences,
bur rather times of adoptions, then the ratio of the likelihoods for the time of
adoption for agent j between hypotheses P1 and P2, assuming everybody else
has adopted, is

nλe−nλt

(n− 1)λe−(n−1)λt
=

(
1 +

1

n− 1

)
e−λt,

resulting in a KL divergence of Θ
(

1
n2

)
, which in turn implies a Ω(n2) complexity

for the number of i.i.d. products required for learning. This is in agreement with

the Ω( n2

log2 n
) lower bound proven in Abrahao et al. (2013), for a model with

exponential infection times, but no idiosyncratic adoptions.

Learning with Sets

Proposition 4. To ensure correct learning of the true hypothesis with sets, it
is sufficient for the number of i.i.d. products to be O(n6).
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4.2 Discussion

We have proposed a simple algorithm for deciding between the complete graph
(with all directed edges present), and the complete graph that is missing one
directed edge. The algorithm relies on using samples to estimate the probability
of an event of interest under each of the two hypotheses. Our algorithm results
in sample complexity that is given by the inverse of the square of the difference
between the probabilities of the chosen event of interest under each of the two
hypotheses. This difference scales with the number of agents n. The dependence
on the inverse of the square of the difference can also be derived from a lower
bound on the Kullback-Leibler divergence via Pinsker’s inequality. One would
choose the event of interest in the algorithm so as to maximize the difference
between the event’s probabilities under each of the two hypotheses, resulting in
a tighter upper bound.

When learning with sequences, we propose an implementation of our algo-
rithm that can learn with O(n2) samples, and we argue that learning is not
possible with o(n2) samples. When learning with sets, we propose an implemen-
tation of our algorithm that can learn with O(n6) samples, and although we
are missing a lower bound, we conjecture that O(n2) samples do not suffice for
correct learning with sets.

5 Learning Influence with Real Observational Data

5.1 The Dataset

We use data10 obtained from an experiment (Pan, Aharony, and Pentland, 2011)
for which an Android mobile phone is given to each of 55 participants, all resi-
dents of a graduate student dormitory at a major US university campus, and the
following information is tracked during the experimental period of four months:

– installations of mobile apps, along with associated time stamps;
– calls among users (number of calls for each pair of users);
– Bluetooth hits among users (number of Bluetooth radio hits for each pair of

users);
– declared affiliation (in terms of academic department) and declared friend-

ship among users (binary value denoting affiliation for each pair of users,
and similarly for friendship).

5.2 Network Inference

We are interested in recovering patterns of influence among the 55 participants
based solely on the mobile app installation data. Under the premise that influ-
ence travels through communication and social interaction, we expect a network

10 We are thankful to Sandy Pentland and the Human Dynamics Laboratory at the
MIT Media Lab for sharing the data with us.
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inference algorithm that does well to recover a network of influence that is highly
correlated with the realized network of social interaction. We therefore separate
the available data into the mobile app installation data (i.e., the “actions”) and
the communication/interaction data (i.e., the social data). We learn the influence
network using only the actions, and we then validate using the social data.

We employ maximum likelihood estimation based on sequences of mobile app
installations to estimate both the influence rates (i.e., the network structure)
and the idiosyncratic rates of adoption. The inferred influence rates are highly
correlated with the realized communication networks, providing evidence for the
soundness of the proposed inference methodology, as we proceed to show.

For each edge (i, j), we add the inferred rates λij + λji, and rank all edges
based on joint inferred influence. We then choose the top ranked edges based
on joint influence, and we report the percentage of edges for which friendship
was reported. A friendship edge exists between two randomly selected nodes
with probability 0.3508, which is less than the percentage corresponding to the
10, 20, 50, 100 edges that carry the highest inferred influence. Table 5 shows the
results.

Table 5. There is higher probability of friendship in the edges where we detect the
highest influence (using sequences) as compared to the random baseline. A friendship
edge exists between two randomly selected nodes in the dataset with probability 0.3508.

Out of top

10

joint influence edges, friendship exists in

70%
20 65%
50 54%
100 38%

The correlation coefficient between the observations of calls and the inferred
(joint) influence (using information on sequences of installations) per edge is
0.3381. The positive correlation between calls and (joint) influence inferred from
sequences is visualized in Figure 2.

We finally also estimate influence based solely on sets of mobile app in-
stallations. We restrict our attention to the most active users out of the 55
participants, and learn influence among them using sets and sequences. When
we learn influence based on sets of mobile app installations, as opposed to se-
quences, the correlation between the inferred rates and the realized communi-
cation/interaction networks is only slightly lower (or even higher) than when
learning with sequences of mobile app installations. This is an instance where
learning with temporally poor data modes is good enough.

6 Conclusion

We have discussed the gain of learning with sequences of actions versus sets of
actions under three different angles: in Section 3 we have assumed prior knowl-
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Fig. 2. Concurrent visualization of the realized network of calls (the color of each edge
denotes the number of calls between the users: closer to blue for lower number of calls,
closer to red for higher number of calls) and the inferred network of influence using
information on sequences of adoptions (the thickness of edge i − j is proportional to
the sum of the inferred influence rates λij + λji). We observe that edges with higher
number of calls (red) are more likely to carry higher influence (thick).

edge of a “super graph”, and under the condition that each edge either carries
very large influence or no influence, we infer which edges of the super graph
truly exist; in Section 4, we solve a binary hypothesis testing problem which
decides the true network topology between two complex candidate hypotheses;
in Section 5, we recover the network of influence using a maximum likelihood
estimator based on real data. In Zoumpoulis (2014, Chapter 6) we also compare
learning with times to learning with sequences and sets: we formulate relevant
hypothesis testing problems and characterize the speed of learning of the correct
hypothesis via the Kullback-Leibler divergence, under the data modes of sets,
sequences, and times; we conclude that when the horizon is small, the sets of
decisions provide almost all the necessary information for learning, and there
is no value in richer temporal data, which is in agreement with our findings in
Section 3 of this paper. Overall, our focus has been on whether having access to
data of richer temporal information (such as sequences of actions) has value over
having access to mere sets of actions in order to learn the underlying influence
network.
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In a different formulation, the learner knows that the true network lies within
a family of topologies, and the learner is after recovering the true network.
For trees, a class of interest, we can prove that O(log n) samples are sufficient
when learning with sets, and Ω(log n) samples are necessary when learning with
sequences. We thus show that sequences have no value over sets asymptotically
when learning the influence network among all trees. Along with trees, we are
currently working towards learning results for other classes of networks.

In addition, one can study models of influence other than the exponential de-
lay and random observation window model used for our results so far. Whether
employing a different infection and horizon model would alter the results on
the value of having access to data of richer temporal information remains unan-
swered.
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Appendix

Proof of Proposition 1

We focus on learning edge i, j. We first show the first half of the proposition.

We show that there is a region (which we call BAD) of large probability,
where it is not clear what a good estimator should decide. No matter how this
event is split between the competing hypotheses, the probability of error will be
large.

We use Xp to denote the outcome of product p. We say the outcome Xp of
product p is in BADp if one of the following happens: both agents i, j adopt;
agent i does not adopt. We say the outcome X1, . . . , Xk is in BAD if Xp ∈ BADp

for all products p = 1, . . . , k.

We can write

P ((X1, . . . , Xk) ∈ BAD | λij = 0) ≥ P (path from i to j realized | λij = 0)

≥ P (paths from i to h and from h to j realized | λij = 0)

= q`ih+`hj

> 0,

where `ih(`hj) is the number of edges along a path from i to h (from h to j).
Note that this is independent of the number of products k.

To show the second half of the proposition, we consider the following esti-
mator: after k products, decide λ̂ij = 0 if there is a product such that agent

i adopts and agent j does not adopt; otherwise, decide λ̂ij = ∞. Conditioning
on the subset of agents L for which there is a directed path of edges carrying
infinite influence to j, we can write

P(error) = P(λij = 0) · P
(
λ̂ij =∞ | λij = 0

)
= (1− q) ·

∑
L⊆{1,...,n}\{i,j}

P
(
λ̂ij =∞ | λij = 0,L

)
P (L | λij = 0).(1)

Assuming |L| = m, we can write for a given product:

P (i adopts, j does not | λij = 0,L) ≥ P (i adopts first, j does not adopt | λij = 0,L)

=
λ

nλ+ λ
· λ

λ+mλ+ λ

=
1

n+ 1
· 1

m+ 2
.

Denoting with M the random variable which is the number of agents for which
there is a directed path of edges carrying infinite influence to j (i.e., M = |L|),
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we can now rewrite Equation (1) as

P(error) ≤ (1− q) ·
n−2∑
m=0

(
1− 1

(n+ 1)(m+ 2)

)k
pM |λij=0(m)

≤ (1− q)
(

1− 1

(n+ 1)n

)k
= (1− q)

(
n(n+ 1)− 1)

n(n+ 1)

)k
−→ 0 as k −→∞.

In fact, assuming q = Θ(1), to ensure an accurate estimate for λij with proba-

bility at least 1− δ, for given δ ∈ (0, 1), it suffices that k ≥ log 1−q
δ

log
n(n+1)
n(n+1)−1

= O(n2).

Using the union bound, we relate the probability of error in learning all the
edges of the graph, to the probability of error in learning a single coefficient λij :

P(error) ≤ n(n− 1) · (1− q)
(
n(n+ 1)− 1)

n(n+ 1)

)k
.

Again, assuming q = Θ(1), to ensure accurate estimates for all the edges with

probability at least 1−δ, for given δ ∈ (0, 1), it suffices that k ≥ log
n(n−1)(1−q)

δ

log
n(n+1)
n(n+1)−1

=

O(n2 log n).

Proof of Proposition 2

For brevity, we only show the second half of Proposition 2, which is illustrative
of the reasoning used to prove the rest of our results. Proofs of all the statements
can be found in Zoumpoulis (2014).

To show the upper bound, consider the following estimator: after k products,
decide λ̂i,n+1 =∞ if and only if there exists a product such that agent i adopts

and agent n + 1 adopts immediately after (and decide λ̂i,n+1 = 0 otherwise).
Using the union bound, we relate the probability of error in learning all of
λ1,n+1, . . . , λn,n+1 to the probability of error in learning λ1,n+1:

P(error) ≤ n · P
(
λ̂1,n+1 = 0 | λ1,n+1 =∞

)
P(λ1,n+1 =∞)

= n · 1

2

n−1∑
m=0

(
1− λ

mλ+ λ+ λ

)k (
n− 1

m

)(
1

2

)n−1
≤ n · 1

2

(
n

n+ 1

)k
.

To ensure accurate estimates with probability at least 1− δ, for given δ ∈ (0, 1),

it suffices that k ≥ log n
2δ

log n+1
n

= O(n log n).

To prove the lower bound, we show that if k is small, there is a high probabil-
ity event, where it is not clear what a good estimator should decide. No matter
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how this event is split between the competing hypotheses, the probability of
error will be large.

We use Xi to denote the outcome of product i. Having fixed agent j, we
say the outcome Xi of product i is in BADj

i if one of the following happens: (i)
agent j adopts, but agent n + 1 adopts before her; (ii) agent j does not adopt.
We say that the outcome X1, . . . , Xk is in BADj if Xi ∈ BADj

i for all products
i = 1, . . . , k.

We are interested in the probability that for some agent j, it is the case that
X1, . . . , Xk ∈ BADj . We define A to be the event that each of the agents 1, . . . , n
adopts some product before all (other) agents 1, . . . , n with links of rate infinity
to agent n+ 1 adopt that product. We define B to be the event that all agents
with links of rate infinity to agent n+ 1 adopt some product first among other
agents with links of rate infinity to agent n+ 1. Then, we can write

P
(
∃j : (X1, . . . , Xk) ∈ BADj

)
= 1− P(A)

≥ 1− P(B).

Let random variable S be the number of i.i.d. products until event A occurs.
Let random variable T be the number of i.i.d. products to obtain event B. Then
S ≥ T . The calculation of the expectation of T is similar to the calculation
for the coupon collector’s problem, after conditioning on the subset of agents
L ⊆ {1, . . . , n} whose influence rate on agent n+ 1 is infinite:

E [T ] =
∑

L⊆{1,...,n}

P(L)E [T | L]

=

n∑
m=0

E [T | L]

(
n

m

)(
1

2

)n
=

1

2n

n∑
m=0

((
mλ

mλ+ λ

)−1
+

(
(m− 1)λ

mλ+ λ

)−1
+ . . .+

(
λ

mλ+ λ

)−1)(
n

m

)

=
1

2n

n∑
m=0

(
m+ 1

m
+
m+ 1

m− 1
+ . . .+

m+ 1

1

)(
n

m

)

=
1

2n

n∑
m=0

(m+ 1)Hm

(
n

m

)
= Ω(n log n),

where Hm is the mth harmonic number, i.e., Hm =
∑m
k=1

1
k (and we define H0 =

0), and where the last step follows because, defining f(m) = (m+ 1)Hm,m ≥ 0,



Learning Influence Networks 21

and using Jensen’s inequality, we have

1

2n

n∑
m=0

(m+ 1)Hm

(
n

m

)
≥ f

(⌊
1

2n

n∑
m=0

m

(
n

m

)⌋)

= f

(⌊
1

2n
n

n∑
m=1

(
n− 1

m− 1

)⌋)

= f

(⌊
1

2n
n

n−1∑
m′=0

(
n− 1

m′

)⌋)

= f

(⌊ 1

2n
n2n−1

⌋)
= f

(⌊n
2

⌋)
=
(⌊n

2

⌋
+ 1
)
H⌊n

2

⌋
= Θ(n log n).

Similarly, for the variance we can write

var (T ) =
∑

L⊆{1,...,n}

P(L)var (T | L)

=

n∑
m=0

var (T | L)

(
n

m

)(
1

2

)n

=
1

2n

n∑
m=0

1− mλ
mλ+λ(

mλ
mλ+λ

)2 +
1− (m−1)λ

mλ+λ(
(m−1)λ
mλ+λ

)2 + . . .+
1− λ

mλ+λ(
λ

mλ+λ

)2
(n

m

)

=
1

2n

n∑
m=0

 1
m+1(
m
m+1

)2 +
2

m+1(
m−1
m+1

)2 + . . .+
m
m+1(
1

m+1

)2
(n

m

)

≤ 1

2n

n∑
m=0

 1(
m
m+1

)2 +
1(

m−1
m+1

)2 + . . .+
1(
1

m+1

)2
(n

m

)

=
1

2n

n∑
m=0

(
(m+ 1)2

(
1

12
+

1

22
+ . . .+

1

m2

))(
n

m

)
≤ (n+ 1)2

(
1

12
+

1

22
+ . . .

)
= (n+ 1)2 · π

2

6

≤ 2(n+ 1)2.
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By Chebyshev’s inequality,

P (|T − E[T ]| ≥ c(n+ 1)) ≤ 2

c2
.

Therefore, with k = o(n log n) products, there is a very small probability that
event B will occur, and therefore a very large probability that the event {∃j :
(X1, . . . , Xk) ∈ BADj} will occur, which establishes the Ω(n log n) lower bound
for the number of products k.

Proof of Proposition 3

We focus on the event that both i and j adopt, with i adopting before j. We
compute the probability for all the cases in this event, under each of the two
hypotheses.

We have

P(i first, j second | i→ j) =
λ

nλ+ λ
· 2λ

(n− 1)λ+ (n− 1)λ+ λ
=

1

n+ 1
· 2

2n− 1
,

while

P(i first, j second | i9 j) =
λ

nλ+ λ
· λ

(n− 1)λ+ (n− 2)λ+ λ
=

1

n+ 1
· 1

2n− 2
,

and thus the difference of the two is

1

n+ 1

(
2

2n− 1
− 1

2n− 2

)
=

1

n+ 1
· 2n− 3

(2n− 1)(2n− 2)
∼ 1

2n2
.

Similarly,

P(i first, j third | i→ j) =
λ

nλ+ λ
· (n− 2)2λ

(n− 1)2λ+ λ
· 3λ

(n− 2)λ+ (n− 2)2λ+ λ

=
1

n+ 1
· 2n− 4

2n− 1
· 3

3n− 5
,

while

P(i first, j third | i9 j) =
λ

nλ+ λ
· (n− 2)2λ

(n− 2)2λ+ λ+ λ
· 2λ

(n− 2)λ+ (n− 3)2λ+ λ+ λ

=
1

n+ 1
· 2n− 4

2n− 2
· 2

3n− 6
,

with a difference of

2n− 4

n+ 1

(
3

(2n− 1)(3n− 5)
− 2

(2n− 2)(3n− 6)

)
=

2n− 4

n+ 1
· 6n2 − 28n+ 26

(2n− 1)(3n− 5)(2n− 2)(3n− 6)

∼ 1

3n2
.
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Similarly, we can show that

P(i first, j fourth | i→ j)− P(i first, j fourth | i9 j) ∼ 1

4n2
,

and in general, for 2 ≤ ` ≤ n

P(i first, j `th | i→ j)− P(i first, j `th | i9 j) ∼ 1

`n2
.

We now focus on the events in which i adopts second. We have

P(i second, j third | i→ j) =
(n− 2)λ

nλ+ λ
· 2λ

(n− 1)2λ+ λ
· 3λ

(n− 2)3λ+ λ
=
n− 2

n+ 1
· 2

2n− 1
· 3

3n− 5
,

while

P(i second, j third | i9 j) =
(n− 2)λ

nλ+ λ
· 2λ

(n− 1)2λ+ λ
· 2λ

(n− 3)3λ+ 2λ+ λ
=
n− 2

n+ 1
· 2

2n− 1
· 2

3n− 6
,

and thus the difference of the two is

n− 2

n+ 1
· 2

2n− 1

(
3

3n− 5
− 2

3n− 6

)
=
n− 2

n+ 1
· 2

2n− 1
· 3n− 8

(3n− 5)(3n− 6)
∼ 1

3n2
.

In general, for 3 ≤ ` ≤ n, the difference is

P(i second, j `th | i→ j)− P(i second, j `th | i9 j) ∼ 1

`n2
.

We can sum up all the differences between the two hypotheses for the events
in which both i and j adopt with i adopting before j, to get asymptotically

1

n2
·
[

1

2
+

1

3
+

1

4
+ . . . . . . . . . . . . . . .+

1

n

+
1

3
+

1

4
+ . . . . . . . . . . . . . . .+

1

n

+
1

4
+ . . . . . . . . . . . . . . .+

1

n
...
...

+
1

n

]
which can be written as

1

n2

(
1

2
+

2

3
+

3

4
+ . . .+

n− 1

n

)
=

1

n2

(
(1− 1

2
) + (1− 1

3
) + (1− 1

4
) + . . .+ (1− 1

n
)

)
∼ 1

n2
(n− 1− (log n− 1))

=
n− log n

n2
.
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The sample complexity is therefore

1(
n−logn
n2

)2 =
n4

(n− log n)2
= Θ(n2).

Proof of Proposition 4

We focus on the event that only i, j adopt. We have

P(only i, j adopt | i→ j) = 2

(
λ

nλ+ λ
· 2λ

(n− 1)λ+ (n− 1)λ+ λ

)
λ

(n− 2)λ+ (n− 2)2λ+ λ

= 2 · 2

(n+ 1)(2n− 1)
· 1

3n− 5
,

while

P(only i, j adopt | i9 j) =

(
λ

nλ+ λ
· λ

(n− 1)λ+ (n− 2)λ+ λ

+
λ

nλ+ λ
· 2λ

(n− 1)λ+ (n− 1)λ+ λ

)
λ

(n− 2)λ+ (n− 2)2λ+ λ

=
1

n+ 1

(
1

2n− 2
+

2

2n− 1

)
1

3n− 5
,

and thus the difference of the two is

1

n+ 1
· 1

3n− 5

(
4

2n− 1
− 1

2n− 2
− 2

2n− 1

)
=

1

n+ 1
· 1

3n− 5
· 2n− 3

(2n− 1)(2n− 2)
∼ 1

6n3
.

The sample complexity is therefore Θ(n6).


